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Abstract. Industrial Wireless Sensor Networks (IWSNs), a novel 
technique in industry control, can greatly reduce the cost of 
measurement and control and improve productive efficiency. Different 
from Wireless Sensor Networks (WSNs) in non-industrial applications, 
the communication reliability of IWSNs has to be guaranteed as the 
real-time field data need to be transmitted to the control system 
through IWSNs. Obviously, the network architecture has a significant 
influence on the performance of IWSNs, and therefore this paper 
investigates the optimal node placement problem of IWSNs to ensure 
the network reliability and reduce the cost. To solve this problem, a 
node placement model of IWSNs is developed and formulized in which 
the reliability, the setup cost, the maintenance cost and the scalability 
of the system are taken into account. Then an improved adaptive 
mutation probability binary particle swarm optimization algorithm 
(AMPBPSO) is proposed for searching out the best placement scheme. 
After the verification of the model and optimization algorithm on the 
benchmark problem, the presented AMPBPSO and the optimization 
model are used to solve various large-scale optimal sensor placement 
problems. The experimental results show that AMPBPSO is effective to 
tackle IWSNs node placement problems and outperforms discrete 
binary Particle Swarm Optimization (DBPSO) and standard Genetic 
Algorithm (GA) in terms of search accuracy and the convergence 
speed with the guaranteed network reliability. 

Keywords: industrial wireless sensor networks, node placement, 
binary particle swarm optimization, adaptive mutation. 
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1. Introduction 

In harsh industrial environments, a large number of hazards ranging from 
strong mechanical vibrations, high temperatures, fragile surfaces, noisy 
electrical effects and even explosive gases may occur. Although wired 
industrial communication systems, such as fieldbus systems and wired 
Highway Addressable Remote Transducer (HART), have been used 
successfully in the field of factory automation and process automation [1], 
[2] , on one hand, it is still difficult to install the wiring in these harsh industrial 
environments. On the other hand, the installation and maintenance of cables 
and sensors are much more expensive than sensors themselves for the 
traditional wired control systems. In recent years, wireless sensor networks 
(WSNs) have been applied in numerous fields, such as space exploration 
and border protection. By deploying wireless sensors to operate unattended 
in harsh industrial environments, it would be possible to avoid the risks to 
human lives and decrease the cost of the applications [3]. Thus, the industrial 
wireless communication technology has drawn increasing attention and been 
applied to factory automation and industrial process control [4], [5], [6], [7]. 
With Industrial Wireless Sensor Networks (IWSNs), engineers can collect 
information from where it previously has been economically or 
technologically infeasible, and therefore the process would be enhanced with 
respect to quality and quantity further. Now, IWSNs have been applied in 
food industry, beverages industry, pharmaceuticals industry, oil industry, gas 
industry, chemical industry, mining industry, refining industry, power plants, 
pulp industry, etc. The industrial applications of IWSNs demonstrate that 
wireless installation typically costs as much as 50 percent less than the wired 
alternative. Meanwhile, IWSNs can improve efficiency and be applied to the 
fields where the wired system cannot be installed.  

However, there are still obstacles for the large-scale applications of 
IWSNs, among which the reliability of networks is the absolute requirement 
for most industrial systems. Thus this paper develops an optimal node 
placement model for the cluster-based IWSNs in which the reliability, cost 
and scalability of the network are taken into account. To obtain the best 
performance, a novel adaptive mutation probability binary Particle Swarm 
Optimization algorithm (AMPBPSO) is proposed to solve the optimal node 
placement problem of large-scale IWSNs with the model. 

The rest of this paper is organized as follows. Section 2 introduces the 
related research work. Section 3 presents the node placement model of 
IWSNs where the objective function is formulated and introduced in detail. 
Section 4 specifies the optimization mechanism and procedure of 
AMPBPSO. The implementation of solving the optimal node placement 
based on AMPBPSO is addressed in Section 5. In Section 6, AMPBPSO and 
the developed model are first verified on the benchmark problem. Then 
AMPBPSO is utilized to solve the optimal node placement problems of 
IWSNs, and the results are compared with those of discrete binary Particle 
Swarm Optimization (DBPSO) and Genetic Algorithm (GA). Finally, the 
conclusions and future work are drawn in Section 7. 
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2. Related Work  

Nowadays, Industrial Wireless Sensor Networks (IWSNs) have become a 
new research hotspot in industrial control technologies. To improve the 
performance of IWSNs and meet requirements in industrial applications, 
researchers developed various strategies to enhance and extend IWSNs. 
Heo et al. [8] proposed a new energy aware routing protocol for IWSNs in 
which real-time and reliable delivery as well as energy saving were 
considered. Park et al. [9] presented an adaptive protocol for IWSNs, called 
Breath, which ensured a desired packet delivery and delay probabilities while 
minimizing the energy consumption of network where the reliability of the 
packet were treated as the constraint. Bertocco et al. [10] developed a 
suitable testbed enlisting IEEE 802.14.5 wireless sensor nodes for studying 
the interference to optimize the network setup. Considering the high bit error 
rate characteristics of wireless channel due to harsh conditions like 
attenuation, noise and channel fading, Balasubramanian et al. [11] offered a 
novel real-time Medium Access Control (MAC) protocol that was specifically 
tailored to the requirement of the industrial environments. Villaverde et al. 
[12] introduced a route selection algorithm, named InRout, where local 
information was shared among neighboring nodes of IWSNs to enable 
efficient route selection. In their work, route selection is described as a multi-
armed bandit task and Q-learning techniques are adopted to gain the best 
solution with low overhead, and thus it can improve the reliability and typical 
quality of service. Chen et al. [13] depicted a new distributed estimation and 
collaborative control scheme for wireless sensor and actuator networks to 
make up for the problems caused by the unreliable wireless and multi-hop 
communication among sensors and actuators in IWSNs. Yu et al. [14] 
discussed the use of forward error correction (FEC) codes in IWSNs to 
improve the link reliability and reduce the number of retransmissions in harsh 
industrial environments. They proposed a FEC scheme suitable for MAC 
level protection in which the packet was divided into groups and encoded 
using systematic FEC codes. Xing et al. [15] optimized the MAC protocol and 
presented a modified multi-channel one for IWSNs which could achieve more 
reliable communication in an energy and bandwidth efficient way. 

Although the previous work has improved the reliability of IWSNs based on 
protocol modification and routing optimization, it is still necessary to carefully 
design and optimize the node placement scheme of IWSNs from the system 
point of view as it directly determines the final performance of networks 
especially for large-scale IWSNs. Actually, node placement has drawn 
increasing attention in non-industrial applications of WSNs, and various 
deployment strategies and algorithms have been proposed to construct 
sensor networks for different design goals, such as the minimum cost, highest 
energy efficiency, network coverage and connectivity of WSNs. However, the 
optimal node placement of WSNs has been proven to be an NP-hard 
problem [16], [17], and therefore evolutionary algorithms have been studied 
and applied to node deployment problems, which have shown the outstanding 
performance in solving  a wide variety of NP-hard problems. As the most 



Ling Wang et al. 

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1556 

widely used evolutionary algorithm, Genetic Algorithms (GAs) have been 
successfully used to design the node placement of WSNs. Ferentinos and 
Tsiligiridis [18] used a GA to design WSNs to fulfill the existent connectivity 
constraints and incorporate energy-conservation to guarantee maximum life 
span of the network. Jia et al. [19] investigated the coverage control scheme 
based on a multi-objective GA in which the minimum number of sensors was 
selected in a densely deployed environment while preserving full coverage of 
networks. Hu et al. [20] developed a hybrid approach of combining a genetic 
algorithm with schedule transition operation to maximizing the lifetime of 
sensor networks. To achieve better results, various meta-heuristic algorithms, 
such as Particle Swarm Optimization (PSO) [21], [22], Differential Evolution 
(DE) [23], Harmony Search [24] and Ant Colony Optimization (ACO) [25], [26] 
have been applied to the optimal design of WSNs. However, the previous 
works mainly focus on optimizing node placement for maximizing the lifetime 
of networks due to the characteristics of WSN applications. Different from 
general WSNs in the non-industrial applications [27], the demand of energy 
saving in IWSNs is alleviated as the network is maintained and the battery of 
nodes can be replaced. But IWSNs have stringent requirement of the 
communication reliability because the real-time field data are transmitted to 
the control system through IWSNs. Therefore, the network reliability should 
be especially concerned in the node placement of IWSNs, and the node 
placement strategies for the WSNs mentioned above are unsuitable for 
IWSNs. Now only few attempts have been made on optimizing the node 
deployment in IWSNs to satisfy the network reliability needs. And as far as 
we know, no one has addressed this problem utilizing intelligent optimization 
algorithms.  

3. Node Placement of IWSNs 

3.1. Communication model of cluster-based IWSNs 

The node placement problem of IWSNs with the two-tiered clustering 
architecture is addressed in this work. The lower-layer is the single-hop 
communication between the sensor node and its cluster-head node. The 
upper-layer is the routing among cluster-heads to the base station via multi-
hopping. In IWSNs, each node (including the sensor node and cluster-head 
node) has a maximum communication range. The communication radii of the 
sensor node and cluster-head node are denoted as RS and RCH, respectively. 
Generally, the communication capacity of the cluster-head node is more 
powerful than that of the regular sensor node. For instance, assuming that 
three sensor nodes (S1, S2 and S3) and three cluster-head nodes (CH1, CH2 
and CH3) placed in the field as Fig. 1, the communication radii are constant 
and the communication ranges of them can be determined. The distance 
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between the sensor node S1 and the cluster-head node CH1 or CH2 is below 
RS, that is, CH1 and CH2 are covered by the communication circle of S1, and 
thus the monitored data of S1 can be reliably transmitted to CH1 or CH2. 
However, the data transmitted from S2 will not be received by CH2 as the 
location of CH2 is beyond the maximum communication range of S2. In case 
of CH1 running out of its energy and the data of any sensor cannot be 
transmitted to the base station, which will make the whole network break 
down and cause the shutdown of the industry system or even hazard. Thus 
the extra nodes have to be deployed for redundancy to guarantee the 
essential reliability and robustness of IWSNs. Besides, the additional cluster-
head nodes can improve the balance of load and extend the lifetime of 
batteries, which reduces the maintenance work of IWSNs. In summary, two 
questions, i.e. how many cluster-head nodes are needed at least and how to 
place them, should be considered carefully to satisfy the design goals of 
IWSNs. 
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Fig. 1. A sample on the communication model of sensor nodes (▲) and cluster-head 

nodes (●) 

3.2. Optimal node placement model of IWSNs 

The main objective of designing the architecture of IWSNs is to guarantee 
the reliability of IWSNs as well as minimize the investment cost and the 
maintenance cost of networks. In addition, the maximum communication load 
of cluster-head nodes also need be considered for the scalability and real 
time of the system. Therefore, the optimal node placement model of IWSNs 
is a constrained multi-objective optimization problem and can be formulated 
as (1)-(2). 
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where C is the setup cost of IWSNs; SDCL is the standard deviation of cluster-
head communication load which indicates the maintenance cost of IWSNs; 

 and   are the weighting factors with 1   . S

CHMIN is the minimum 

communicating cluster-head number of all the sensors, and CH

CHMIN  is the 

least communicating cluster-head number of all the cluster-head nodes. LSN, 
LCN and MCL represent the sensor node reliability constraint, the cluster-head 
node reliability constraint and the maximum load constraint, respectively. 
LCHj is the load number of the j-th cluster-head. 

Reliability Constraint. To ensure the communication reliability of IWSNs, 
each node must have at least one redundant cluster-head node; that is, the 
cluster-head number for each node in IWSNs should be more than two as (3) 
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where LSN and LCN are the pre-defined least numbers of cluster-heads for 
sensor nodes and cluster-head nodes, respectively. 

As seen in Fig. 2, the sensor node S1 and the cluster-head node CH4 have 
one redundant cluster-head node, i.e. CH2 and CH6, respectively. When 
CH1 or CH5 fails, the data of S1 still can be transmitted to the base station 
successfully due to the assigned redundant cluster-head nodes, and therefore 
the reliability of IWSNs is improved and guaranteed. 

Suppose that there are Ns sensor nodes and Nch cluster-head nodes placed 
in the industry field and Ni (i = 1, 2,…, Ns) and Mj (j = 1, 2,…, Nch)  are the 
cluster-head node numbers of the i-th sensor node and the j-th cluster-head, 

respectively, S

CHMIN and CH

CHMIN can be calculated as (4)-(5). 

min{ ,| 1,2,..., } .S

CH i SMIN N i N 
 (4) 

min{ ,| 1,2,..., } .CH

CH j chMIN M j N 

 

(5) 

However, a node need not transmit its data to every cluster-head node in 
its communication range. Thus, in this work every sensor node or cluster-
head node only communicates with the nearest LSN or LCN cluster-head 
nodes. The nearest cluster-head node is used as the regular working one and 
the others are reserved as the redundant ones. 
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Maximum Load. Although the energy and communication capacity of 
cluster-head nodes are more powerful than those of sensor nodes, their load-
driven capacity is still limited owing to the finite computation ability. Thus, the 
total load of cluster-head nodes should not be beyond the maximum 
communication load MCL. Furthermore, at least one configuration point 
should be reserved for the upgrading or maintenance of the system. 
Therefore, the maximum number of load nodes for each cluster-head node is 
defined as (6).  

1 .jLCH MCL 
 (6) 
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Fig. 2. An instance of the reliable IWSNs (the symbol ▲ represents the sensor node 

and the symbol ● represents the cluster-head node) 

Setup Cost. When constructing IWSNs, the setup cost should be reduced 
without decreasing the performances of the system, especially in the very 
large-scale applications. For the node placement in IWSNs, the change of the 
cost mainly lies in the investment of cluster-head nodes as the sensor nodes 
are already determined by the requirements of monitoring. Thus, the setup 
cost can be defined as (7)   

 .ch chC P N 
 

(7) 

where Nch is the number of the cluster-head nodes used and Pch is the weight 
of  the cluster-head node number . 
Maintenance Cost. The communication load equilibration of cluster-head 
nodes plays a key role in balancing the energy consumption. As the 
communication of node needs energy supply, the high-load cluster-head 
node consumes energy faster than the others. To insure the normal running 
of IWSNs, the battery of cluster-head node need be replaced before its 
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energy totally runs out. Thus, the unbalanced load uniformity will bring the 
frequent maintenance of IWSNs, which should be avoided. Therefore, the 
load uniformity of IWSNs is considered as the main metric of the 
maintenance cost to be optimized in this paper, which can be indicated by the 
standard deviation of the cluster-head load (SDCL) as (8)-(9),  
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where MLCH is the mean load of all the cluster-head nodes. 

4. Adaptive Mutation Probability Binary Particle Swarm 

Optimization 

Particle Swarm Optimization (PSO) algorithm was first proposed by Kennedy 
and Eberhart in 1995 [28], which has been studied and applied to solve 
numerous science and engineering problems successfully. It works with a 
group of particles. Each particle can be considered as a candidate solution 

and represented by a position vector  1, , , ,i i ij iDx x x x in a D dimensional 

search space, which keeps on moving toward new points in the search space 

with the addition of a velocity vector  1, , , ,i i ij iDv v v v to facilitate the 

search procedure. During the search process all particles move toward the 
areas of potential solutions by utilizing the cognitive and social learning 
components. The process is repeated until any prescribed stopping criterion 
is reached. After any iteration, each particle updates its position and velocity 
to achieve a better fitness value according to (10)-(11) 

1

1 1 2 2( ) ( ) .G G G G G G

ij ij ij ij j ijv w v c r P x c r Pg x            (10) 

1 1  .G G G

ij ij ijx v x  

 

(11) 

where G

ijv represents the velocity of the j-th element of the i-th individual at 

iteration G; w is the inertia weight; c1 and c2 are called as the acceleration 
factors, usually valued as 2.0; r1 and r2 are the uniform random numbers 

between 0 and 1; G

ijx  represents the position of the j-th decision variable of 

the i-th individual at iteration G; G

iP and GPg denote the local best position of 
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the i-th individual and the global best position of the group until iteration G, 
respectively. 

However, the standard PSO and majority of its variants are developed for 
optimization problems in continuous space, which cannot be used to solve 
discrete binary optimization problems directly. To extend its application fields, 
Kennedy and Eberhart proposed a discrete binary PSO (DBPSO) algorithm in 
1997 [29]. DBPSO reserves the velocity updating formula (10), but the 
velocity vector is transformed into the probability of being “1” of each bit 
through the sigmoid limiting function as (12). Finally, the binary solution is 
generated based on this probability as (13) 

1

1 1
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 
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(13) 

where ()rand is a random number uniformly distributed in [0,1]. 

However, DBPSO is easy to be trapped in the local optima. To make up 
for it, a probability binary Particle Swarm Optimization (PBPSO) algorithm 
was presented in our previous work, which has been proven to be efficient 
and effective for solving various optimization problems [30], [31], [32]. 
Considering that the optimal node placement of large-scale IWSNs is a high-
dimensional constrained multi-objective NP-hard problem and its fitness 
evaluation is very time-consuming, a novel adaptive mutation PBPSO 
(AMPBPSO) is proposed in this paper into which an adaptive mutation 
operator is introduced to improve the search ability and convergence speed 
of the algorithm. 

4.1. Initialization 

AMPBPSO adopts the binary encoding. Assume the population size of 
AMPBPSO and the dimension of solutions are N and D, respectively. The i-th 

individual, i.e. a candidate solution, is denoted as  1, , , ,i i ij iDbx bx bx bx , 

where 1,2, ,i N ; 1,2, ,j D ; {0,1}ijbx  .The local best position of the i-th 

individual and the global best position of the group are denoted 

as  1, , , ,i i ij iDbP bP bP bP and  1, , , ,j DbPg bPg bPg bPg , respectively. In the 

search process, the whole updating mechanism of PSO is reserved. 

However, the original position vector  1, , , ,i i ij iDx x x x of PSO is redefined 

as the pseudo-probability of being “1” in AMPBPSO, and the 

velocity  1, , , ,i i ij iDv v v v represents the change of the pseudo-probability 

xi.  
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bxij, vij and xij of AMPBPSO is initialized as (14)-(16), 

0
1,   if () 0.5

 .
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(16) 

where ()rand is a random number uniformly distributed in [0,1]; minv and 

maxv are the lower and upper velocity bound; minx and maxx are the pre-

defined lower and upper pseudo-probability bound, respectively. 

4.2. Population Updating 

Like PSO, the velocity vi and the pseudo-probability xi of AMPBPSO is 
dynamically updated according to (17)-(18),  
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Note that the binary solution 
G
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ijbP and 
G

jbPg are used here instead of 

G

ijx , 
G

ijP and 
G

jPg in the standard PSO. If max
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1 xxG

ij 
, we fix 

1G

ijx to maxx
 
or minx , respectively. After the updating of the pseudo-

probability, the real probability prij is calculated and adopted to generate a 
new binary solution through the probability estimation operator as (19)-(20). 
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4.3. Adaptive Mutation 

Although the standard PBPSO is efficient and effective, the performance of 
PBPSO is not quite satisfactory on high-dimensional problems. To improve 
the search ability and avoid premature convergence, an adaptive mutation 
operator is adopted which operates as (21)-(22)  
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where pm is the mutation rate of each bit. In AMPBPSO, pm adaptively varies 
based on the solution dimension D and the iteration number G; that is, pm 

linearly increases from
0.05

D
to

1.5

D
in the search process. The introduction of 

the dimension D is to enhance the scalability of the algorithm, and the linear 
increment of pm can retain the diversity of the population. The final value of 

pm, i.e.
 

1.5

D
, is adopted to ensure the accuracy of local search. 

The evolutionary mechanism of AMPBPSO can be described as Fig. 3. 
Unlike DBPSO discarding the position updating formula and using the 
velocity as the probability to generate solutions, AMPBPSO reserves the 
original position of PSO by re-defining it as the pseudo-probability and 
therefore the entire updating mechanism of PSO is inherited. All the binary 
individuals of AMPBPSO have the pseudo-probability states as well as 
velocity states, which are updated following the framework of PSO and 
adopted to yield new candidate solutions using the probability estimation 
operator. For one thing, as the pseudo-probability of each individual is 
updated from generation to generation according to the information from its 
historical and global best individuals, AMPBPSO has the strong global 
exploration ability. For another, AMPBPSO adopts the pseudo-probability 
vector to create the new solution, thus it can maintain population diversity 
effectively. Moreover, the adaptive mutation operator enhances further the 
capability of local search as well as escaping from the local optima. 
Therefore, AMPBPSO can achieve an appropriate balance between 
exploration and exploitation. 

After the offspring solutions are generated, the fitness of each individual is 
calculated and the local best position as well as the global best position is 
replaced if the fitness value of the new one is better. In summary, the 
procedure of AMPBPSO can be depicted as Fig. 4. 
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5. Implementation of AMPBPSO for the Node Placement 

in IWSNS 

5.1. Solution Representation 

For industrial applications, the sensor nodes are deployed for monitoring and 
their locations are already determined. Thus, the variables included in the 
optimal node placement of IWSNs are the number and positions of the 
cluster-head nodes used. Each individual of AMPBPSO specifies the number 
and positions of cluster-head nodes encoded as a binary vector, where a bit 
“1” indicates that a cluster-head node is placed at the corresponding grid 
conjunction while a bit “0” denotes the opposite. Fig. 5 displays an example 
individual, which represents a grid with four rows and four columns. The grid 
junctions are encoded row by row into the binary vector, and therefore a 16-
bits binary solution can be used to delineate a corresponding candidate 
deployment scheme. 
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Fig. 3. Evolutionary mechanism of AMPBPSO 

5.2. Fitness Function 

As mentioned above, the optimal node placement of IWSNs is a constrained 
optimization problem. To deal with the constraints, the penalty function 
method is introduced to fix the fitness and lead the algorithm to search in the 
feasible areas effectively as (23)-(26).  
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1 2 3  .pf f p p p   

 

(23) 

1 1

1

max{0, ( )} .
Ns

SN i

i

p c L N


  

 

(24) 

2 1

1

max{0, ( )} .
CHN

CN j

j

p c L M


  
 

(25) 

3 2

1

max{0, ( 1 )} .
CHN

j

j

p c LCH MCL


   
 

(26) 

where fp is the final fitness value; p1, p2 and p3 are the penalty items of the 
sensor node reliability constraint, the cluster-head node reliability constraint 
and the maximum load number constraint, respectively. c1 is the penalty 
coefficient of the reliability constraints, and c2 is the penalty coefficient for 
violating the limitation of the communication load. 

5.3. Optimal node placement of IWSNs based on AMPBPSO 

Based on the pre-defined fitness function, AMPBPSO iteratively generates 
new candidate solutions to search the optimal node placement scheme of 
IWSNs. The whole procedure of designing the optimal node placement with 
AMPBPSO can be described as follows: 
Step 1: Set the model parameters of IWSNs, such as RS, RCH and MCL.  
Step 2: Initialize AMPBPSO including weight factor w, learning factors c1 and 
c2, the maximum velocity vmax , the binary population bx, the local best 
individual bPi, the global best individual bPg, the velocity v, the pseudo-
probability x and its lower/upper bound xmin /xmax. 
Step 3: Update the velocity vector and pseudo-probability vector of each 
individual according to (17)-(18). 
Step 4: Generate offspring individuals, i.e. new binary solutions, by 
performing the probability estimation operator as (19)-(20) and the adaptive 
mutation operator as (21)-(22). 
Step 5: Calculate the fitness value of each individual according to (23)-(26). 
Step 6: Update the local best individual bPi and the global best individual 
bPg. 
Step 7: Stop the iteration and output the optimal solution if the termination 
criteria are met, otherwise go to Step 3. 
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Fig. 4. The flowchart of AMPBPSO 
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Fig. 5. Binary encoding for the node placement of IWSNs 
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6. Experiments and Analysis 

6.1. Node Placement Benchmark Problem of IWSNs 

To test the effectiveness of the developed node placement model for IWSNs, 
a small-scale node deployment benchmark problem is designed as Fig. 6. 
The gird of this problem is 10×10 and the positions of the sensor nodes are 
pre-placed and represented as the triangles in the figure. The communication 
radii of the sensor node and the cluster-head node are set as RS=2 and 
RCH=5, respectively. The reliability constraints are LSN=2 and LCN=2. 
Therefore, the optimal solution of this benchmark is unique, and the 
corresponding positions of the deployed cluster-heads are marked as the 
circles. AMPBPSO, DBPSO [29] and GA [18] with the recommended 
parameters in Table 1 were adopted to tackle the benchmark problem. The 
population size and the maximum generation of each algorithm were set as 
N=200 and Gmax=100, respectively. 
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Fig. 6. The optimal placement scheme of the standard benchmark problem (▲

represents the sensor node, ● represents the cluster-head node, the circles are the 

communication ranges of the sensor nodes) 

The experiments were run 10 times independently. The experimental 
results, i.e., the best fitness (Best), the mean fitness (Mean) and the standard 
deviation (Std_Dev) are listed in Table 2. “+” of the t-test results indicates 
that AMPBPSO is significantly better than the compared algorithm at the 95% 
confidence; “-“ represents that AMPBPSO is significantly worse than the 

compared algorithm; and “≈” denotes that the difference is not significant. 

Table 2 indicates that the proposed model as well as AMPBPSO is effective 
for the node placement of IWSNs as the unique optimal solution of the 
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problem was found out successfully. However, AMPBPSO did not find the 
best solution with 100% success rate while DBPSO and GA totally failed to 
reach the global best solution, which illustrates that the optimal sensor 
placement problem is very complicated. The t-test results show that 
AMPBPSO is significantly superior to GA and DBPSO on this benchmark 
which demonstrates that AMPBPSO has the better global search ability and 
the adaptive mutation operator effectively enhances the performance of the 
algorithm. 

Table 1. Parameters of AMPBPSO, DBPSO AND GA 

Algorithms Parameters 

AMPBPSO 
1 2 max0.8, 2.0, 6.0,w c c v    min max20, 20,x x  

 

max

1 1.45
(0.05 )mp G

D G
   

 
DBPSO [29] 

1 2 max0.8, 2.0, 6.0w c c v   
 

GA [18] 1.0, 0.8, 0.005s c mp p p  
 

Table 2. Results of AMPBPSO, DBPSO and GA on the node placement benchmark 
problem 

Algorithm AMPBPSO DBPSO GA 

Best 

fp 3.32 12.90 15.30 

p1 0 0 0 

p2 0 0 0 

p3 0 0 0 

Mean±
Std_Dev 

fp 4.01±0.51 14.18±1.13 17.93±1.61 

p1 0±0 0±0 0±0 

p2 0±0 0±0 0±0 

p3 0±0 0±0 0±0 

Suceess rate 90% 0% 0% 

t-test /     

6.2. Large-scale Node Placement of IWSNs 

The number and positions of sensor nodes in IWSNs are designed and 
determined for monitoring industrial systems, and therefore they depends on 
the specific application and vary for the different systems. Thus, without loss 
of generality, sensor nodes are assumed to be randomly distributed in the 
industrial field, that is, the positions of sensor nodes are generated randomly 
in this paper. Six large-scale node placement problems, i.e. 200m×200m, 
400m×400m and 600m×600m with nodes densities 0.2  and 0.5  , were 
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yielded and adopted as the benchmarks. The communication radii of the 
sensor node and the cluster-head node were set as RS=50m and RCH=100m, 
respectively. The reliability constraints were LSN=2 and LCN=2. The required 
accuracy of the node location information is application-dependent. On the 
one hand, the communication reliability is extremely important for industrial 
applications and the radius of wireless sensors is not exact due to various 
kinds of interferences in the industry environment. Thus, the high accurate 
location of cluster-head nodes for IWSNs is unnecessary. On the other hand, 
with the improvement on the accuracy of the grid onto which the industrial 
field is mapped, the search space of the node placement problem will 
increase exponentially. Based on the above factors, the grid cell was set as 
10m in this paper. 

Table 3. Results of AMPBPSO, DBPSO and GA on the 200m×200m node placement 
problems 

Density 0.2 0.5 

Algorithm AMPBPSO DBPSO GA AMPBPSO DBPSO GA 

Best 

fp 16.15 72.06 78.48 27.27 36.91 40.96 

p1 0 0 0 0 0 0 

p2 0 0 0 0 0 0 

p3 0 0 0 0 0 0 

Mean ±
Std_Dev 

fp 
18.18 
±1.77 

74.55 
±2.36 

85.13 
±2.77 

27.26 
±0 

39.09 
±2.16 

46.44 
±2.39 

p1 0±0 0±0 0±0 0±0 0±0 0±0 

p2 0±0 0±0 0±0 0±0 0±0 0±0 

p3 0±0 0±0 0±0 0±0 0±0 0±0 

t-test /     /     

Table 4. Results of AMPBPSO, DBPSO and GA on the 400m×400m node placement 
problems 

Density 0.2 0.5 

Algorithm AMPBPSO DBPSO GA AMPBPSO DBPSO GA 

Best 

fp 200.09 397.70 422.50 112.90 228.89 246.50 

p1 0 0 0 0 0 0 

p2 0 0 0 0 0 0 

p3 0 0 0 0 0 0 

Mean±

Std_Dev 

fp 
209.52 

±7.20 

404.02 

±4.22 

430.34 

±12.57 

118.90 

±3.35 

235.77 

±3.23 

254.34 

±9.38 

p1 0±0 0±0 0±0 0±0 0±0 0±0 

p2 0±0 0±0 0±0 0±0 0±0 0±0 

p3 0±0 0±0 0±0 0±0 0±0 0±0 

t-test /     /     
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AMPBPSO, DBPSO and GA with the recommended parameters were used 
to solve the large-scale node placement problems for a fair comparison. All 
the algorithms were repeated 10 times on each problem independently. 
Tables 3-5 list the experimental results which show that AMPBPBO 
surpasses DBPSO and GA on all the problems and the average results of 
AMPBPSO are even better than the best ones of DBPSO and GA. The t-test 
results also demonstrate that AMPBPSO is significantly superior to GA and 
DBPSO. 

Table 5. Results of AMPBPSO, DBPSO and GA on the 600m×600m node placement 
problems 

Density 0.2 0.5 

Algorithm AMPBPSO DBPSO GA AMPBPSO DBPSO GA 

Best 

fp 662.47 969.70 1009.70 359.28 580.90 600.10 

p1 0 0 0 0 0 0 

p2 0 0 0 0 0 0 

p3 0 0 0 0 0 0 

Mean±
Std_Dev 

fp 
671.83 

±13.28 

986.10 

±5.36 

1026.74 

±13.04 

366.59 

±6.62 

591.14 

±4.11 

611.94 

±8.18 

p1 0±0 0±0 0±0 0±0 0±0 0±0 

p2 0±0 0±0 0±0 0±0 0±0 0±0 

p3 0±0 0±0 0±0 0±0 0±0 0±0 

t-test /     /     

 
The average convergence curves of each algorithm on the six problems 

are drawn in Fig. 7-12. From Fig. 7-12, we can clearly observe that 
AMPBPSO has the best search ability and outperforms DBPSO and GA in 
terms of solution quality and the convergence speed for the optimal node 
placement of IWSNs. 

7. Conclusions and Future Work 

In this paper, we have investigated the optimal node placement problem of 
IWSNs. Different from the non-industrial applications of WSNs, the reliability 
of the wireless communication has to be guaranteed as IWSNs are utilized to 
monitor the manufacturing process. To meet the specific need on the 
reliability of IWSNs, a node placement model of IWSNs is developed and 
formulized in which the reliability, the setup cost, the maintenance cost and 
scalability of the system are taken into account. Given the high dimension 
and NP-hard characteristic of the large-scale IWSNs node placement, an 
improved adaptive mutation probability binary Particle Swarm Optimization 
algorithm (AMPBPSO) is proposed to solve the problems where the adaptive 
mutation operator is introduced to keep the diversity of the population as well 
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as enhance local search. The presented algorithm and model were firstly 
verified on the small-scale node placement benchmark problem. The results 
of the benchmark demonstrate the effectiveness and efficiency of the model 
and algorithm. Finally, the proposed model and AMPBPSO were used to 
tackle the large-scale node placement problems of IWSNs. DBPSO and GA 
were also applied to all the problems for a comparison. The simulation results 
indicate that AMPBPSO can effectively solve the optimal node placement 
problems with the guarantee of the reliability and outperforms DBPSO and 
GA in terms of search accuracy and the convergence speed.  
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Fig. 7. Convergence curves of the 200m×200m node placement problem with 0.2   
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Fig. 8. Convergence curves of the 200m×200m node placement problem with 0.5   
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Fig. 9. Convergence curves of the 400m×400m node placement problem with 0.2   
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Fig. 10. Convergence curves of the 400m×400m node placement problem with 
0.5   
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Fig. 11. Convergence curves of the 600m×600m node placement problem with 
0.2   
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Fig. 12. Convergence curves of the 600m×600m node placement problem with 
0.5   

The optimal node placement of IWSNs is a multi-objective optimization 
problem, and the setting of weighting factors of each optimization goal is a 
challenge for real applications. Thus, the Pareto-based approach has the 
advantage, which is a direction for the future research. Another direction of 
the future research is to improve the optimization model to meet the more 
requirements of industrial applications. 
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