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Abstract. In this paper, novel second order and fourth order diffusion 
models are proposed for image denoising. Both models are based on the 
gradient vector convolution (GVC) model. The second model is coined by 
incorporating the GVC model into the anisotropic diffusion model and the 
fourth order one is by introducing the GVC to the You-Kaveh fourth order 
model.  Since the GVC model can be implemented in real time using the 
FFT and possesses high robustness to noise, both proposed models 
have many advantages over traditional ones, such as low computational 
cost, high numerical stability and remarkable denoising effect. Moreover, 
the proposed fourth order model is an anisotropic filter, so it can 
obviously improve the ability of edge and texture preserving except for 
further improvement of denoising. Some experiments are presented to 
demonstrate the effectiveness of the proposed models. 

Keywords: Gradient vector convolution, fourth order diffusion, 
anisotropic diffusion, noise removal, texture preserving. 

1. Introduction 

Image denoising is one of the fundamental topics of research in image 
processing and computer vision, whose main goal is to eliminate the noise and 
preserve edges in image. During the last two decades, partial differential 
equations (PDEs) have been justified as effective tools for image smoothing, 
which are able to achieve a good trade-off between noise removal and 
edge-preserving. Cacelles et al. generally explained the superiority of 
PDEs-based denoising in [1]. Besides PDE-based methods, some recently 
developed non-diffusion based approaches can also bring considerable 
improvement in denoising performance, such as the kernel regression (LARK) 
[2], bilateral filter [3], patch-based methods [4-5], wavelet-based methods [6-7] 
and the BM3D based on sparse representation [8]. In this paper, we will focus 
on the PDE-based diffusion methods. 

The anisotropic diffusion introduced by Perona and Malik (P-M) [9] can be 
considered as a typical feature-preserving denoising algorithm, where diffusion 
is controlled by a variable coefficient in order to preserve edges. Since the 
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work of Perona and Malik [9], there have been extensive literatures that 
present a variety of PDEs-based anisotropic diffusion models and offer diverse 
numerical schemes to obtain the steady-state solution [10]-[18], [31-32]. 
Details of the behavioral of the anisotropic diffusion can be found in [10]. 
Scherzer et al. [11] investigated connections between regularization theory 
and framework of diffusion filtering. Catte et al. [12-13] proved the 
ill-posedness of the P-M equation and proposed a modified diffusion 
coefficient which is a function of a smoothed gradient. Rudin et al. introduced 
Shock filters [14] and total variation [15] minimization. The works in [14] 
opened the possibility to reformulate the image enhancement as a 
combination of two coupled terms that implement inverse and forward diffusion 
processes. Alvarez and Mazorra [16] combined the shock filter and a diffusion 
term for image enhancement. Gilboa et al. [17] proposed a forward and 
backward (FAB) adaptive diffusion process that enhances features while 
locally denoising smoother segments; later, they introduced the complex 
diffusion for ramp-preserving [18]. Black et al. [19] illustrated the relations 
between anisotropic diffusion and robust statistics. In [20], a method was 
proposed for texture preserving by adding a spatially varying fidelity term. 
Another interesting work [21] was the incorporation of the gradient vector flow 
(GVF) field [22], which is originally introduced as an external force for active 
contour model [23], into the anisotropic diffusion.  Ghita et al. [24] introduced 
a new modified GVF (INGVF) field into the P-M equation in order to improve 
the denoising effect. Sum et al. [25] proposed a stabilization method to make 
the GVF-based P-M equation stable. The proposed GVF-based P-M equation 
can improve the denoising effect, but the computational cost is expensive. 

Although the second-order anisotropic diffusion is effective for image noise 
removal, it can lead to staircase effect. These staircases are visually 
unpleasant and can be falsely detected as edges. In order to alleviate this 
staircase effects, a number of authors have proposed high order PDEs for 
image denoising [26-28], [33-34]. One of the most popular fourth-order PDEs 
is introduced by You-Kaveh (Y-K) [27],which seeks to approximate the noisy 
image with a piecewise harmonic one. Another classical fourth-order model 
was proposed by Lasaker, Lundervold and Tai (LLT) [28], in which two 
different functions have been proposed to measure the oscillations in the noisy 
data. The fourth-order filters damp high frequency components of images 
much faster than the second-order peers, this means the fourth-order models 
would over-smooth the step edges in images. In addition, they can also cause 
speckle noise in the filtered image. 

In this paper, we first introduce the gradient vector convolution (GVC) model 
[29] into the anisotropic P-M equation. The GVC model is our previous work, 
which serves as external force for active contours. It is very robust to noise and 
can be calculated in real time. The new GVC-based P-M equation has many 
desirable properties, such as superior noise robustness, reduced 
computational cost, and the improved denoising effect. Second, the GVC field 
is introduced into Y-K model; the proposed GVC-based fourth order model is 
anisotropic because the diffusions along the directions of level set and 
gradient are uneven. Thus, the modified Y-K model could not only improve 
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peak-signal-to-noise ratio (PSNR) of the filtered image, but also keep edge 
and texture information in the filtered image. 

This paper is organized as follows: Section 2 briefly introduces the second 
order and fourth order approaches for image denoising. Section 3 details the 
proposed method of GVC-based second order and fourth order models. The 
experimental results are provided in Section 4. Finally, the conclusion is given 
in Section 5. 

2. Related Works 

2.1. Second Order diffusion: P-M Model and INGVF-based P-M Model 

The anisotropic diffusion proposed by Perona and Malik [9] takes the following 
form  

  
   0, , 0 ,

u t div c u u

u x y t u x y

    


 

 (1) 

where   is the gradient operator, div  is the divergence operator and  c   

is the diffusion coefficient. The diffusion coefficient is a positive and 

non-increasing function over u . The coefficient plays an important role in 

diffusion and it usually takes one of the following two forms: 

 
 

2

1

1
c u

u k
 

 
 (2) 

    2

expc u u k     (3) 

where k is so-called contrast parameter. When k is a small value, weak edges 
will be preserved while the denoising capability is weak. When k is a large 
value, the denoising capability is strong, but weak edges and fine details will 
be smoothed as well. 

Equation (1) was associated with the following energy function [10] 

   E u f u d


    (4) 

where   is image domain, and  f   is an increasing function over u . 

The key idea of P-M equation is to roughly smooth out the homogeneous 

regions when u  is small and to enhance the boundaries instead when u  

is large. 
So far, much research has been devoted to improving the P-M anisotropic 
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diffusion method. One of the most important directions is Yu-Chua’s work [21]. 
Although the P-M equation forms a solid foundation for other research of 
anisotropic diffusion models, its numerical stability still needs to be improved. 
Building on this concept, Yu and Chua introduced the GVF field in P-M model 
as follows 

  2

GVF

u
u c u u

t


     


V  (5) 

where 2  is the Laplacian operator, GVFV  is the GVF field which is proposed 

in [22]. The GVF-based P-M equation shows an improved performance of 
numerical stability when compared to original P-M equation. However, it is 
important to note that the (5) needs long computing time as the GVF field is 
calculated by iteratively solving diffusion PDEs on the whole image. Another 
similar method is proposed by Ghita and Whelan in [24]. In this paper, they 
proposed a new GVF (INGVF) which shows a better performance in the 
presence of impulse noise. Then, they combined the modified P-M model with 
adaptive median filter and gave the INGVF-based P-M model 

 

    
 

  21
1 GVFEst Est IN

u u
IN u med u IN u u c u

t t

  
               

V  (6) 

where med denotes the adaptive median filter, EstIN  is the impulse estimator 

defined in [24] and 
GVFINV  is the INGVF. The key idea of INGVF-based P-M 

equation is to smooth image by the first term in (6) when the image is 

 

 
(a)                      ( b)                    (c) 

Fig.1. (a) noisy u-shape image corrupted with Gaussian noise  0,0.3N in first row and 

 0,0.4N in second row; (b) GVF field; (c) GVC field with n=2,h=10. The computing time 

for GVF and GVC are 0.45s and 0.048s, respectively. 
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corrupted by impulse noise and smooth image by the second term in (6) when 

 

the image is corrupted by Gaussian noise. We could see that the intrinsic 
nature of impulse noise removal is through the median filter and the filter of 
Gaussian noise removal corresponding to (6) is as follow 

  2

GVFIN

u
u c u u

t


     


V  (7) 

In (7), INGVF field even need a longer computing time than the GVF because 

it need to calculate the impulse estimator EstIN  besides the iteratively solving 

diffusion PDEs on the whole image. 

2.2. Fourth Order Diffusion: Y-K model 

Although the anisotropic diffusion is an effective method for image noise 
removal, it tends to cause staircase effect. In order to resolve this problem, You 
and Kaveh [27] introduced a fourth-order PDE-based denoising method in 
which the filtered image is obtained by minimizing the following functional 

   2E u f u d


    (8) 

    
(a)                   (b)               (c)                    (d)  

Fig.3. (a) noisy image corrupted by Gaussian noise—  0,20N ; (b) u calculated 

directly; (c) GVF-based u ; (d) GVC-based u . 

 
(a) m=0.1           (b) m=0.3            (c) m=0.5             (d) m=0.7 

Fig.2. Diffusion functions of 
1c  and 

2c  with parameter m  change (
1 2 3k k  ). 
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where 2u  is simply an absolute value of Laplacian of u  approximated by 

xx yyu u . By using calculus of variation, the Euler equation to minimize (8) 

reads 

  2 2 2u
c u u

t


   


 (9) 

This fourth-order PDE favors a piecewise harmonic image, i.e., 2 0u 

locally, as t  . It is believed the piecewise harmonic image is a better 

approximate than the piecewise constant one to a natural image, and numerical 
results presented in [27] verified that the staircase effect is reduced and the 
image looks more natural. 

3. GVC-based Second and Fourth Order Diffusions 

3.1. GVC: Gradient Vector Convolution [29] 

Gradient vector convolution (GVC) field was presented as an external force for 
active contour. The GVC field is motivated by gradient vector flow (GVF) field 
and possesses all advantages of GVF, such as enlarged capture range, 
initialization insensitivity and high performance on concavity convergence. 
However, the GVC can outperform GVF in term of computational time because 
the GVF is constructed by iteratively solving diffusion PDEs on the whole 
image while the GVC is implemented by convolving the gradient vector with a 
certain kernel. The GVC field V=(u(x,y), v(x,y)) is the solution of the following 
equation 

     

     

, , ,

, , ,

x

y

u x y f x y K x y

v x y f x y K x y

  


 

 (10) 

where   denotes convolution operation, f(x,y) is the edge map of an image, 
(fx,fy) is the gradient vector of image edge map, K(x,y) is the convolution 

kernel and in practice ( , ) 1 n

hK x y r , ,h n R , 2 2

hr x y h   . The factor h 

plays a role analogous to scale space filtering. The GVC field has superior 
robustness on Gaussian noisy images. In addition, it can be implemented in 
real time owing to its convolution mechanism. Fig. 1 illustrates the excellent 
performance of GVC fields on a noisy image comparing with the GVF field. In 
this section, the GVF field parameters are 0.2  , and 80 iterations, the GVC 

field parameters are n=2, h=10, the kernel size is the same as that of the 
image (image size is 64×64). 
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3.2. GVC-Based P-M Model 

In this section, we introduce the GVC-based P-M model for image denoising. 

 
Here we shall briefly mention that the two advantages of the proposed 
GVC-based P-M model: 1) it can improve the denoising effect; and 2) the 
computing time is reduced due to convolution mechanism of GVC. 

As shown in Fig.1, the GVC can be implemented in real time and is more 
robust to noise when compared with the GVF model. As a result, it is natural to 
introduce the GVC into the P-M models to propose an improvement of the 
GVF-based anisotropic diffusion [21] and the INGVF-based one [24]. The P-M 
model is first expanded as 

  2u t c u u c u u          (11) 

It has been pointed out in [21] that the second term is an inverse diffusion 
term for sharpening the boundaries while the first term is a Laplacian term for 

smoothing the regions that are relatively flat. Using the term u V  to 

approximate the inverse diffusion term in Eq.(11), we get the GVC-based 
diffusion as follows, 

 

 

 

 
(a)                 (b)                 (c)               (d)               (e) 

Fig.4. (a) Noisy images, results by (b) P-M equation, (c) GVF-based P-M equation, (d) 
INGVF-based P-M equation, (e) GVC-based P-M equation. The noise variance is 20 in 
the first and third rows and 30 the second and fourth rows, respectively. 
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  2u
u c u u

t


     


V  (12) 

where V  denotes the GVC field. In (12), V  have been determined before 

image evolution, only u  needs to be computed directly from the observed 

images in the inverse diffusion term. The proposed model possesses all 
advantages of GVF-based P-M equation, such as robust estimation of the 
high-order derivative and improvement of numerical stability. Moreover, the 
GVC-based diffusion will benefit from the computational cost and noise 
robustness of the GVC model. 

 

3.3. GVC-Based Y-K Model 

The Y-K model can alleviate effectively the staircase effect, but it is isotropic 
and performs poor on preserving edge and texture. In this section we introduce 
the GVC field in the Y-K model so that it becomes an anisotropic diffusion 
model. To this purpose, we modify the Y-K equation as 

 2

1 2

u
c u c u

t



   


 (13) 

where   is the direction of gradient, 1c  and 2c  are the diffusion coefficients. 

Table 1. Quantitative Comparison of the Results of Fig.4 

Image(  ) Method PSNR MSSIM Iterations 
Time(s) of 

GVF/INGVF/GVC 

Lena 

 20 

P-M model [9] 29.28 0.78 175  
GVF-based [21] 29.61 0.81 25 35.81 

INGVF-based [24] 29.61 0.81 25 56.49 

GVC-based(12) 30.18 0.82 25 1.96 
      

30 

P-M model [9] 27.06 0.71 380  

GVF-based [21] 28.33 0.78 45 35.81 
INGVF-based [24] 28.33 0.78 45 56.49 
GVC-based(12) 28.98 0.80 45 1.96 

       

Pepper 

20 

P-M model [9] 29.44 0.70 175  
GVF-based [21] 29.84 0.76 20 35.81 

INGVF-based [24] 29.84 0.76 20 56.49 
GVC-based(12) 29.90 0.78 20 1.96 

      

30 

P-M model [9] 27.05 0.62 370  
GVF-based [21] 27.74 0.73 40 35.81 

INGVF-based [24] 27.74 0.73 40 56.49 

GVC-based(12) 27.81 0.75 40 1.96 
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3.3.1. The Choice of Diffusion Coefficients 

Some important analysis about the diffusion coefficients need to be 

highlighted. Obviously, if 
2 0c  , Eq.(13) becomes the isotropic one (9). If 

1 2c c , the overall diffusion on the gradient direction will become backward, 

which damages the image feature. If 
1 2c c , the diffusion on the gradient 

direction will disappear both in intra-region and in inter-region. In light of the 

above analysis, we make 
1 2c c  so that the overall diffusion along the 

gradient direction is smaller than the one along the direction of level set. 

In addition to let 
1 2c c , we need to make the coefficient function 

2c  close 

to zero for 0u  , while 2c  close to 1c  for u  . So that the diffusion 

on the direction of the gradient is large in intra-region and it is small in 

inter-region. Equation (3) multiplied with u can meet the above demand. So 

in our implementation, the diffusion functions 
1c  and 

2c  take the following 

forms 

 
 

1 2

1

1

1
c u

u k
 

 
 (14) 

    2

2 2exp ,0 1c u m u u k m          (15) 

One can adapt the parameters 1k , 2k  and m  according to the smoothing 

effect. When parameter m  increasing, the value of 2c  will be larger than 1c  

in some region as in Fig.2, which damages the image feature. Therefore, we 

need set a suitable value for m  so that 2 1c c  in the entire image region. In 

this paper, we make 0.3m  . This is illustrated in Fig.2. 

3.3.2. The Substitute of Second–order Derivative u  

It is important to note that the second-order derivative u  in (13) is 

computed from the image at each iteration. Since high-order derivative is 

sensitive to noise, the numerical stability of u  will be reduced owning to the 

influence of the noise. In this paper we will replace u  with GVC V N , 

uu N . We illustrate the improved performance of substitution of 

GVC V N  for u  and GVF V N  on a synthetic image in Fig. 3. In this section 

the GVF field is calculated with 0.2   with 80 iterations and the GVC field 

parameters are n=3, h=20, the kernel size is 32×32 (image size 128×128). As 

can be seen from Figs. 3 (b)-(d), u and GVF-based u  are seriously 
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affected by noise while the GVC-based u is near perfect and most of noise 

points are effectively overcome. As 
GVC V N  can effectively approximate the 

second derivative u , the scheme of (13) can be rewritten as 

 1 2 GVC

u
c u c

t


    


V N  (16) 

Since the GVC field has been determined before image evolution, only first 
derivative needs to be computed directly from the being filtered images. The 
proposed method not only possesses anisotropic characteristics, but also 
improves the numerical stability. 

4. Experimental Results 

We conduct several experiments to demonstrate the properties of the 
proposed methods. First, the proposed GVC-based P-M model is compared 
with the P-M [9], GVF-based P-M [21] and INGVF-based P-M [24] models. 
Then, the denoising effect and the ability of edge and texture preserving of the 
GVC-based Y-K model are evaluated on several real images. In order to 
evaluate the quality of the filtered images, the peak-signal-to-noise ratio 
(PSNR) and mean structure similarity (MSSIM) [30] are employed as objective 
indices.  

4.1. Experimental Results: GVC-Based P-M Model 

In order to demonstrate the desirable properties of the proposed second order 
model, the Lena and Pepper images are employed as test images, the 
dimension of both images are 512 512 . Noisy images are coined by adding 

zero-mean Gaussian noise of various standard deviations. The time step for all 

the second-order models is 0.2, and the diffusion function  c u  takes the 

form in Eq.(2) with 3k  . The factor   is 0.2 and the iteration number is 100 

in all GVF field. The GVC field parameters are as follows: 10h   and 2n  , 

the kernel size is 64×64. Fig.4 shows the results. It is clear that the GVF, 
INGVF and GVC-based models successfully avoid the staircases and yield 
visually pleasant results. Although the results by the GVF, INGVF and 
GVC-based models are visually comparable, the PSNR and MSSIM indices in 
Table 1 manifest that the GVC-based model outperforms the other models. In 
this Figure, only a part of the images are shown for the sake of clarity. 
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4.2. Experimental Results: GVC-Based Y-K Model 

4.2.1. Test of Denoising 

In order to demonstrate the desirable properties of the proposed model in 
Eq.(16), we first use the Lena (512×512) image corrupted with different noise 
level to examine the performance of the proposed fourth order filter. The Lena 
image is corrupted by zero-mean Gaussian noise of deviation 15 and 30. In 
addition to the classical fourth order diffusion method Y-K model [27] and LLT 
model [28], the results are also compared with that of the non-local mean 

(NLM) [4], LARK [2], and BM3D [8]. In all the following experiments, the 

   
(a)                (b) PSNR=24.60(dB)        (c) PSNR= 31.20(dB) 

   
(d) PSNR=32.28(dB)        (e) PSNR= 32.07(dB)       (f) PSNR=33.73(dB) 

  
(g) PSNR=34.22(dB)        (h) PSNR=32.63(dB) 

Fig.5. (a) original Lena image; (b) noisy image:  0,15N ; (c) Y-K [27], 

Time=152.04(s); (d) LLT [28], Time=10.20(s); (e) non-local mean [4]; (f) LARK [2], 
Time=570.09(s); (g) BM3D [8], Time=6.99(s); (h) proposed GVC-based Y-K, 
Time=120.27(s). 
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parameters of the proposed model are: 0.3m  ,  
1 2 3k k  , 0.03t  , and 

10h  , 2n   for GVC and the kernel size is a quarter of the size of the test 

images. The time step for Y-K and LLT models is 0.2t  . The results of the 

NLM are yield from the IPOL1 website, so the parameters for the NLM are 

 
default. We adopt the software packages of the LARK2 and BM3D3 and the 
parameters for both models are unchanged as in the package. In addition to 
the PSNR, we also compared the computing time of these models except NLM 
method because the results of the NLM are yield from website and we cannot 
get an accurate computational time. The visual results of applying different 

                                                   
1 http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/ 
2 http://users.soe.ucsc.edu/~milanfar/software/ 
3 http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_papers 

   
(a)              (b) PSNR=18.70(dB)        (c) PSNR= 28.18(dB) 

   
(d) PSNR=29.13(dB)       (e) PSNR= 29.47(dB)        (f) PSNR=30.88(dB) 

  
(g) PSNR=31.24(dB)         (h) PSNR=29.94(dB) 

Fig.6. (a) original Lena image; (b) noisy image:  0,30N ; (c) Y-K [27], 

Time=654.21(s); (d) LLT [28], Time=26.73(s); (e) non-local mean [4]; (f) LARK [2], 
Time=1419.20(s); (g) BM3D[8], Time=7.04s; (h) proposed GVC-based Y-K, 
Time=450.28s. 
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enhancement techniques on the Lena image with different noise levels are 
shown in Figs.5-6. One can visualize from the Figs.5-6 that the proposed 
method performs better in terms of denoising effect than the other fourth order 
models and NLM method, though less effect than the LARK and BM3D models. 
Besides, the computing time of GVC-based YK model is shorter than the Y-K 
and LARK model. This set of experiments show that the GVC-based Y-K 
model performs better than Y-K, LLT and NLM models for denoising effect and 
shorter than Y-K and LARK models for computing time. The BM3D is the best 
model not only in denosing effect but also in computing time. However, we 
focus on diffusion-based methods in this paper, so we only compare the 
diffusion-based models in the following experiments.  

 

 
The previous two experiments are conducted for various noise levels. The next 
set of experiments is conducted for different images with same noise level. 
The House (256×256), Lena (512×512) and Airplane (512×512) images are 
employed as test images. As we can see in Figs.5-6, the methods of LARK 
and BM3D perform better than the diffusion model. So the results in this 
experiment are compared only with that of the diffusion method: Y-K model 
[27] and LLT model [28]. The three images are corrupted by zero-mean 
Gaussian noise of deviation 20. The algorithms terminated when the PSNR of 

 

 

 
(a)                    (b)                    (c)                    (d)  

Fig.7. (a) noisy images with zero-mean Gaussian noise of deviation 20, results by (c) 
Y-K model[20], (d) LLT model[21], and (e) proposed fourth order model. The House, 
Lena and airplane images are shown in from the first to the third rows, respectively, 
only a part of the images are shown for the sake of clarity. 
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the filtered images reaches maximum.  

  
The PSNR and MSSIM indices are also employed as objective index to 
evaluate the quality of the filtered images. Fig.7 shows the results, only a part 
of the images are shown for the sake of clarity. It is clear that the Y-K model 
suffers from speckle noise and the LLT and proposed models avoid the 
speckle noise successfully. Meanwhile, the Y-K and LLT models over-smooth 
the edges and the proposed model preserves edges much better, see the 
digital number ‘568’ in the airplane image. The PSNR and MSSIM indices 
shown in Table 2 also manifest the high performance of the proposed model. 

4.2.2. Test of Edge and Texture Preserving 

In the following experiments, we illustrate the performance of the proposed 
model on preserving edge and texture. To evaluate the quality of the denoised 
image, we employ the intensity residual which is given by 

residual denoised noiseu u u   (17) 

where denoisedu  denotes the denoised images and noiseu  denotes noisy image. 

If there is less texture information in residual, this method is considered to be 
better. We use two images with large amount of texture information: Barbara 
and Room as test images. 

Figs.8-9 show the experimental results on Barbara and Room, respectively. 
From the intensity profiles of the selected lines, see Figs.8-9 (e), it is clear that 
the results by the proposed model are smoother and preserves the step edges 
better than the Y-K model and LLT model. From the intensity residuals, see 
Figs.8-9 (f)-(h), one can conclude that the proposed model largely reduced the 
texture information in the residuals, which means the proposed model can 
preserve texture much better than the Y-K model and LLT model. The 
experimental results indicate that the GVC-based fourth order model shows an 
improved performance on preserving edge and texture compared with the 
original Y-K model and LLT model. 

Table 2. Quantitative Comparison of the Results of Fig.7 

Image Method PSNR(dB) MSSIM Iterations 

House 
Y-K [27] 28.83 0.76 588 
LLT [28] 29.37 0.78 51 

GVC-based(16) 30.46 0.82 246 

     

Lena 
Y-K [27] 29.92 0.81 676 
LLT [28] 30.95 0.82 67 

GVC-based(16) 31.15 0.84 280 
     

Airplane 

Y-K [27] 28.85 0.81 567 

LLT [28] 29.71 0.82 51 
GVC-based(16) 30.94 0.87 279 
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(a) PSNR=22.18(dB)         (b) PSNR=25.98(dB)          (c) PSNR=27.04(dB) 

     
(d) SNR=27.31(dB)                            (e) 

 
(f)                         (g)                         (h) 

Fig.8. (a) Barbara image corrupted with Gaussian noise—  0,20N ; (b) Y-K model; (c) LLT 

model; (d) GVC-based Y-K model; (e) Pixel intensity profiles for the selected black line in 
image (a); (f), (g), (h) The residuals corresponding to (b) (c) and (d),respectively. 
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5. Conclusion 

In this paper, we proposed two novel diffusion models based on the GVC field. 
The first one is the GVC-based second order anisotropic diffusion and the 
second one is the GVC-based fourth order anisotropic diffusion model. Since 
the GVC field is very robust to noisy and it can be implemented in real time 
owing to its convolution mechanism, the proposed GVC-based anisotropic 
diffusions benefit much from the GVC models. These two proposed methods 
have many advantages over the existing models, such as better denoising 

 
(a) PSNR=22.24(dB)         (b) PSNR=28.25(dB)          (c) PSNR=28.94(dB) 

     
(d) SNR=29.68(dB)                            (e) 

 
(f)                         (g)                         (h) 

Fig.9. (a) Barbara image corrupted with Gaussian noise—  0,20N ; (b) Y-K model; (c) 

LLT model; (d) GVC-based Y-K model; (e) Pixel intensity profiles for the selected black 
line in image (a); (f), (g), (h) The residuals corresponding to (b), (c) and 
(d),respectively.  
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effects and better edge and texture preservation. Although the ability of 
denoising of the proposed GVC-based fourth order method is weak than the 
recent non-diffusion based LARK and BM3D, it is the best filter in the diffusion 
methods. We have conducted many experiments on different images with 
different noise levels. All of these qualitative and quantitative advantages of 
our proposed methods mean that both models can provide better image 
processing tools which enables noise removal, edge-preserving and staircase 
suppression. 
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