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Abstract. Dimensionality reduction is an important preprocessing step in 

high-dimensional data analysis without losing intrinsic information. The 
problem of semi-supervised nonlinear dimensionality reduction called 
KNDR is considered for wood defects recognition. In this setting, domain 
knowledge in forms of pairs constraints are used to specify whether pairs 
of instances belong to the same class or different classes. KNDR can 
project the data onto a set of ‘useful’ features and preserve the structure 
of labeled and unlabeled data as well as the constraints defined in the 
embedding space, under which the projections of the original data can be 
effectively partitioned from each other. We demonstrate the practical 
usefulness of KNDR for data visualization and wood defects recognition 
through extensive experiments. Experimental results show it achieves 
similar or even higher performances than some existing methods. 

Key words: semi-supervised learningm, dimensionality reduction, wood 

defects recognition, (dis-)similar constraints. 

1. Introduction 

Many research and application areas need to deal with high-dimensional data, 
which leads to a hot of studying the methods of dimensionality reduction, 
whose aim is to find a meaningful low dimensional manifold from the original 
data. In many real applications, data lying in high-dimensional ambient space 
can be modeled by a low-dimensional nonlinear manifold. 

Principal component analysis (PCA) [8], kernel principal component 
analysis (KPCA) [9] and kernel Fisher discriminate analysis (KFD) [12][14] are 
widely used in pattern recognition[15][17] [19]. Utilizing domain knowledge has 
been an important issue in data mining tasks [1]. In general, domain 
knowledge can be expressed in diverse forms, such as class labels and pairs 
constraints [2]. Semi-supervised dimensionality reduction is a new issue in 
semi-supervised learning, which learns from a combination of both labeled and 
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unlabeled data. In many practical applications, unlabeled samples are readily 
available but labeled ones are fairly expensive to obtain, so semi-supervised 
dimensionality reduction has attracted much attention. 

Currently, automatic wood defects recognition is one of hot issues in the 
mechanical wood industry. Matti Niskanen [3] and P. Meinlschmidt [6] used 
different technologies to study wood based defect detection problems. Here, 
we also present a solution the wood defects recognition and evaluate the 
performance of the proposed system by giving quantitative experiments. The 
block diagram of SVM classifier based detection system is shown in Fig.1. 
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Fig.1.The diagram of SVM based recognition system. 

Considering the pairs constraints can be derived from labeled data and can 
be automatically obtained without human intervention [1]. Here, we propose a 
semi-supervised nonlinear dimensionality reduction method (KNDR) with the 
pairs constraints for wood defects recognition. The rest of this paper is 
organized as follows. In section 2, we present a sensitivity analysis of KNDR 
and numerically evaluate it for wood defects recognition in section 3. We 
conclude this paper and raise some issues for future research in section 4. 

2. Related Work 

2.1. Linear dimensionality reduction method 

For a set of wood samples together with some pairs of similar constraints and 
dissimilar constraints, we denote the domain knowledge containing similar and 

dissimilar pairs by S and D. For a set of data
n

X R and 1 2( , ,..., )mX x x x , a 

simpler way of defining a criterion for the desired metric is to demand: if ix and 

jx  are similar, pairs { , }i jx x belong to set S, and D otherwise. To improve the 

tightness among similar pairs and separate dissimilar ones better, we consider 

shrinking distances between similar pairs, i.e. ( , )i jx x S , by minimizing 

2|| ||i jx x , while expanding distances between dissimilar pairs, i.e. ( , )i jx x D ,  

by maximizing
2

|| ||
i j

x x .Given a set of multivariate data X with respect to the 
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pairs constraints, we aim to find a set of vectors
1 2

( , ,..., )
d

    , such that 

the transformed low- dimensional representations
T

i i
y x of

ix can preserve 

the structure of labeled and unlabeled samples as well as the pairs constraints, 
i.e. instances involved by S should be close while instances involved by D 
should be far as soon as possible. 

Noticing that
T
X means matrix basically projects the data on to a set of 

‘useful’ features in embedding spaces [18]. Ideally, the set should be small that 

means the small rank for
T

  or , as rank ( )
T

  = rank ( ) is desired. Our 

aim is to minimize it by finding an eigen-decomposition ( )
T T

E V V    , then 

rank ( )
T

  = rank
0

( ) || ||   , but a direct minimization of this zero norm is 

very difficult and here we approximate it by the L2-norm
2 2

|| || || ||
T

   in the 

model [18]. Then the nd KNDR transformation matrix TKNDR is defined in Eq.1, 

where || . ||denotes the L2-norm. 
 

2 2

(

2

, ) ( , )

2

( , )

1
arg min || || || ||

2 2 | | 2 | |

|| ||

|| ||

2 | |

i j i j

i j

T T T T Tu S
i j i j

x

KN

x x x Su S

T TD
i j

x x DD

DR

C C
x x x x

N N
T

C
x x

N


     

 





   

 

 



(1) 

 
The two terms of Eq.1 expresses the average squared distance between all 

unlabeled samples in the embedding space and
u

N is the number of unlabeled 

samples. (1 )
d

i
y R d n    are the embedded data where d is the dimension 

of reduced space. 
S

N and
D

N are respectively the numbers of samples under 

the similar and dissimilar constraints. The intuition behind Eq.1 is to let the 
average distances in the embedding space between instances involved by S 
be as small as possible, while distances between instances involved by D 
should be as large as possible. Since metrics between instances in the same 
class is typically smaller than those in different classes, here we add a scaling 

parameter
S

C to balance the contribution of two terms and 
D

C  for three terms 

in Eq.1. Intuitively, distances of samples involved in S should typically be close 

to the expected metric [20], so we empirically set 1
u

C  , 1
S

C  and 1
D

C  . 

2.2. Kernelization 

Implicitly in the kernel Hilbert space H connected to the kernel function K used. 
According to [4], a kernel is a function in the input space and at the same time 
is the inner product in the feature space through the kernel-induced nonlinear 

mapping. Since for each kernel there exist a mapping  corresponds to a 
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scalar product and maps input patterns
i

x to ( )
i

x ,here we define a mapping 

: ( )
n p

R H p n   and choose RBF kernel for data projections: 

 2 2( , ) exp^ || || /2T TK x x x x                       (2) 

Mika et al proved that every solution H (Kernel space) can be written as 

an expansion in terms of the mapped samples data [1]. i.e. the vectors 


 in 

the high-dimensional kernel space can be rewritten as 

    

1

( ) ( ) ( . , )
m

i i

i

x X K X     


                     (3) 

where the input patterns in H are denoted by
1 2

( ) ( ( ), ( ),..., ( ))
n

X x x x     and 

1
( ,..., )

d
    are the transformation matrix and 1, 2...,,

i
i mx  form a 

vector space. Especially, for all functions with the form of Eq.3, we get 
 

(., ), (., ) ( ), ( ) ( , )T T T

R HK X K X X X K X X                    (4) 
 

By substituting Eq.3 into Eq.1, we can update Eq.1 by 

   

    2

,

( ) ( ) ( ) ( )
1

min ( )
2

1
|| ( ) ( ) ( ) ( ) ||

2

T TT T

TTT T

i i j j ij

i j

X X X XJ

X X X X R


      

     

 



          (5) 

where weights
ij

R defined in Eq.5 satisfy the following formulations: 

| | | |

| | | |

| |

( , )

( , )
u S

u D

u

ij

u S
i j

u D
i j

u

CC

N N
C C

N N
C

N

R

if pairs x x S

else if pairs x x D

otherwise









 







             (6) 

By substituting Eq.6 into Eq.5, we can rewrite Eq.5 as 

   

   

       

   

   

2

,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1
|| ( ) ( ) ( ) ( ) ||

2

( ) ( ) ( ) ( )

( )

T

T T

T T

T T

TT T

TTT T

i i j j ij

i j

T TT T

i ii ii

T

T

T

X X X X

X X X X

X X X X

X X X X

J

X X X X R

I X x W x X

R

I W R

M

   

   

   

   

   

     

       

 

 

 



 

 



  







(7)

 

where M KQK ,  ( ) ( )
T

K X X  and W is a diagonal matrix whose entries 

are column (or row) sums of the matrix R , i.e.
jii ij

W R .Q I W R    is 

called Laplacian matrix. The coefficient for the identity matrix is omitted here. 
Thus Eq.5 or Eq.7 can be simplified as 

minimize ( ) T TJ M subject to I                   (8) 
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Clearly, the problem in Eq.8 is a standard eigenvalue problem. Forming the 

Lagrangian of Eq.8 with the multiplier , i.e. ( , ) ( 1)
T T

L J M        , by 

taking partial derivatives with respect to the variables and zeroing it by 

( , ) 2 2 0L J M


      , from which can be easily solved by computing 

the eigenvectors of the matrix M corresponding to the d smallest eigenvalues. 

3. Experiments and analysis 

In the experiments, we investigate the performance of KNDR method for data 
visualization and wood defects recognition. We first take the Iris and Soybean 
datasets [16] for visualization. Then, we perform experiments on the wood 
image database [7,13] for wood defects recognition. Local Binary Pattern (LBP) 
[5,10] is used to extract the features from the wood images. In the experiments, 
support vector machine (SVM) classifier is used for classification. The process 
of semi-supervised learning can be described as follows: we first use the 
labeled samples to train a decision-making function, and then use the function 

to label the unlabeled samples. The tunable parameters 
u

C ,
S

C  and 
D

C  are 

always set to 1,1 and 20 respectively if without extra explanations. 
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Fig. 2. Distributions of the features extracted by PCA, KPCA, KFD and KNDR on the 

Iris dataset (D = 4, N = 150, T = 3, d = 2) 
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Fig. 3. Distributions of the features extracted by PCA, KPCA, KFD and KNDR on the 

Soybean dataset (D = 8, N = 4177, T = 3, d = 2) 

3.1. Data visualization 

In this subsection, we apply KNDR and some existing dimensionality reduction 
methods (i.e., PCA, KPCA and KFD) to the Iris and Soybean data sets with 
three classes and investigate how they behave in data visualization tasks. 
Figs.2 and 3 respectively depict the Iris and Soybean data embedded in the 
two-dimensional embedding space discovered by each method, where D is the 
dimension of the dataset, N is the number of instances, T is the number of 
classes and d is the number of selected features. The iris data set, popularly 
used for testing clustering and classification algorithms. The embedding 
spaces by PCA and KPCA are better, but both inferior to that of KNDR. The 
‘×’-class can be clearly observed by the four methods, however, for other two 
classes, PCA, KPCA and KFD tend to mix the data, but KNDR can separate 
them well. For the Soybean data set, the three classes are completely mixed in 
the original input space. PCA, KPCA and KFD can not work on the data set, 
while KNDR can keep in-class sample pairs close and between-class sample 
pairs apart effectively. Based on above experimental results, KNDR is found to 
be more appropriate for embedding the samples data than PCA, KPCA and 
KFD, implying that our primal goal has been successfully achieved. 

3.2. Experimental results on wood defects recognition 

There are many kinds of defects on the wood surfaces, such as discoloration, 
decadent, knots, etc. While knots can be seen more often and directly affect 
the quality of boards. Several varieties of defects are shown in Fig.4. 
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Fig. 5. Accuracy vs. different numbers of selected features and constraints. 

For dimensionality reduction, we first transform the color wood images into 
three cues of R, G and B respectively and divide the images into many small 
blocks, and then extract the features from each block. Finally, we obtain 59 
features from each cue, totally 177 dimensional features. In the experiments, 
the training set used in the experiments is very important. If the training set is 
chose improperly, the test results will be affected directly and make the system 
null. Here, we aggregately select 855 samples, including 417 positive samples 
(labeled 1) and 438 negative samples (labeled -1). We mainly take the knot 
and wood image database as basis, in which the sample class distribution is 
described in Table 1 and the number of different kinds of knot defects is also 
listed. The results reported here are based on a set of hundreds of wood 
images with over 200 labeled defects in the wood database.  

 

Classification. Here, some experiments on the feature set are performed. 
The pairs constraints are obtained by randomly selecting pairs of instances 
from the whole data set, and creating similar or dissimilar constraints 
depending on whether the underlying classes of the two instances are the 
same or not. After obtaining the constraints, data without constraints in the 
whole data set are used as unlabeled data. Fig.5 displays the accuracy on the 
wood feature set under different numbers of selected features and constraints, 
where C is for SVM classifier and gamma is chose as the kernel parameters. 
From Fig.5, we find KDNR can almost always receive the highest recognition 
rate over 95% by comparing with the popular KFD, KPCA and PCA methods. 
The performance of KPCA is relatively poor in this feature set. With the 
increasing of the numbers of selected features, KNDR can keep stable for a 
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wide range and the performance of KFD method can also be thought better 
here. 
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Fig.6. Distributions of the features extracted by PCA, KPCA, KFD and KNDR on the 

wood image database (D = 177, N = 855, T = 2, d = 10). 

Fig.6 shows the distributions of the selected features extracted by PCA, 
KFD, KPCA and KNDR from the feature set. Intuitively, the embedded positive 
and negative samples are easier to be partitioned from each other in the 
feature spaces discovered by KNDR. Similar to section 3.1, PCA, KPCA and 
KFD tend to mix the projections of data of different classes. 

Table 2. Results of the averaged accuracy and runtime. 

Methods 
Averaged 

accuracy (%) 
Total  
runtime (s) 

PCA+SVM 78.65 8.7 

KFD+SVM 83.47 16.5 

KPCA+SVM 55.80 20.6 

KNDR+SVM 97.43 11.2 

 
The above experiments have evaluated the learning ability of the proposed 

method. Next, the runtime performance of KNDR will be discussed. Table 2 
gives the averaged accuracy and runtime of wood defects recognition under 
different number of selected features according to the left panel of Fig.5. From 
Table 2, the averaged accuracy of KNDR reaches 97.43% and the runtime 
performance is better than that of KPCA and KFD, but slightly worse than PCA, 
and we believe this is because PCA does use the linear projection. 

Recognition results. There are no woods with same properties in color and 
surfaces show many varieties of texture characteristics, such as rough, fuzzy, 
etc. Even for the same species, the defects might greatly vary in shape and 
colors [11]. Furthermore, with large varieties of defects and the involvement of 
human factors caused the current detection methods are vulnerable to the 
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interferences on wood surfaces. Here, we barely emphasize particularly the 
category, but classify them as defects. 

Let
1, 2 1, 2

[ ,..., ], [ ,..., ]
i i i in j j j jn

A A       represent two wood feature 

matrices, then the distance metric between them can be defined as 

2

1

( , )

n

i j it jt

t

Dist A A  


                       (9) 

Supposing matrices
1

A and
2

A are use for storing the positive and negative 

samples, and are labeled by 1 and -1 respectively. For any new data point A , if 

1
( , ) min ( , )

j
Dist A A Dist A A and

1
A belongs to the negative samples with defects, 

then we judge A as a defect region, and normal region otherwise. 
During the experiments, choosing an appropriate feature set is also very 

important. In the experiments, all the feature sets are selected by pixels 35*35 
with good generalization ability. The number of constraints (60%) is randomly 
selected from the training set. Fig.7 displays the recognition results of the 
proposed method and the rectangular boxes are all located and drawn by the 
computers automatically. 

 

 

Fig.7. Experimental results of the wood defects recognition. 
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4. Conclusions and further works 

The aim of this paper is to present a semi-supervised dimensionality reduction 
method called KNDR, focusing on domain knowledge in the form of the pairs 
constraints together with unlabeled data samples for defects recognition, not 
recognition results, however, the experimental results presented here are good 
or considerably better. We consider shrinking distances between similar pairs, 
while expanding distances between dissimilar ones in the embedding space. 
KNDR algorithm is interesting from a number of advantages: (1) KNDR is a 
standard eigenvalue problem and can be efficiently computed; (2) KNDR can 
preserve the structure of labeled and unlabeled samples and the constraints 
defined in embedding spaces; (3) For data visualization, the projections of the 
data in different classes can be effectively partitioned from each other; (4) In 
most cases, KNDR performs better than the classical PCA, KPCA and KFD 
methods. Furthermore, the runtime performance of KNDR is better than those 
of KPCA and KFD, but slightly worse than linear PCA. 

Next, we will investigate how to choose the proper kernel parameters for the 
nonlinear model. Moreover, investigating whether KNDR can preserve the 
local structure of the original data is also an interesting future work. 
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