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Abstract. Multi-Feature Index Tree (MFI-Tree), a new indexing 
structure, is proposed to index multiple high-dimensional features of 
video data for video retrieval through example. MFI-Tree employs tree 
structure which is beneficial for the browsing application, and retrieves 
the last level cluster nodes in retrieval application to improve the 
performance. Aggressive Decided Distance for kNN (ADD-kNN) search 
algorithm is designed because it can effectively reduce the distance to 
prune the search space. Experimental results demonstrate that the MFI-
Tree and ADD-kNN algorithm have the advantages over sequential scan 
in performance. 
Keywords: Multi-Feature Index Tree; KNN; Aggressive Decided 
Distance for kNN; Video Retrieval. 

1. Introduction 

With the development of multimedia and network technologies, it is much 
easier to generate, access and manipulate video data than ever before. 
Facing the massive video data, traditional retrieval methods are not efficient 
by using only metadata of video, such as the name of video and the creator. 
People care more about the content of video data, so content-based video 
retrieval (CBVR) [1] is becoming an active research area in the area of video 
databases. There are two main methods for video retrieval in CBVR: one is 
semantic retrieval which matches the retrieval keywords with the semantic 
keywords extracted from video data; the other is sample retrieval which 
calculates the similarity distances between the features extracted from the 
sample, such as an image, a piece of video or audio etc, with the features of 
video data. Semantic retrieval method is simple and effective, but 
unfortunately, the existed technologies of CBVR still suffer from the semantic 
gap because computers can not directly “calculate” the semantic meaning 
from low-level features of video data, such as color, shape, texture, motion 
and audio information. 

For sample retrieval method, it is not easy for people to find the right 
sample he wants. Normally, people browse the video database and select an 
image or a video clip as a sample to retrieve. Therefore, browsing is quite 
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important for sample retrieval method. In CBVR, video contents are usually 
described by multiple features, each of which is typically high-dimensional. 
For example, in MPEG-7 (Multimedia Content Description Interface) [2], a 
shot of video may be described by a 29-dimentional camera motion feature, 
and one keyframe of a shot may be described by a 12-dimentional color 
layout feature and a 31-dimentional homogeneous texture feature, etc. To 
support multi-feature queries, a high-dimensional index is needed to be built. 
Existed high-dimensional indexing technologies, such as M-tree [3] and VA-
File [4], typically treat all different features homogeneously, which means the 
similarity distance is based on a static combination of feature weights. 
However, in sample retrieval, the weights of features are different for different 
people with different understanding to the sample. For example, an image 
sample is described by a color feature and a shape feature. Some people like 
its color and retrieve by using the weightages of (0.8, 0.2) for the color and 
the shape feature, while some people think the color feature is as the same 
important as the shape feature, and retrieve using the weightages of (0.5, 
0.5). what’s more, multiple high-dimensional features become ineffective with 
the dimension increasing. 

In this paper, we propose a new indexing structure called Multi-Feature 
Index Tree (MFI-Tree) and a uniform similarity distance function is applied to 
ensure that the distance value of two objects is the one and only one in MFI-
Tree building processing. MFI-Tree is a hierarchical tree structure which has 
two kinds of node, leaf node and cluster node. Leaf node represents a video 
data in the set, while cluster node represents an aggregate including some 
leaf nodes with a close distance. Division algorithm is important for the 
building and updating of MFI-Tree. Here, a new division algorithm which 
obtains several separate subsets is employed. To support K Nearest 
neighbors (kNN) queries, we propose a novel searching algorithm called 
ADD-kNN (Aggressive Decided Distance for kNN). To reduce the high-
dimensional effect, ADD-kNN directly search cluster nodes in the last level of 
MFI-Tree. ADD-kNN is proved to be an efficient filter-and-refine approach 
which fast decreases the filtering value to avoid accessing data regions 
without objects belonging to the result-set. 

The rest of the paper is organized as follows:  related work is reviewed in  
section 2,  while the structure of MFI-Tree and ADD-kNN searching algorithm 
is discussed in section 3 and section 4 respectively; in section 5, we make 
some experiments to evaluate the performance of the MFI-Tree and ADD-
kNN algorithm; section 6 contains our conclusion and future work. 

2. Related Works  

The purpose of indexing is to improve the performance of queries. But for 
30~50 dimension data, existed indexing techniques have failed to improve the 
performance of sequential scan due to the known “dimensionality curse” [5, 
6]. To solve this problem, proposals in researches approximately belong to 
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three categories: dimensionality reduction, one-dimensional transformation, 
and data approximation [7]. 

Dimensionality reduction method maps the high-dimensional space into a 
low-dimensional space. The low-dimensional space is composed by some 
most important dimensions based on the correlation analysis of different 
dimensions, which is easy to be indexed by existed indexing techniques. For 
example, the dimension of color layout feature in MPEG-7 is reduced from 
192 to 12. One-dimensional transformation includes Pyramid-Technique, 
iDistance, iMinMax, etc. The Pyramid-Technique [8] divides D-dimensional 
data space into 2-dimensional pyramid areas which share the center point of 
the space as a top and then cuts each pyramid area into slices，each of 
which forms a data page. Then the D-dimensional space is mapped to 1-
dimensional space. IDistance method transforms a high-dimensional point 
into a 1-dimensional distance value with reference to its corresponding 
reference point [9]. IMinMax method maps points in high dimensional spaces 
to single dimension value determined by their maximum or minimum values 
among all dimensions [10]. One-dimensional transformation is efficient，
however, because of the information loss in transformation, many candidates 
which are not results are calculated. In data approximation method, indexing 
is built on small and approximate representations which represent original 
data, such as VA-FILE (Vector Approximation File) [4]. The VA-FILE uses 
small vectors to represent the original data point and then sequentially scan 
the vector files to obtain candidates. However, the performance of VA-FILE is 
limited due to sequential scan. What’s more, VA-FILE does not adapt to 
highly skewed data. Extended from VA-FILE, OVA-FILE uses the ordered 
approximation file where the approximations close to each other in data 
space are placed in the close positions based on VA-FILE [11]. 

With the development of multimedia database technology, there are some 
research works on multi-feature indexing structure. In [12], a single M-tree 
index is constructed for all the features, and principle component analysis and 
neural network is used to reduce dimension. But neural network training 
process is undesirable for very large data sets and M-tree structure is 
degraded in performance for dimensionality larger than 20. In [7], a multi-
feature indexing structure using dimensionality reduction and B+-tree is 
proposed. Each feature is represented by two components: one is a 2-
dimensional vector obtained by transforming each feature into minimum and 
maximum of a distance range, and the other is a vector of bit signatures 
which are set by analyzing each feature’s descending energy histogram. This 
representation can effectively prune away points that are impossible to speed 
up query processing. However, B+-tree indexing is not suitable for browsing. 

In fact, multi-feature indexing structures are given great attention with the 
development of video retrieval technology. But the existed researches put 
more emphasis on the indexing structure for the solution of “dimensionality 
curse” but less emphasis on the indexing system. The MFI-Tree structure and 
ADD-kNN searching algorithm proposed in this paper are suitable for retrieval 
and browsing application in video database. 
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3. MFI-Tree Structure 

3.1. Uniform similarity distance function 

In multi-feature video retrieval application, the similarity distance between two 
video objects is different for different weightages corresponding to different 
results. Set F=(F1, F2, …, Fn) is a video data point described by n features, 
where Fi is the ith feature and it is comprised of di dimensions. Thus, the 
similar distance function between video data point P and point O is following: 
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where Disti(P, O) is the normalized distance value between point P and point 
O on the ith feature, and wi is the weight that describes the importance of the 
ith feature. 

For video data, different features describe different content of video, and 
apply different distance function. The distance of different feature has different 
value range. To generate a distance representing all features, each feature 
distance has to be normalized. We normalize Disti (P, O) into the range of 
[0,1] by the following normalization formula: 
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Where Distimax is the maximal distance value of the ith feature on two video 
data points, and Disti’(P, O) is the distance value between point P and point O 
on the ith feature. Here, the minimal distance value is not used because 
minimal distance value is easy to change when new object is inserted into the 
data set.  

Note that the different weightages cause different distance value between 
P and O, but indexing building depends on the unique distance value between 
these two points. Therefore, a similar distance function for indexing building is 
applied. From normalization formula, it is easy to know that the distance value 
between two points is always less than the maximal distance value in the 
normalized distance value on n features. We can use the following formula to 
generalize the similar distance between two points: 

)),(max(),( OPDistOPDist i=  
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3.2. MFI-Tree Structure 

MFI-Tree is a hierarchical tree structure which satisfies the need of video 
retrieval and browsing. Just like the M-tree, MFI-Tree has two kinds of node, 
leaf node and cluster node. Leaf node is used to save all video data points in 
video set, and figure 1 illustrates the structure of leaf node. 

 
NodeID FatherID Feature F1 … Feature Fn Dis 

Fig. 1. The structure of leaf node in MFI-Tree 

Where NodeID is the identification of current leaf node, and FatherID is the 
parent node ID of current leaf node, Feature Fi is the ith feature value, and Dis 
is the distance value between current leaf node and the center object of the 
parent node. 

Cluster node is used to save the cluster of some close leaf nodes. Different 
from the routing node of M-tree, the cluster node of MFI-tree is used not for 
retrieval, but for browsing to reduce the influence of the high-dimensional. The 
cluster node structure is shown in figure 2. 

 
NodeID FatherID R CenterID BrowserID Leaf-Num isRoot 

Fig. 2. The structure of cluster node 

Where NodeID and FatherID are used to build hierarchical tree structure 
for browsing, R is the covering radius of current node, namely the maximal 
distance of all the distances between each son node and the center node. 
CenterID and BrowserID is the identification of the center object and browsing 
object of current cluster node. LeafNum is the number of son node in current 
cluster node, and isRoot is the flag to show whether current node is the last 
level cluster node or not. When cluster node generates, a virtual point which 
does not really exist in video data set is used to be center object for 
decreasing the covering radius and the overlap area of cluster nodes. The 
browsing objects which present current cluster in browsing application can be 
saved to speed up the response time. 

3.3. Building of the MFI-Tree 

The building process of the MFI-Tree can be treated as a process that a large 
data set divides continuously into several small data sets，which needs three 
steps to accomplish. 

Step 1: to calculate the maximal distance values of each feature. This is 
one of the main characteristics different from other dynamic indexing 
structures. For the distance value is normalized by maximal distance value of 
each feature, the changed maximal distance values of each feature may 
disable the MFI-Tree. That is why the MFI-Tree is called a semi-dynamic 
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indexing structure. The algorithm of finding the maximal distance values of 
each feature is shown in figure 3. 

 

 
Fig. 3. Illustration of  the maximal distance finding algorithm. 

 
Fig. 4. Set division illustration in MFI-TREE. 

Step 2: to divide data set. Considering browsing application, MFI-Tree 
does not divide data set into two subsets, but divide into several subsets 
based on the distribution of data sets. Figure 4 gives the illustration of the set 
division process. Firstly, we find the farthest pair of object A and B in data set 
using the algorithm like finding the maximal distance algorithm, and then 
object A and B are inserted into two new subsets separately. Secondly, 
calculate the minimal distance value between objects which is not distributed 
with the first object of each subset. The minimal distance value is denoted to 
dmin. If dmin is less than threshold value AddDis, it means the object is close 
enough to the corresponding subset and is inserted into it, such as object K, 
L, H and G in figure 4. If dmin is more than threshold value NewSetDis, it 
means the object is far away from all subsets, such as object C in figure 4, 
then a new subset is created and the object is inserted into the new subset. If 
dmin is more than AddDis and less than NewSetDis, the object does not 
execute insert processing, such as the object D, I and J in figure 4. Finally, 
calculate the minimal distance value between objects which is not distributed 
with the first object of each subset, and the object is inserted into the 

A

FindMaxDistance 
Input:    X：video data set 
             i：the number of feature order 
Output:  dis：the maximal distance on Fi 
Steps: 
1. Select an arbitrary object x0 in X； 
2. Visit all object in X and find object x1 which has the 

maximal distance on Fi with x0; 
3. Visit all object in X and find object x2 which has the 

maximal distance on Fi with x1; 
4. Visit all object in X and find object x3 which has the 

maximal distance dis on Fi with x2; 
5. Output dis。 
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corresponding subset. The algorithm of dividing the data set is shown in 
figure 5. 

 

 
Fig. 5. Set division algorithm in MFI-Tree 

After all objects in data set are inserted, all subset nodes are generated. 
For each subset, the center point of the farthest pair of objects is the center 
object of the subset, the maximal distance value between objects in the 
subset and the center object is the covering radius of the subset, and the 
object which has minimal distance to the center object is the browsing object 
of the cluster.  

In the division algorithm, two important threshold values are used. 
NewSetDis is used for creating a new subset and is calculated by the 
following formula: 

maxDNewSetDis ⋅= δ  
where Dmax is the maximal distance between two objects in the data set to be 
divided, and the δ is the degree of the division. Normally, new subsets are 
created when δ is more than 0.5. But for the distance function of feature is not 
Euclid distance and the distance value is the maximal distance value, δ is 
usually from 0.6 to 0.8 due to reducing the number of subsets. 0.7 is used in 
our experiments. AddDis is used for the inserting operation and is normally 
equal to half of the NewSetDis. 

Step 3: to check new subset. If the subset meets the conditions of division, 
the subset can execute division, else stop. There are two conditions for set 
division. One is LeafNum, which is the number of the objects in set. The 
bigger LeafNum increases the calculation, but the smaller LeafNum increases 
the number of cluster nodes and reading times. The other is the covering 

DivideSet 
Input: X: a data set to be divided 
Steps: 

1. Set subset list SetList and object list ObjList are NULL； 
2. Find the farthest pair of object a0 and b0 in X, set A={a0} and B={b0}, delete a0 and 

b0 from X and insert A and B into SetList； 
3. When X is not NULL 
(1) Calculate the minimal distance dmin between object with the first object in each subset 

and sign the subset； 
(2) If dmin<AddDis, move object into the signed subset； 
(3) If dmin>NewSetDis, create a new subset C, move object into C and insert C into 

SetList； 
(4) Else insert object into ObjList; 
4. When ObjList is not NULL 
(1) Calculate the minimal distance dmin between object with the first object in each subset 

and sign the subset； 
(2) Move object into the signed subset； 
5. Generate new cluster nodes. 
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radius R. The bigger R decreases the performance of pruning, while the 
smaller R increases the number of cluster node. Normally, LeafNum is 
depending on the organization of data. And the maximal R value is different 
for different application. In multi-feature indexing structure, most data points 
do not cluster into a small area because of using the maximal feature distance 
as object distance. The maximal of R is from 0.1 to 0.3, and in our 
experiments, this value is set to 0.3. 

3.4.  Insertion and Deletion Algorithm 

When the MFI-Tree is generated, the insertion and deletion operations can be 
enabled if the maximal distance values of each feature are not increased. 

In the process of inserting, the first is to find all cluster nodes in the last 
level of MFI-Tree, and to calculate the minimal distance between the insert 
object and the cluster node. The second is to insert object into corresponding 
cluster node and update the LeafNum and R of the ancestor nodes up to top. 
Finally, if the cluster node to be inserted meets the conditions of division, this 
cluster node executes division operation. 

The deletion operation is similar to the insertion. The first step is to find and 
delete object from MFI-Tree, and then update the LeafNum value of ancestor 
nodes up to top. Lastly, if the LeafNum value of the cluster node is smaller 
than the conditions of division, the father node of this cluster node will delete 
all its son nodes, and then execute division operation. 

4. ADD-kNN Searching Algorithm  

Ordinarily, video content similarity queries contain some elementary types, 
such as Range Query, k nearest neighbor query (kNN query), etc. Using a 
range search, it is difficult to specify a maximal distance as the constraint 
without some knowledge of the data and distance function. An alternative way 
is to use kNN query which finds k nearest neighbors to the given query object.  

There are two ways of approaching kNN query, range query and filtering. 
For the range query, query data set uses a given distance R. If the number of 
candidates is more than k, then k nearest neighbors are returned. Else, 
continually query data set uses increased R value until k results is found. 
Obviously, the performance of the mentioned methods relies on the value of 
R, the bigger or the smaller of the value can decrease the query’s efficiency. 
The distance functions of high-dimensional features have the property of 
triangle inequality, that is: 

),(),(),(,,, zydyxdzxdDzyx +≤∈∀  
Filtering method uses triangle inequality to prune away a lot of impossible 

objects, and then calculate the distance between the query object and 
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candidates. This method can improve the performance by reducing the 
unnecessary calculation. 

Comparing with the traditional indexing structure, MFI-TREE structure has 
an important characteristic. In the building processing of MFI-Tree, the 
distance between two objects is the maximal distance value in the normalized 
distance value on n features. But in query processing, the distance between 
two objects is calculated by given weightages. That is to say, the covering 
radius of cluster nodes in MFI-TREE is bigger than the real radius of cluster 
nodes calculated by given weightages in most cases. Because the covering 
radius is an important parameter for filtering methods, some useless cluster 
nodes cannot be pruned away easily by using bigger radius in query 
processing. 

To avoid performance decreasing, a new kNN search algorithm, called 
Aggressive Decided Distance (ADD-kNN) is proposed. The main idea of 
ADD-kNN algorithm is to fast decrease the filtering value, and to effectively 
filter most of unnecessary objects. The ADD-kNN search algorithm can be 
characterized by using the following steps: 

Step 1: create the query object according to the sample, features and its 
weightages. 

Step 2: empty the query node list and result list, and set value D for filtering 
to zero. 

Step 3: different from breadth-first search and depth-first search 
algorithms, our method traverses all the cluster node in the last level of MFI-
Tree, that are all the cluster node whose value isRoot is equal to 1. 

Firstly, the real distance value d with the given weightages is calculated 
between the query object and the center object of the current cluster node. 
Then, the minimal distance value Dmin is calculated by using the following 
formula: 

Dmin = d - R 
where R is the covering radius of the current node. 

When value Dmin is less than zero, the query object is in the current cluster, 
and the objects in cluster node are all candidates. The objects in cluster are 
inserted into result list one by one according to the real distance to the query 
object. If the number of the objects in result list is more than k and the real 
distance is more than filtering value D, the object is not inserted. After 
insertion operates, if the number of the objects is more than k, the filtering 
value D is equal to the kth smallest distance value in the result list, and then 
the object whose distance value is more than D is removed from result list. If 
the number of objects is less than k, the filtering value D is equal to the 
biggest distance value of objects in result list. 

When value Dmin is more than zero, the query object is outside the current 
cluster, and the cluster node is inserted into query node list. 

Step 4: when the query node list is not empty, traverse all nodes in query 
node list. If the number of objects in result list is more than k and value Dmin of 
the node is more than the filtering value D, the node is removed from query 
node list. Else, the objects in the node will execute insertion like the step 3, 
and then that can be removed from query node list. 
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Step 5: output the result list. 
According to the characteristics of MFI-Tree structure, ADD-kNN research 

algorithm calculates the real similar distance values which are necessary for 
reducing the filtering value, decreasing the spending of sorting and improving 
the performance of retrieval. 

5. Experiments 

The 12-dimensional color layout feature and the 80-dimensional edge 
histogram feature in MPEG-7 are used in our experiments because these 
features are compact and effective to describe image contents. The data set 
for experiments were conducted by using 400 pieces of video clips from 30 
movies, including various movie types like action, comic, comedy and science 
fiction, etc. The color layout and edge histogram feature are extracted from 
10000~30000 images, which are the keyframes derived from the movie clips 
per 20 frame, using the extraction algorithm and distance function mentioned 
in MPEG-7. All the experiments were performed on an IBM T61 portable 
computer. The operating system is windows XP and the database is Oracle9i. 

5.1. Effect of data size 

We generate MFI-TREE structures and M-tree structures for 10000, 20000 
and 30000 keyframes respectively, and then use 6 images derived from test 
video clip as query objects to execute k-NN query, where k is equal to 20. The 
experimental results are illustrated in figure 6 (a) and (d). It can be easily 
found that the average similar distance calculating times of the MFI-Tree 
structure using ADD-kNN algorithm are less than the calculating times of M-
Tree structure. The reason is that the covering radius of current node in M-
tree structure which uses uniform similarity distance function is bigger, the k-
nn research algorithm of M-tree cannot prune away most nodes, and 
accessing hierarchic structure of the M-tree structure cause its inefficiency. 

5.2. Effect of weighted queries 

We use 6 images derived from test video clips as query objects to execute k-
NN query with different weightages on the set of 20000 keyframes. Figure 6 
(b) and (e) shows the average retrieval time and the average distance 
calculating times when the weight of colorlayout feature changes from 0.1 to 
0.9 while the sum of two feature weights is equal to 1. It is shown that the 
average retrieval time is the highest when the weight of colorlayout feature is 
0.4, and the average distance calculating times is the highest when the weight 
of colorlayout feature is 0.3, for the retrieval time is decided by distance 
calculating times and database accessing times. 



MFI-Tree: An Effective Multi-feature Index Structure for Weighted Query Application 

ComSIS Vol. 7, No. 1, Special Issue, February 2010 149 

     
(a)                                                                      (b) 

 
            (c)                                                                        (d)   

 
             (e)                                                                      (f) 

Fig. 6. Experimental results  

5.3. Effect of k value 

We executed kNN queries when the value of k changes from 10 to 50 on the 
set of 30000 keyframes. The results are illustrated in figure 6 (c) and (f). As 
we can see, ADD-kNN achieves the worst performance when k value is equal 
to 40. Actually, the maximal LeafNum value of the cluster nodes in indexing 
structure definitely influences query performance. Biggish value may lead to 
biggish covering radius, while less value may lead to more cluster nodes. So, 
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the maximal LeafNum value is decided by the size of data set and the k value 
which is usually used in applications. 

6. Conclusion 

In this paper, we have proposed a multi-feature indexing structure——MFI-
Tree and ADD-kNN search algorithm for the weighted query application of 
video retrieval. Based on uniform similarity distance function, MFI-Tree is built 
to index multi-features of video data. MFI-Tree is a hierarchical structure 
which can be used for browsing effectively. The ADD-kNN search algorithm 
directly search the last level cluster nodes in MFI-Tree structure to reduce the 
high-dimensional effect of the indexing structure, and fast minimize the 
filtering value to prune most unnecessary data away. The experimental 
results demonstrate that the MFI-TREE and ADD-kNN search algorithm are 
effective and efficient for weighted query application.  

However, in the division operation of MFI-Tree, the overlap areas of the 
subsets still exist, which can influence the performance of retrieval. What’s  
more, the features to describe the video content are not easy to be 
understood by people, so how to create an effective interface for weighted 
queries application will be one of our future work. 

7. Acknowledgement 

This paper is financially supported by the National Natural Science 
Foundation of China under Grant No.60703049; the “Chen Guang” 
Foundation for Young Scientists of Wuhan under Grant No. 200850731353. 

8. References 

1. Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain: Content-based 
multimedia information retrieval State of the art and challenges. ACM 
Transactions on Multimedia Computing, Communications and Applications, 22(1), 
1–19 (2006) 

2. ISO/IEC/JTC1/SC29/WG11 (MPEG). Text of ISO/IEC 15938-3 Multimedia 
Content Description Interface – Part 3: Visual. Final Committee Draft. Singapore, 
(2001) 

3. Paolo Ciaccia, Marco patella, Pavel Zezula. M-tree: An efficient Access method 
for Similarity Search in Metric Spaces. In proceedings of the 23rd VLDB 
conference, Athens, Greece, 426-435 (1997) 

4. R. Weber, H.J. Schek, and S. Blott: A Quantitative Analysis and Performance 
Study for Similarity Search Methods in high-Dimensional Spaces. In proceedings 
of the 24th VLDB Conference, New York, USA, 194-205 (1998) 



MFI-Tree: An Effective Multi-feature Index Structure for Weighted Query Application 

ComSIS Vol. 7, No. 1, Special Issue, February 2010 151 

5. Gislir. Hjaltason and Hanan Samet: Index-Driven Similarity Search in Metric 
Spaces. ACM Transactions on Database System,  28(4), 517-580 (2003) 

6. Christian Bohm, Stefan Berchtold and Daniel A.Keim: Searching in High-
Dimensional Spaces-Index Structures for Improving the Performance of 
Multimedia Databases. ACM Computing Surveys, 33(3), 322-373 (2001) 

7. H.V. Jagadish, Beng Chin Ooi, Heng Tao Shen, and Kian-Lee Tan: Toward 
Efficient Multifeature Query Processing. IEEE Transactions On Knowledge and 
Data Engineering, 18(3): 350-362 (2006) 

8. S. Berchtold, C. Bohm, H.P. Kriegel: The Pyramid-Technique: Towards Breaking 
the Curese of Dimensionality. In proceedings of Int. Conference On Management 
of Data, ACM SIGMOD, Seattle, Washington, 142-153 (1998) 

9. C. Yu, B.C.Ooi, K.L.Tan, H.V.Jagadish: Indexing the Distance: An Efficient 
Method to KNN Processing. In proceedings of the 27th VLDB Conference, Roma, 
Italy, 166-174 (2001) 

10. B.C. Ooi, K.L. Tan. C. Yu, S.Bressan: Indexing the Edges-A simple and Yet 
Efficient Approach to High-Dimensional Indexing. In ACM SIGMOD 19th 
Symposium on Principles of Database Systems (PODS), Dallas, Texas, 166-174 
(2000) 

11. Hong Lu, Beng Chin Ooi, Heng Tao Shen, and Xiangyang Xue: Hierarchical 
indexing structure for efficient similarity search in video retrieval. IEEE 
Transactions on Knowledge and data engineering, 18(11), 1544-1559 (2006) 

12. A.H. Ngu, Q. Sheng, D. Huynh, and R. Lei: Combining Multivisual Features for 
Efficient Indexing in a Large Image Database. VLDB. 9(4): 279-293 (2001)  

 
 
 
Yunfeng He is currently a PhD. Candidate and a member of faculty at 
HuaZhong University of Science and Technology in China. His research 
interest focuses on video data index and retrieval. 

 
Junqing Yu is the corresponding author of this paper. He received his PhD in 
Computer Science from Wuhan University in 2002. He is currently an 
Associate Professor at the School of Computer Science and Technology, 
Huazhong University of Science and Technology, Wuhan, China. His 
research interests include digital media processing and retrieval, multi-core 
programming environment. 

 
 

Received: May 14, 2009; Accepted: August 07, 2009. 



 

 

 


