
UDC 004.31.26, DOI: 10.2298/CSIS1001189W

The Design and Evaluation of Hierarchical Multi-

level Parallelisms for H.264 Encoder on Multi-core

Architecture

Haitao Wei
1
, Junqing Yu

1
, and Jiang Li

1

1
School of Computer Science & Technology,

Huazhong University of Science & Technology, 430074 Wuhan, China
yjqing@hust.edu.cn

Abstract. As a video coding standard, H.264 achieves high compress
rate while keeping good fidelity. But it requires more intensive
computation than before to get such high coding performance. A
Hierarchical Multi-level Parallelisms (HMLP) framework for H.264
encoder is proposed which integrates four level parallelisms – frame-
level, slice-level, macroblock-level and data-level into one
implementation. Each level parallelism is designed in a hierarchical
parallel framework and mapped onto the multi-cores and SIMD units on
multi-core architecture. According to the analysis of coding performance
on each level parallelism, we propose a method to combine different
parallel levels to attain a good compromise between high speedup and
low bit-rate. The experimental results show that for CIF format video,
our method achieves the speedup of 33.57x-42.3x with 1.04x-1.08x bit-
rate increasing on 8-core Intel Xeon processor with SIMD Technology.

Keywords: H.264 encoder; Hierarchical Multi-level Parallelisms; Multi-
core Architecture.

1. Introduction

H.264 [1] as a video coding standard is now being used widely due to its high-
quality video content and low bit-rate. However, it makes encoding process
more complex and requires more computation than previous coding standards.
Given fixed fidelity, H.264 reduces bit-rate up to about 50% at the cost of more
than three times computational complexity compared to H.263 [2]. Therefore,
the hardware and software co-design parallelisms are needed to accelerate
the speed of encoder for real-time application. Multi-core processor
architecture [3] is now becoming the mainstream solution for next generation
general computation. Unlike the simultaneous multiple threading (SMT) [12]
and hyper-threaded processor (HT) [13] where most micro-architectures are
shared between logical processors, multi-core processor introduces new
microprocessor technologies to deliver high computation ability. First, multi-
core processor integrates multiple single processor cores into one chip which

Haitao Wei, Junqing Yu, and Jiang Li

ComSIS Vol. 7, No. 1, Special Issue, February 2010 190

supports the real coarse-grained hardware thread parallelism. Second, each
core is equipped the SIMD instruction sets to provide the fine-grained
parallelism. Third, each core has independent L1/L2 cache to increase the
bandwidth and hit rate. All these features can be beneficial for improving the
speed of H.264 encoder.

Many parallel algorithms for H.264 encoder were discussed in previous
work. A parallel scheme is addressed in [4, 5] that encodes the slices of a
frame in parallel on Intel hyper-threading architecture. It mainly concentrates
on the slice parallelism based on fixed IBBP encoding structure. A method that
utilizes the dependency of reconstructed macroblock (MB) and encoding
macroblock to encode multiple macroblocks in parallel is reported in [6].
Another parallel algorithm for macroblock encoding is reported in [2, 11]. It
uses approximate neighboring encoding information to find the optimal coding
mode of the current coding block. A pipeline algorithm is discussed to
parallelize macroblock analysis and the performance is analyzed on Cell
processor in [7]. A H.264 decoder is implemented on general-purpose
processors by using SIMD instructions in [8]. Parallel motion estimation
scheme for H.264 are discussed in [9, 10].

We expand the method proposed in [4, 5] to multi-B frames in the frame
level and combine frame, slice, macroblock and data parallelisms for H.264
encoder into one HMLP framework. First, the HMLP model and the design
details of each level parallelism for H.264 encoder are presented. Then, based
on performance analysis on each parallelism the tradeoffs between multiple
parallel levels are attained to optimize the encoding performance.

The rest of this paper is organized as following. Section 2 provides detail
design and implementation of our HMLP model for H.264 encoder. Section 3
demonstrates performance results and discusses the results. The selection
strategy of multi-level parallelisms is illustrated in section 4. And section 5
concludes this paper.

2. Hierarchical Multi-level Parallel Parallelisms for H.264

Encoder

In H.264, a video sequence includes many frames. Each frame is partitioned
into slices, which is the encoding unit and independent of other slices in the
same frame. Slice can be decomposed into macroblock which is the unit of
encoding algorithm. The structure above provides potential parallel
optimization opportunities.

2.1. The Framework of HMLP model

As in Figure 1, the framework of HMLP model for H.264 encoder is designed
to integrate four levels of parallelisms of frame, slice, MB and data into one
implementation. It consists of encoding threads and queue buffers. Three

The Design and Evaluation of Hierarchical Multi-level Parallelisms for H.264
Encoder on Multi-core Architecture

ComSIS Vol. 7, No. 1, Special Issue, February 2010 191

kinds of encoding thread – frame thread, slice thread and MB thread, do the
encoding process at three different levels. Frame thread is on the top level.
Frame threads create the threads for the slice-level which hierarchically create
the threads for the MB-level. The data-level parallelism which acts as
functional parallelism is included in the MB encoding thread. All above
parallelisms compose a hierarchical parallelism tree, where from root node to
the leaf node the parallelism grain is decreasing. The HMLP framework shows
good scalability. In each parallel level, the size of the processing unit for each
thread can be decreased to increase the number of thread. For example the
frame can be decomposed into more slices to increase the slice encoding
thread. For different levels, because of the hierarchical structure of frames,
slice, MBs and data there are many parallel grains to select the size of
processing unit.

I/P Queue

 I/P frame

thread

B Queue

 B frame

thread

Write bitstream to NAL

Analyze the B frames

encoded in parallel
Read I/P

frame

Create B frame threads

Type
Decision

I/O
Thread

I/P

frame

B frame

Allocate

buffer

for NAL

I/P slice

thread
... B slice

thread

Combine Combine

Video Sequence

 B frame

thread

B slice

thread

Write to file by I/O

thread

...

M
B

 th
read

fo
r I/P

 slice

M
B

 th
read

fo
r I/P

 slice

M
B

 th
read

fo
r I/P

 slice

M
B

 th
read

fo
r I/P

 slice

...

M
B

 th
read

fo
r B

 slice

M
B

 th
read

fo
r B

 slice

...

M
B

 th
read

fo
r B

 slice

M
B

 th
read

fo
r B

 slice

...Frame-level

Slice-level

MB-level

 Data-level

is included

I/P slice

thread

Fig. 1.. Hierarchical Multi-level Parallelisms (HMLP) framework for H.264 encoder.

2.2. Frame and Slice level Parallelisms Design and Implementation

Usually, a sequence of frames is encoded using an IB...BPB…BP… structure.
The number of B frame between two P frames can be multiple. Here, I and P
frames are treated as the reference frames and B frame are considered as
non references in order to explore more parallelism. Figure 2 shows the
principle of frame-level parallelism. The display order indicates the original
order of video frame. The dependency between the frames is showed in the
encoding order. In this encoding order, the completion of encoding a P frame
will make the subsequent one P frame and some B frames ready for encoding

Haitao Wei, Junqing Yu, and Jiang Li

ComSIS Vol. 7, No. 1, Special Issue, February 2010 192

in parallel. Here, one P frame and the B frames in the same column will be
encoded in parallel order.

H.264 encoder is divided into three parts: input processing, encoding and
output processing. As depicted in figure 1, the input processing reads
uncompressed images, decides type and allocates the NAL node for bit-
stream. The output processing checks the NAL queue and writes the bit-
stream after encoding to the output file. One I/O thread is used to handle the
input and output processing. In order to explore parallelism in between frames,
two queues are used, one is for I or P frames and another is for B frames.
After each frame’s type is decided the frame will be put into the corresponding
queue. The I/P encoding thread will fetch an I or P frame from the I/P queue
and check the B frames which are independent of current I/P frame and ready
for encoding in the B queue. After that, I/P thread will create B frame encoding
thread for each above B frame and encode the I/P frame with these B frames
in parallel.

Display Order

Encoding Order

IB…BPB…BPB…BP

IP|B…BP|B…BP|B...B

Parallel Order I P P P

B

B

B

B

B

B
.

.

.

.

.

.

.

.

.

Fig. 2. The frame dependencies and parallel encoding order in H.264.

A frame can be divided into small slices which are independent and can be
encoded in parallel. As figure 1 illustrates, each frame encoding thread like I/P
thread and B thread divides the frame into slices and create encoding thread
for each slice. After encoding, each slice thread writes the bit-stream to the
NAL in the order of slice.

The pseudo code of frame-level and slice parallelisms is listed below. We
use I/O thread to process the input and output and I/P thread to create B
frame encoding threads dynamically to encode the frames in parallel. In each
frame encoding, frame is partitioned into slices and slice encoding threads are
created for each of it to encode. Finally, the bitstream is assembled and write
to the file.

I/O thread Code:
while (input video sequence is not NULL) do
 if (there is free entry in image buffer) then
 read a frame to image buffer and decide its type;
 if (the type is I or P) then
 enter I/P queue;
 else
 enter B queue;
 end
 allocate a node in NAL queue for current frame;
 else if (there is bitstream node in the NAL queue)
 write the bitstream node to output file;
 else wait;

The Design and Evaluation of Hierarchical Multi-level Parallelisms for H.264
Encoder on Multi-core Architecture

ComSIS Vol. 7, No. 1, Special Issue, February 2010 193

 end
end while
I/P thread Code:
while (true) do
 if (there is frame in the I/P queue) then
 fetch a frame from I/P queue;
 analyze the B frames in B queue;
 create Encoding thread for B frame
 which can be encoded in parallel;
 call Encoding thread to encode current frame;
 else if (all frames are encoded) exit;
 else wait;
 end
end while
Encoding thread Code:
for each slice in the frame
 create slice encoding thread to encode;
assemble the bitstream and write to file

2.3. MB and Data Level Parallelisms Design and Implementation

MB encoding process is the most time-cost part in H.264. In the
implementation, it is composed of three modules – MB analysis, encoding and
CABAC. MB analysis module mainly analyzes intra and inter prediction mode,
predicts motion vector, and decides the MB type. And the MB encoding
module mainly processes the DCT, quantization and de-blocking filtering.
From the analysis in [6], the processing above indicates that the MB analysis
and encoding of current MB depends on results of current MB’s top and left
neighboring MBs. The CABAC module depends on the CABAC result of last
MB. So, it must be processed sequentially in the row order.

Figure 3(a) illustrates the principle of parallel MB encoding process in a
slice structure that consists of 4x9 MBs. MB is indexed by the coordinate
MB(i,j). According to the dependency, in order to analyze and encode MB(i,j),
it is necessary to refer to the results of its left MB(i-1,j), top-left MB(i-1,j-1), and
top MB(i,j-1). Therefore, the initial way is to analyze and encode two MBs,
MB(0,0) and MB(1,0) sequentially. After this, MBs in each column such as
MB(2,0) and MB(0,1) can be analyzed and encoded in parallel, meanwhile,
MB(0,0) and MB(1,0) can do CABAC. And then MB(3,0) and MB(1,1) can be
analyzed and encoded in parallel. In such a way, MB(6,0), MB(4,1), MB(2,2)
and MB(0,3) can be analyzed and encoded in parallel. However, CABAC must
be processed sequentially in the row order. According to the Amdahl’s law, the
total time is decided by the cost time of CABAC. The experiment shows the
cost time of CABAC is about half of the sum of MB analysis and encoding time.
So, as figure 3(a) illustrates, three threads are created for MB encoding
process, two of which execute MB analysis and encoding (Task1) and one of
which executes CABAC (Task2). The producing rate of two threads for Task1

Haitao Wei, Junqing Yu, and Jiang Li

ComSIS Vol. 7, No. 1, Special Issue, February 2010 194

is enough to match the consuming rate of one thread for Task2. In the
parallelization pattern, each slice is partitioned into MB rows. Each thread for
Task1 processes the interlacing MB rows in a slice – one thread processes
odd rows the other processes even rows. Thread for Task2 processes MB
rows in sequential and synchronize with the two threads executing Task1.

(a) Principle and task partition for parallel MB encoding process

Thread1

for Task1

Synchronization

Enqueue result

from thread1

…
…

…
…

…
…

Result Queue for

Thread1

Thread2

for Task1

Result Queue for

Thread2

Enqueue result

from thread2

CABAC Thread

for Task2

Read the result from task1

Write

bitstream

Read MB

(b) The implementation of MB-level parallelism

Fig. 3. The multi-threads implementation of macroblock-level parallelism

Figure 3(b) shows the implementation of MB-level parallelism. The slice
thread created in section 2.2 is taken as the CABAC thread which creates two
threads for MB analysis and encoding. Two queue buffers are used to store
the results of MB analysis and encoding from the threads. CABAC thread
reads the two queue buffers alternatively to encode and write the final results
to bit-stream.

The SIMD technique can be used to speed up encoding process in the
data-level. We use the SIMD instruction to rewrite the following encoding
modules: integer DCT/IDCT transform, quantization, motion compensation,
sub-pel search, de-blocking and SAD calculation. Because the SIMD is an
instruction optimization technology, it does not compete with frame or slice
parallelism for physical threads.

(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0) (6 , 0) (7 , 0) (8 , 0)

(0 , 1) (1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1) (7 , 1) (8 , 1)

(0 , 2) (1 , 2) (2 , 2) (3 , 2) (4 , 2) (5 , 2) (6 , 2) (7 , 2) (8 , 2)

(0 , 3) (1 , 3) (2 , 3) (3 , 3) (4 , 3) (5 , 3) (6 , 3) (7 , 3) (8 , 3)

Tim

Thread 1 for Task 1

Thread 2 for Task 1

Thread for Task 2

MBs which have completed
task 1 and task 2

MB which has completed task 1 ,
but is doing under task 2

MB which is doing under
task 1

MBs which have not been encoded yet

Task 1 : MB Analysis and Encoding
Task 2 : CABAC Encoding

MBs which have completed
task 1 , but are waiting for task 2

The Design and Evaluation of Hierarchical Multi-level Parallelisms for H.264
Encoder on Multi-core Architecture

ComSIS Vol. 7, No. 1, Special Issue, February 2010 195

3. Experiments and Performance Evaluation

The experimental tests of multi-level parallel H.264 encoder is performed on 8
cores Intel Xeon processor running at 2.0GHz, 1M L2 Cache and supporting
MMX/SSE1/SSE2. If it is unspecified, the test video is Foreman in CIF format
(352x288) with 300 frames. The profile of H.264 encoder is main profile which
is configured as following: (1) inter-coding using B-slices and weighted
prediction; (2) deciding references on a per partition basis; (3) using
hexagonal search; (4) using 1/4-pel resolution research (5) enabling all search
types; (6) using CABAC.

3.1. Coding Performance Versus Frame and Slice Parallelisms

The coding performance is one of the most important issues in the video
coding. Even though parallelisms can make video data process faster, it must
not significantly sacrifice the coding performance. Figure 4(a) shows the
encoder performance when a frame is divided into different number of slices,
here number of B-frame is 2. We can see that with 8 slices in each frame, we
have a bit-rate increment close to 15% which is not admissible. Too much
slice parallelism causes bit-rate rising. Thus, the slice parallelism is sensitive
and restricted to bit-rate. Another quality parameter PSNR does not behave so
adversely. It is seen that PSNR has a small variation around 38.42 dB. It is
concluded that bit-rate is the key coding performance parameter that limits
frame and slice parallelisms.

As mentioned early, B frame can be encoded with P frame in parallel, so
multiple B frames can increase the degree of parallelism. But, it also
influences the bit-rate and drops down the image quality because of the
inaccurate bi-predictions. One challenge is to attain a high quality. So, the
proper amount of B frame should be selected. Meanwhile, partitioning one
frame into multiple slices can increase the degree of parallelism, but it also
increases the bit-rate. Because it isolates the correlation between different
slices in one frame and adds slice heads to the bit-stream. Thus, the amount
of slice should be selected carefully as well. Figure 4 illustrates the speedup
and bit-rate variation with of the number of B frames and slices. In figure 4 (b),
There is a best speed up of 6x to 6.3x when the number of B frames ranges
from 3 to 7 and the number of slices in each frame is 6. In figure 4 (c), the bit-
rate descends about 110kb/s when the number of B frames ranges from 0 to 3
and rises up about 50 kb/s when B frames varies from 3 to 8. Thus,
considering frame level only, best speedup and relative lower bit-rate are
achieved when the number of B frames ranges from 2 to 3. On the other side,
given 2 or 3 B frames, the bit-rate increases almost linearly with the number of
slices. The bit-rate increases about 40kb/s compared with no slices partition
when the number of slices reaches 6, at which the best speedup is attained.
The important observation is that setting the number of B frames to 2 to 3 and
partitioning a frame to 6 slices delivers the best tradeoff for frame and slice
parallelisms that achieves a 6.0x-6.3x speedup with 1.08x bit-rate.

Haitao Wei, Junqing Yu, and Jiang Li

ComSIS Vol. 7, No. 1, Special Issue, February 2010 196

38.14

38.24

38.34

38.44

38.54

38.64

38.74

420

440

460

480

500

520

540

560

580

1 2 3 4 5 6 7 8

b
it

ra
te

(k
b

/s
)

of slice

bitrate PSNR

P
SN

R
(d

B
)

(a) bit-rate and PSNR vs. the number of slices in a frame

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

of Slice

b=0

b=1

b=2

b=3

b=4

b=5

b=6

b=7

b=8

400

420

440

460

480

500

520

540

560

580

600

620

640

1 2 3 4 5 6 7 8

b
it

ra
te

(k
b

/s
)

of slices

b=0

b=1

b=2

b=3

b=4

b=5

b=6

b=7

b=8

 (b) speedup (c) bit-rate

Fig. 4. Speedup and coding performance of frame–level and slice-level parallelisms.

3.2. Coding Performance Versus MB and Data Parallelisms

As mentioned before, MB-level parallelism utilizes the inherent dependencies
of different MB encoding processes in a slice. Thus, it can increase the degree
of parallelism while keeping the bit-rate no changing. Figure 5 shows the
speedup of adding the MB-level parallelism to frame-level and slice-level
parallelisms. Comparing to the number of 6 slices where the best speedup is
achieved in figure 4 (b), the best speedup in figure 5 shifts to point of 3 slices.
Meanwhile, the speedup of frame-level parallelism almost keeps the same.

The Design and Evaluation of Hierarchical Multi-level Parallelisms for H.264
Encoder on Multi-core Architecture

ComSIS Vol. 7, No. 1, Special Issue, February 2010 197

MB-level parallelism doesn’t increase the bit-rate. As refers to figure 4 (c), the
bit-rate decreases about 20 kb/s when the number of slices reduces from 6 to
3 where the peak speedup is achieved. One important conclusion is that MB-
level parallelism decreases the bit-rate while keeps the best speedup of 6.x
through reducing the number of partitioned slices and increasing the MB
parallelism in a frame. It is observed that when number of B frame is 2 to 3,
the partitioned slices in a frame is 3 and the MB-level parallelism is used we
can achieve a good speedup and maintain a lower bit-rate.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

of Slice

b=0

b=1

b=2

b=3

b=4

b=5

b=6

b=7

b=8

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

of slice

b=0

b=1

b=2

b=3

b=4

b=5

b=6

b=7

b=8

Fig. 1. Speedup of adding MB-level
parallelism to frame-level and slice-level

Fig. 2. Speedup of combining four level
parallelisms of frame, slice, MB and data.

Data-level parallelism utilizes the SIMD instruction to improve the

computation of encoding process especially the vector and matrix computation.
Thus, it will not increase the bit-rate as well. As figure 6 illustrates, about 42.3x
speedup is achieved with 1.04x bit-rate arising by combining four level
parallelisms.

3.3. Performance Comparison with Other Related Works

Table 1 shows the performance comparison between our hierarchical multi-
level parallelism H.264 encoder with other related works. In [5], slice-level
parallelism is used to a fixed frame structure. For 2 B frames the speedup of
4.31x-4.69x is achieved on 4 Intel Xeon processors with Hyper-Threading
Technology (8 logical processors). This method is implemented in our test bed
and achieves the speedup of 5.56x-5.72x while with 1.11x bit-rate (ratio).
Single marcroblock-level parallelism method in [6] and single data-level
parallelism method in [8] achieve the speedup of 3.08x and 2x-4x separately,
and keep the bit-rate no change. Comparing with above method, for 2 B
frames structure, our hierarchical multi-level parallelisms method gains the

Haitao Wei, Junqing Yu, and Jiang Li

ComSIS Vol. 7, No. 1, Special Issue, February 2010 198

speedup of 33.57x-34.78x while with 1.05x bit-rate (ratio). Our multi-level
method replaces part slice-level parallelism with the macroblock-level
parallelism to reduce the number of slices.

Table 1. Performance comparison with other works

Parallelization method Speedup Bit-rate(ratio)

Slice-level with fixed B frame[10,18] 5.66x-5.72x 1.11x
Single MB-level parallelism[5] 2x-4x 1x

Single data-level parallelism[17] 3.08x 1x

Hierarchical multi-level parallelisms in
our work

33.57x-34.78x 1.05x

4. Conclusions

H.264 provides many potential parallel optimization opportunities. Single level
parallelism scheme can speed encoding, however, it achieves low speedup
and increases the bit-rate. A hierarchical multi-level parallelisms design for
H.264 encoder is presented which exploits the multi-level parallelisms of
frame, slice, macroblock and data in one implementation on multi-core
architecture. The tradeoffs of integrating multiple levels are analyzed to gain
good speedup and also to keep bit-rate and the video degradation as minimal
as possible. The speedup of 42.3x is achieved on 8 Intel SIMD processors
with SIMD Technology The method demonstrated can also be applied to other
video coding and parallel hardware.

5. Acknowledgement

This paper is financially supported by the National Natural Science Foundation
of China under Grant No.60703049; Intel grant for a study of multi-core
programming environment.

6. References

1. T. Wiegand, G. J. Sullivan, G. Bjontegaard et al.: Overview of the H.264/AVC
video coding standard. IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 13, No. 7, 560-576. (2003)

2. T-C. Chen, Y-W. Huang, and L-G. Chen.: Analysis and design of macroblock
pipelining for H.264/AVC VLSI architecture. In Proceedings of 2004 International
Symposium on Circuits and Systems, Vol. 2, 273-276. (2004)

The Design and Evaluation of Hierarchical Multi-level Parallelisms for H.264
Encoder on Multi-core Architecture

ComSIS Vol. 7, No. 1, Special Issue, February 2010 199

3. Jeff Parkhurst, John Darringer, PBill Grundmann.: From Single Core to Multi-Core:
Preparing for a new exponential. In Proceedings of the 2006 IEEE/ACM
International Conference on Computer-aided Design, 67-72. (2006)

4. Chen Yen-Kuang, Tian Xinmin, Ge Steven and Girkar Milind.: Towards Efficient
multi-level threading of H.264 encoder on Intel Hyper-Threading Architectures. In
Proceeding of International Parallel and Distributed Processing Symposium.
Vol.18: 889-898, (2004)

5. Ge S., Tian X., and Chen Y.-K.: Efficient Multithreading Implementation of H.264
Encoder on Intel Hyper-Threading Architectures. In Proceeding of IEEE Pacific-
Rim Conference on Multimedia, 469-473 (2003)

6. Zhao Zhuo and Liang Ping.: A highly efficient parallel algorithm for H.264 video
encoder. In Processing of 2006 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Vol. 5, 489-492 (2006)

7. Jonghan Park and Soonhoi Ha.: Performance Analysis of Parallel Execution of
H.264 Encoder on the Cell Processor. In Proceedings of the 2007 IEEE/ACM/IFIP
Workshop on Embedded Systems for Real-Time Multimedia, 27-32, (2007)

8. Zhou X., Li E. Q., and Chen Y.-K.: Implementation of H.264 Decoder on General-
purpose Processors with Media Instructions. In Proceeding of SPIE Conference
on Image and Video Communications and Processing, 224-235, (2003)

9. Chuan-Yiu Lee, Yu-Cheng Lin, et al.: Multi-pass and frame parallel algorithms of
motion estimation in H.264/AVC for generic GPU. In Proceeding of International
Conference on Multimedia & Expo, 1603-1606, (2007)

10. Lin Chia-Chun, Lin Yu-Kun and Chang Tian-Sheuan.: PMRME: A Parallel Multi-
Resolution Motion Estimation algorithm and architecture for HDTV sized H.264
video coding. In Proceeding of IEEE International Conference on Acoustics,
Speech and Signal Processing, Vol. 2, 385-388, (2007)

11. Y.-W. Huang, T.-C. Chen, C.-H. Tsai, et al.: A 1.3TOPS H.264/AVC single-chip
encoder for HDTV applications. In Proceedings of International Conference on
Solid-State Circuits, 128-130. (2005)

12. D. M. Tullsen, S. J. Eggers, H. M. Levy.: Simultaneous Multithreading: Maximizing
On-Chip Parallelism. In Proceeding of International Symposium on Computer
Architecture, 392-403, (1995)

13. D. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and M. Upton.:
Hyper-Threading Technology Micro-architecture and Architecture.
http://developer.intel.com/technology/itj/2002/volume06issue01/art01_hyper/vol6i
ss1_art01.pdf (2002)

Haitao Wei is currently a Ph.D candidate at Huazhong University of Science
and Technology in China. His research interests include parallel computing,
compilation optimization, and parallel programming model.

Junqing Yu is the corresponding author of this paper. He received his PhD in
Computer Science from Wuhan University in 2002. He is currently an
Associate Professor at the School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China. His research
interests include digital media processing and retrieval, multi-core
programming environment.

Haitao Wei, Junqing Yu, and Jiang Li

ComSIS Vol. 7, No. 1, Special Issue, February 2010 200

Jiang Li: was born in 1984. He got his master degree from Huazhong
University of Science and Technology in 2008. His research interests include
digital media processing and parallel computing.

Received: May 02, 2009; Accepted: August 13, 2009.

