
ComSIS Vol. 1, No. 1, February 2004 1

The End of Software Engineering and the Start of
Economic-Cooperative Gaming

Alistair Cockburn, Humans and Technology

Abstract. "Software engineering" was introduced as a model for the field
of software development in 1968. This paper, reconsidering that model in
the light of four decades of experience, finds it lacking in its ability to
explain project success and failures, predict important issues in running
projects, and help practitioners formulate effective strategies on the fly.
An alternative underlying model for software development is presented:
Software development as a series of resource-limited, goal-directed
cooperative games of invention and communication. The primary goal of
each game is the production and deployment of a software system; the
residue of the game is a set of markers to assist the players of the next
game. People use markers and props to remind, inspire and inform each
other in getting to the next move in the game. The next game is an
alteration of the system or the creation of a neighboring system. Each
game therefore has as a secondary goal to create an advantageous
position for the next game. Since each game is resource-limited, the
primary and secondary goals compete for resources. The cooperative-
game model provides the benefits that the software engineering model
misses: It raises to the proper priority level issues crucial to successful
software projects; it explains how teams with messy-looking processes
sometimes outperform others with tidier processes; and it helps busy
practitioners decide how to respond to unexpected situations. Finally, it is
seen that much of engineering in the general belongs in the category of
resource-limited, cooperative games.

1. Introduction

Software development is not "naturally" a branch of engineering. It was
proposed as being a branch of engineering in 1968 as a deliberate provocation
intended to stir people to new action [Naur-Randell]. As a provocation, it
succeeded. As a means for providing sound advice to busy practitioners,
however, it cannot be considered a success. After 35 years of using this model,
our field lacks a notable project success rate [Standish], we do not find a
correlation between project success and use of tidy "engineering" development
processes [Cockburn 2003a], and we do not find practitioners able to derive
practical advice to pressing problems on live projects.

One might defend the software engineering model by asserting that this is
due to our not yet doing enough "software engineering." However, project
debriefings show that some very messy-looking projects succeed quite nicely

2 ComSIS Vol. 1, No. 1, February 2004

while many process-oriented projects fail quite badly. Opposites of both occur
as well, making it difficult to see what does correlate with project success.
Whatever does correlate with project success, it does not appear to be tidiness
of the process, or the amount of "engineering" used [Cockburn 2000a, 2003a].

As a term, "software engineering" fails a crucial test, that of suggesting good
actions to the busy practitioner. If told to "do more software-engineering" on
their current projects, would project managers, executives, programmers and
testers
• produce similar interpretations of this phrase?
• be correct with respect to what the term software engineering really calls for?
• produce good advice for the project at hand?

When I ask people what it would mean for them to "do more software-
engineering," they usually return a blank look. The answer, when if comes,
usually involves their doing more intense modeling of the system to establish a
priori its correctness and verisimilitude (match to the real world), spending
more time on estimation of cost and time, and in general looking to construct a
software equivalent to mass-production manufacturing facilities. As discussed
below, these are not actually what is called for in engineering at all, and worst
of all, they are often not good strategies for leading the project to success.

The failure of the software engineering model leaves our field needing an
underlying model that
• explains why successful projects succeed and failing projects fail,
• intrinsically names topics known to be important to project success, and
• leads the person on a live project to derive sensible advice as to how to

proceed.
In this paper, I describe a new model for software development: A series of

resource-limited, goal-directed cooperative games of invention and
communication. The new model explains historical data, can be converted
intuitively by people on projects into meaningful strategies, identifies a lexicon
of terms that correlate well to project success and failure, and points to future
topics of research for our field as well as pointing to what results to borrow from
other fields.

The primary use of the new model is in creating strategies for managing
software development. It defines the space for, without completing, an adjunct
model that should cover the thought processes of the designer-programmer
while creating and manipulating the design and expression of the program.
This adjunct model, which may derive from craftsmanship [McBreen], will have
a natural fit into the framework created by the economic-cooperative game
model.

The paper is structured in five sections:
Section II, Cooperative Games, breaks apart the terms in the cooperative

game model, showing their relation to software development projects. The new
model is presented first in order to highlight concepts that are important to have
in view when reviewing the historical record.

Section III, Software Engineering, examines the origin of the term software
engineering, discusses the failure of the term to either correlate to project

ComSIS Vol. 1, No. 1, February 2004 3

success or to offer good advice to busy practitioners, and presents project
experience reports that are anomalous to the software engineering lexicon but
natural in the cooperative game lexicon.

Section IV, Engineering in Action, reexamines engineering itself, showing
that if the term engineering were properly interpreted, then the term software
engineering would have a very different connotation today. Engineering is seen
also to be an economic-cooperative game of invention and communication.
The poisoning of the term "engineering" after WWII can be seen to contribute
to the failure of the term "software engineering."

Section V, Future Research, looks at how the cooperative game lexicon
points to research topics for our field.

Section VI. Summary, recapitulates the essential points of the paper.

2. Cooperative Games

Viewing software development as a "series of resource-limited cooperative
games of invention and communication" meets the objectives for an underlying
model of our field:

• It lets us make sense of historical successes and failures.

• It names at the top priority level a set of topics that are known to be important
to project success but do not normally have a place to live in discussions of
software development, topics such as community, amicability, morale, talent,
trust, proximity, and sufficiency.

• It offers immediately usable advice to people busy on live projects.
Let us look at the core concepts arising from the model and how they relate

to successful software projects.

Games, Cooperative Games, Series' of Games

Although the Miriam-Webster dictionary defines game only as "an activity
engaged in for diversion or amusement" [Webster], the term has grown
considerably in scope over the last century. Some managers resist the idea of
software development as any kind of 'game' because, as one manager
retorted, "We are not here for amusement". Managers obviously do not want
frivolous, non-productive use of time on their projects, for reasons that will
become more clear as we examine the economically overconstrained game
that is software development. While fun generally is implicit in common uses of
the term (and, indeed, it is a good thing to find people having fun on a project;
see the discussion of morale below), "games" are no longer only about
frivolous or non-productive activities.

4 ComSIS Vol. 1, No. 1, February 2004

The range of what currently falls into the category of games is so broad that
it is very difficult to find something in common across all of them. Wittgenstein
[1953] discusses rule following as essential to the concept, in that a 'game'
ceases to exist at the moment the players decide to stop following its rules (a
game is therefore a voluntary activity to the extent that the players have the
choice to act in another way). Games consist of "moves" toward or away from
some target, with some sort of measurement against the distance from the
target.

Some games are solo, some are group-based. Some center around
achieving a goal, while others center on interactions between the participants.
Some only last minutes or seconds, while others last years, even lifetimes. In
finding a home for software development, I find three categorizations of a game
useful:

• It may be finite or infinite in nature.

• It may be competitive or cooperative.

• It may be terminated after a goal is achieved (including time-termination of the
game), or it may have no distinct endpoint (it just ends whenever it ends).

The purpose of an infinite game is to keep playing the game [Carse].
Individuals, organizations and countries play infinite games of survival.
Individual people play the infinite game of managing their careers (they may act
to enhance their market value at the expense of the project). Government
contractors arrange and rearrange staff on any one contract, possibly creating
sub-optimal results for that contract, as moves in an infinite game of obtaining
more contracts. It can be seen that these infinite games interfere with optimal
play of a single project, and the project leaders have to contend with that
interference as part of their project strategy.

Among finite games, some come to an end as soon as a goal is achieved,
others come to an end just whenever they happen to stop. Within each
category, some are competitive, others are cooperative. Tennis and chess are
competitive, goal-terminating games. The children's game "king of the hill"
(fighting to defend the top of a hill from the other children) is competitive but not
goal-terminated. The children keep playing after, and particularly after, one of
them becomes the new king of the hill. They stop only when it gets too dark to
continue or they are called in. Poker is similarly a competitive game with an
arbitrary ending point. In the open-ended cooperative games category we find
jazz music and dancing. In both these cases, people focus on the quality of
their interactions and the group performance, and the game stays in play for as
long as the people decide to keep going.

The category remaining is the goal-directed cooperative game. In this
category we find rock and mountain climbing, exploration expeditions of all
sorts, theatre, and software development. The terminating goal for rock
climbing is reaching the top of the cliff face; it is with respect to that that the
team first evaluates its efforts. After that, they ask whether it was a good climb,
or a pleasant one, or an interesting one. First and foremost, though, the team
needs to complete the climb.

ComSIS Vol. 1, No. 1, February 2004 5

A software project has much in common with rock climbing. The primary
goal is to deploy the system. It is with respect to this goal that the team is first
evaluated. After that, one may ask whether it was a fun project, or well-run, or
the program is aesthetic or maintainable. If the team does not deliver the
software, however, the project is generally considered a failure. (Note: it is
possible – and often a good idea – to abandon the game or project in the
middle when detecting that the goal no longer worthwhile.)

One notable difference between software projects and rock-climbing is that
software projects come in series and build upon each other in ways that
climbing trips do not. In software, a team will alter the deployed system, or
develop an adjacent system that interfaces with it.

Thus, unlike a rock-climbing trip, a software project has two goals:

• To deliver the system;

• To set up for the next game.
The full evaluation of the project therefore includes, first, whether the

system was delivered, and second, to what extent an advantageous position
was created for the next game.

These two goals compete for resources. The team can deliver the system
more quickly if the system will not have to be extended in the future. (It can
deliver the system much, much sooner if bugs will not have to be fixed!) Or, the
team can set in place a better software architecture and more training and
documentation for their successors at the expense of delaying or even
preventing the current delivery.

Since project teams are limited in time, money, and people, it is not possible
to perfect both goals. Most project teams are happy to achieve the first goal
and any modicum of the second. Even project teams having extensive
resources find the second goal to be is essentially unbounded in scope. In
general, a team can at best hope to deliver an acceptable system in a named
time-frame, with acceptable but imperfect preparation for the future games.

To understand the shift of strategies that occurs when working with games
series', let us construct and examine another resource-limited cooperative
game. Imagine a race across an uncharted swampland in which some
particular (unknown) artifact must be produced at some particular (unknown)
place in the swamp. A team in this race would employ scouts and specialists of
various sorts, and would create maps, route markings, bridges and so on. They
would not, however, construct commercial quality maps, roads or bridges,
since doing so would waste precious resources. Instead, they would estimate
how much or little of a path must be cleared for themselves, how strong to build
the bridge, how fancy of markings to make, how simple a map, in order to
reach their goal in the shortest time.

If the race is run as part of a series, there will be new teammates coming
after them to pick up the artifact and move it to a new place. The first team will
therefore be well served to make slightly better paths, maps and bridges,
always keeping in mind that doing this work competes with completing the
current stage of the race. They also will be well served if they leave some

6 ComSIS Vol. 1, No. 1, February 2004

people who understand the territory to be part of the next team. Thus, the
optimal strategies for a series of races are different than for a single race.

There is no closed-form formula for winning the game. There are only
strategies that are more useful in particular situations. That realization alone
may be the strongest return for using the economic-cooperative game
language: people on live projects see that they must use their minds at all
times to observe the characteristics of the changing situation, to collect known
strategies, to invent new strategies on the fly; and that since a perfect outcome
is not possible in an overconstrained situation, they much choose which
outcome to prioritize at the expense of which others.

Cooperating and Communicating

If we ask what software development actually consists of, we find that it
consists of people inventing and communicating,
• solving a problem that they do not fully understand, which keeps changing

underneath them,
• creating a solution that they do not fully understand, which also keeps

changing underneath them, and
• expressing their thoughts in artificial languages that they do not fully

understand and that also keep changing underneath them, to an interpreter
that is unforgiving of error,

• where every choice has economic consequences, and resources are limited.
That is, software development is a resource-limited, goal-directed

cooperative game, whose moves consist of invention and communication. The
people who are inventing, manipulating and communicating information must
move that information across multiple heads in order to produce the solution.

This means the speed of the project is to a very large extent proportional to
the speed at which information moves between people's heads (the abilities of
the people on the team make up most of the rest). Every obstacle to detecting
and moving information between heads slows the project. Understanding and
attending to this issue is essential to playing the game effectively.

The following terms are elements of the cooperative game lexicon, and are
concepts that help people both understand and steer projects:
• Ability, a combination of talent and skills development. Raw talent provides

the ability to invent better solutions or see patterns faster. People can
increase their skills in an area according to their talent. The combination of
talent with developed skills produces a person's ability in an area. Teams
with greater ability in key areas have the potential to do better (whether they
actually will do so depends on their strategies, as well as issues of
community, communication, and motivation).

• Community, involving amicability, trust, morale and shared experience.
Amicability is "the willingness to listen with good will." As amicability
decreases, people withhold information from each other or do not listen
when provided information. Amicability is fed by trust and morale. Some

ComSIS Vol. 1, No. 1, February 2004 7

people are initially trusting, and have high trust until they are hurt. Others are
initially untrusting, and will only reach high trust after many demonstrations
of competence and non-damaging behavior by the people around them.
Their experiences as a group feed their ongoing trust, morale and amicability
levels [Brown] [Tyler].

• Communication, based on shared vocabulary, proximity, and communication
technologies. The team members' shared experiences give them not only a
basis for trust, but also a vocabulary of references that they use to speed
their communication. Communication involves not only deliberate but also
accidental signaling of information, as comes from worried, happy, or relaxed
body expressions. The closer people are physically, the more verbal and
non-verbal cues they pick up from each other, which speeds the
communication. As they move farther away, the greater the role of
communication technologies in simulating proximity and the more inventive
they have to be in using it (see, for example, [Herring]).

• Individuals. With hundreds of thousands of software development specialists
now in the world, statistical characteristics apply to general ability levels
available. However, software development is an activity of building and
passing along understanding, which is sensitive to the chemistry between
individual pairs of people and within groups of people. Thus, on any one
project, people operate and must be managed at the level of individuals. On
any given day, they are individuals in action, as opposed to roles in action.

It is easy to think that "communicating a design" is nothing more than
capturing its current shape in a particular descriptive format, such as the
Unified Modeling Language. However, communication is not mere
"transmission of information" [Maturana]. Communication, which may be
thought of as "touching into a shared experience" with another person
[Cockburn 2002a] takes forms that depends on the experiences shared
between the individual people involved. People who have worked together
before communicate through abbreviated references to previous designs and
previous situations. Those with only a broad common understanding of
algorithms and design patterns communicate more laboriously through
references to those algorithms and design patterns. The remainder are
reduced to using simple alphabetic documentation forms such as UML or
comments in the code.

As Peter Naur showed in his discussion of "Programming as Theory
Building" [Naur] what must be transferred is understanding, which is not
conveyed through documentation languages and design snapshots, but is built
internally by each person individually, based upon their previous knowledge.
Conveying understanding is aided by showing what had been but got changed,
what was rejected, and the rationales involved. This often requires direct
dialogue between the people.

Since communication happens through every perceptible body movement of
each participant, it happens faster when line-of-sight and multiple modalities of
communication, such as gesturing, speaking, drawing, and moving, are
available [McCarthy] [Cockburn 2002a]. Thus, in a resource-limited game of

8 ComSIS Vol. 1, No. 1, February 2004

intensive communication, a superior strategy will often be to let people talk to
each other in the same room, and photograph whiteboards or videotape their
discussions, managing to be at once faster, richer, less expensive, and better
suited to conveying understanding [Olson].

Interestingly, in playing this constantly shifting game, even contrary
strategies become appropriate on occasion; see for example the Cone of
Silence strategy for an example of deliberately making communication more
difficult [Cockburn 2003b].

Inventing

Invention is required at every level of the game. Users invent what they
believe will prove useful in their future work, developers invent designs, testers
invent tests for the system, managers invent overall project strategies for
shifting situations.

Some work has been done on invention techniques: brainstorming
techniques [Bordia], paper-based prototyping for user interface design [Ehn]
[Snyder], CRC cards for object-oriented design [Beck], or simply discussing
ideas at whiteboards, possibly using standardized design notations during
discussions [Ambler]. There are some non-obvious factors in setting up
invention environments, such as concealing the relative social status of the
participants in order that ideas not be unduly promoted or tainted by knowledge
of the suggestor's social rank [Bordia] [Weisband] [Markus]. More research of
this sort is needed.

During invention, people use specialized props and specific communication
modes so that ideas in their minds become externally available for examination
by themselves and others. That may call for informal props such as flipcharts,
drawn timelines, index cards or sticky notes, or it may call for formal graphs,
tables, and models. It is important to note that these items are transient: the
value they provide is during the session. Archiving them for future use is a
separate strategy in the economic game of communication. People often
conflate these transient props with the more permanent markers used to
remind or inform.

Props and Markers

A person may create a prop to help in making a move, or may create a
marker for the next person (who might be him- or herself some time later).
Each prop or marker has one of three functions and optimal forms:
• To remind the participants of something they decided or discussed. This is

communication to themselves in the future. Photographs of whiteboard
discussions, rolled up flipchart drawings, napkins from restaurants and the
like are very effective, not just because they are inexpensive, but also
because the very imperfections in the materials serve to bring to mind the

ComSIS Vol. 1, No. 1, February 2004 9

context of the earlier discussion. Obviously, the material conveys less
information to people who were not present. Knowing that the purpose of
these markers is only to remind themselves, the team can decide to use very
rough and inexpensive markers for this purpose. Agile software development
approaches [Highsmith] emphasize the use of these sorts of inexpensive
reminder markers.

• To inspire a new thought in the participants. This is the invention or
exploration component. Tactile props, such as paper-based user interface
prototypes [Snyder], CRC cards [Beck], brainstorming cards, even stuffed
animals, are intended to stimulate new neural connections in the handler
through the involvement of multiple modalities. Visual-analytical props, which
include simulation outputs, graphs charts, specifications, and analytical or
descriptive (UML-type) models allow the handler to examine and reflect on
the state of their current understanding. Not intended for communicating
across time, the results of the exploration session must be recast into a
reminder form. Just which reminder form to cast them into is an economic
decision. The team decides after each session for whom, for what purpose
and how to retain the results.

• To inform a newcomer. This marker in intended to bring the newcomer some
distance toward the group's total understanding of the situation. It is not
possible to bring the person to a complete understanding of the situation
[Naur] [Cockburn 2002a], so the economic decisions to be made are how
much time to spend on constructing it and how much information to try to put
into it. This is the most expensive marker, since the newcomers have the
least amount of shared understanding with the rest of the team. The marker
has to bring them from a more remote starting point, using a more generic
set of references. The software engineering field has traditionally
emphasized the informing category of marker, with an eye to allowing total
staff changeover.

Team Evolution in the Game Series

Markers include people as well as artifacts. The richest marker a team can
leave in place for the next team is a person from the previous team, who can
inform the new participants in ways and with efficiencies that no artifact can
match. For just this reason, it is a common strategy to leave some number of
people from the former team in place for the next game. Without those people,
informing the next team is generally too expensive and too slow for the
economics of the next game.

Occasionally, a group of people works through the strengths and
differences of the various individuals involved, and becomes a "jelled" team
[DeMarco].

There are several reasons to keep jelled teams intact.
• They have an internal memory of the paths taken, and so require much

smaller set of reminding markers and very little in the way of informing
markers, thus saving on marker-construction costs.

10 ComSIS Vol. 1, No. 1, February 2004

• They have developed very rich shared experiences, so their communication
is very much faster than another group.

• Finally, they have sorted out their issues of community and trust, which each
new team must work through as part of learning to work together.

It is tempting for the manager to split the team into pieces so that each
person can "communicate" to other teams whatever it is that the team had
learned. Doing this operates from the idea that one person can "seed" other
teams or that it is possible to "graft" one piece of a team onto another, as one
does with a tree or vine.

However, playing the analogy game, a jelled team is not so much like a
plant as it is like a racehorse, all of whose parts have slowly been brought to
optimal function. Transferring a person from one team to another is therefore
more like cutting off one of the racehorse's legs and grafting it onto a second
horse. Experienced managers recognize that each group of people must work
through their individual issues of personality and community themselves, in
order to build their own communication pathways and shared experiences.

Maintaining a working team while introducing new people into it is a third
overconstrained problem facing the manager. A manager might introduce new
people onto the team in a slow stream, or according to the Progress Team /
Training Team (alias Day Care) strategy [Cockburn 1998], so that each person
can come to know the workings of the community without disrupting the others.
Or the manager might use an apprenticeship model, such as pair programming
[Williams] allowing efficient, person-to-person mechanisms to inform the new
person about the project's situation.

The inevitable economic tension comes from the degradation of
understanding that occurs with each change in team members, placed against
the need to allow changeover of the team. Reminding-markers are optimal as
long as the same team stays in the game, informing-markers are critical if there
will be a drastic team change. Over the course of a few games, the
organization may be able to keep the same team in place, but eventually there
will be no one left from the original team. Thus, it is generally faulty strategy to
use only reminding markers or only informing markers, just as it is generally
faulty strategy to use only artifacts or only people as informing markers. The
organization's executives and the team have to choose between various
imperfect solutions to this problem.

Sufficiency-in-Communication

Software development is resource-limited and overconstrained in several
dimensions:
• Delivering the system soon and inexpensively competes with creating an

advantageous position for the next game.
• Creating inexpensive markers competes with creating them to work for a

wider range of new people.
• Keeping the team intact competes with introducing new people.

ComSIS Vol. 1, No. 1, February 2004 11

• Using a smaller number of highly qualified people (with lower communication
costs) competes with using more people of more average capability.

A project is always off balance in one of these dimensions. While making
maximum forward progress, the team reduces documentation or training; while
bringing the documentation up to date or training new people, it reduces
forward progress. A static equilibrium, so often sought, is not possible. There is
at best dynamic equilibrium, where each move corrects one out-of-balance
quality by putting some other quality out of balance. The team is continually
playing a game of brinkmanship with its resources, producing results that are
adequate or sufficient with respect to their respective purposes.

The effective game player recognizes that a model or piece of
documentation need not be complete, current or even correct to be useful. A
reminding marker need only be sufficient to remind the recipients, a prop need
only be sufficient to allow people to create an interesting next move, and an
informing marker needs only to be sufficient to allow the new person to ask a
good question or look at another informing marker. "Adequate" is a fine
condition for a communication device if the team is in a race and short on
resources.

The notion of sufficiency-in-communication allows us to explain the success
of many projects that succeeded despite their "obviously" incomplete
documents and sloppy processes (several examples of which are presented in
the next section). They succeeded because people made good choices in
stopping work on certain communications as soon as they reached sufficiency,
and before diminishing returns set in.

This is the second place where busy practitioners get usable advice from
the cooperative game model. Weighing the cost of alternatives, people on live
projects understand they must choose which activities to amplify and which to
stop, given their current position and priorities. They shift their requests. They
accept that design documents can be hints into the code, instead of up-to-date
with the code They use the project plan for strategizing, rather than expecting it
to always match the current state of the project. They ask the requirements
gatherers to capture just enough information to communicate to the specific
designers present on the project (as opposed to some idealized set of
designers). They replace typing with faster communications, such as visits in
person or short video clips. Above all, they make different choices depending
on whether the designers are expert and sitting close by each other, or novice
and working in different time zones; whether the system is likely to kill someone
if it fails, or just cause inconvenience [Cockburn 2000b].

In theory, their choices will take into account the needs of both the current
game and the following games. However, it often happens that the people
making these decision are those accountable for delivering this and only this
system. They naturally optimize for the current game at the expense of the
succeeding game (which is a good strategy over a short number of games, but
eventually self-destructive). The cooperative game model offers a response to
this fallibility – in order to protect the interests of the succeeding games, a
decision-maker should be present who both has a direct influence on the
present game and a direct interest in the outcomes of the succeeding games.

12 ComSIS Vol. 1, No. 1, February 2004

Whether such a person actually is present is just another aspect of playing the
game well or poorly. The game concept does not prevent a group from playing
poorly; it does provide an explanation of what constitutes better or worse play.

Economics and Games

Casting software development into the language of economically limited
cooperative games brings into play fields of research not normally not
associated with software development, particularly economics and options-
trading theory. Some limited work has been done in viewing software decision-
making through options trading and financial planning [Sullivan] [Denne]
[Reinertsen] [Cockburn 2002b]. Informatics researchers should make these
results relevant to practical project management – in raw form, they are out of
reach of the average practitioner. Economic theory targeting choice-making
under imperfect circumstances is a promising but still untouched area waiting
to be investigated in the context of developing software.

Precursors: Pelle Ehn's Language Games

In 1988, Pelle Ehn built upon Wittgenstein's notion of "language games"
[Wittgenstein] to develop the idea of software development as a language-
game itself [Ehn]. To Ehn, that ongoing language-game involves not only
verbal communication, but also activity-based communication, specifically
learning-by-doing and communicating-by-doing. Ehn describes software
development as making moves in this language-game to evolve a common
understanding of the forthcoming system. He discusses artifacts as markers,
including both the final system as well as intermediary design artifacts as
markers. He writes (his italics):

Every move in the language-game of designing is a local experiment,
where the initial moves often must be reframed, as the changed situation
most often deviates from the initial appreciation. . . . In the conversation
with the materials of the situation, the designer can never make a move
that has only intended implications. The design material is continually
talking back to him. This causes him to apprehend unanticipated problems
and potentials, which become the basis for further moves. (p. 230).

Artifacts can support both communicative and instrumental activities . . .
toward other humans or towards 'objects.' (p. 162)

In the language-game of design we use these artifacts as reminders and
paradigm cases for our reflections on future computer artifacts and their
use. The use of design artifacts brings earlier experiences to out mind and
it 'bends' our way of thinking of the past and the future. . . . this is how
they 'inform' our practice. If they are good design artifacts, they support
good moves within a specific design-language-game. (pp. 109-100)

ComSIS Vol. 1, No. 1, February 2004 13

. . . models of computer systems architecture, information system models,
program specifications etc. . . . These kinds of artifacts support reflection.
(p. 169)

. . . prototypes, mock-ups, scenarios with role playing, etc. . . . also allow
for involved practical experience, not just detached reflections. . . . they
can be used as reminders or paradigm cases . . of practical
understanding. (p. 169)

Recognizing the impossibility of perfect communication between people,
Ehn primarily focuses on the communication between developers and
users of a system:

. . . paradoxical as it sounds, users and designers do not really have to
understand each other in playing language-games of design-by-doing
together. Participation in a language-game of design and the use of
design artifacts can make constructive but different sense, to users and
designers. (p. 118).

. . . it is hard to see how we as designers of computer artifacts for page
make-up could manage to come up with useful designs without
understanding how the knife is used or what counts as good layout. For
this purpose, we had to have access to more than what can be stated as
explicit propositional knowledge. This we could only achieve by at least to
some extent participating in the language-games of use of the artifacts. (p.
116)

Hence, what designers (and users, I would like to add) do and know, to a
great extent has to be experienced in practice, not for some romantic or
mystical reason, but because it is literally indescribably in linguistic terms.
(p. 214)

Ehn's ideas are clearly source to, and an intrinsic part of the cooperative
game concept described in this paper. However, even though he writes,

The rule-following behavior of being able to play together with others is
more fundamental to a game than explicit regulative rules. Playing is
interaction and cooperation (p. 106),

he does not develop the economics of the cooperative and group
communicative aspects of the language-game, the fact that a team consists of
multiple minds using multiple languages, all out of sync with each other. Not
only does each move in the game involve multiple people, but there is an cost
to pulling the minds closer (but never fully) together. Also missing in his
explication is the notion of achieving a goal. The team is not simply "getting
together to design" or to "build language"; the team is charged with producing
something specific in a time-frame.

If we add three elements to Ehn's language-game concept,

• the goal-directedness of the assignment,

• the economic constraints, and

14 ComSIS Vol. 1, No. 1, February 2004

• minds separated by experience and distance,
we derive the economic-cooperative game model of this paper.

Cooperative Gaming at the 1968 NATO Conference

The term "software engineering" was coined for the 1968 NATO Conference
on Software Engineering [Naur-Randell]. We look at their construction of the
term in the next section, but it is useful here to extract from those proceedings
a few sample quotes that illustrate to what extent they were already referencing
the above concepts.. Here are sample statements from attendees at that
conference, marked with terms from the lexicon:

Individuals: "I would never dare to quote on a project unless I knew the
people who were to be involved." (Fraser, p. 50)

Communication: "We could use more and better and faster
communication in a software group as a partial substitute for a science of
software production. We cannot define the interfaces, we do not really
know what we’re doing, so we must get in a position where we can talk
across the interfaces. (Buxton, p. 53) [Ed. note: compare with the
description of talking across interfaces at Lockheed's Skunk Works
engineering facility, in Section IV]

Communication and communication technologies: "An attack on the
problem of communication is crucial for successful production. We are not
using automation (remote consoles, text editing, etc.) as much as we
should." (Gillette, p. 53)

Amicability: ". . . if I’m setting up a software group to carry out a project
I’m extremely careful that all the people working on it are close personal
friends, because then they will talk together frequently, and there will be
strong lines of communication in all directions. One in fact uses personal
relationships to support technical communication." (Buxton, p. 53)

Shared experience: ". . . if I were suddenly to recruit you lot and form a
rather good software house it would be excellent publicity, but it would not
actually work. It certainly wouldn’t work at first, because you do not have a
sufficient level of communication. One way to obtain this is by a
commonality of experience. This is a major difficulty because it leads
exactly to the point made by Buxton. It encourages you to work with your
friends. But you have to remember that those who are incompetent find
each other’s company congenial." (D’Agapeyeff, p. 55)

Detecting information: "It is relatively easy to set up a communication
system, manual or automatic, which will let me find information that I
already realize I need to know. It is more difficult to make sure I also get
information which I need, but of whose very existence I am ignorant."
(Randell, p. 55).

ComSIS Vol. 1, No. 1, February 2004 15

Detecting information: (An unintended response to Randell's problem)
"There was a fourth communications mechanism which every project has,
and which perhaps does not get encouraged as much as it should be.
There are certain people in any organization who are remarkably effective
at passing gossip. Many of the potential troubles in a system can be
brought into the open, or even solved, by encouraging a bit of gossip."
(Fraser, p. 55)

Strategies in unknown territory: "Only one thing seems to be clear just
now. It is that program construction is not always a simple progression in
which each act of assembly represents a distinct forward step and that the
final product can be described simply as the sum of many sub-
assemblies. (Fraser, p. 11)

3. Software Engineering

To understand the failure of the software engineering model and the need to
replace it, we need to understand how that model originated, where it fails, and
what anomalies need explaining by the new model.

The 1968 NATO Conference and Software Engineering

The software engineering model came as a "provocative" action in
chartering the 1968 NATO Software Engineering Conference [Naur-Randell]. In
the words of the conference organizers:

1. BACKGROUND OF CONFERENCE
. . .
In the Autumn of 1967 the Science Committee established a Study Group on
Computer Science. The Study Group was given the task of assessing the
entire field of computer science, and in particular, elaborating the
suggestions of the Science Committee.

The Study Group concentrated on possible actions which would merit an
international, rather than a national effort. In particular it focussed its
attentions on the problems of software. In late 1967 the Study Group
recommended the holding of a working conference on Software Engineering.
The phrase ‘software engineering’ was deliberately chosen as being
provocative, in implying the need for software manufacture to be based on
the types of theoretical foundations and practical disciplines, that are
traditional in the established branches of engineering. (p.8)

Despite having the term as a focal point for the conference, the participants
showed little understanding of either the term "software engineering" or
engineering in general, and provide little guidance as to just what readers are

16 ComSIS Vol. 1, No. 1, February 2004

supposed to infer from the term "software engineering." Alan Perlis' keynote
speech contains the following:

This is the first conference ever held on software engineering and it
behooves us to take this conference quite seriously since it will likely set
the tone of future work in this field in much the same way that Algol did.
We should take quite seriously both the scientific and engineering
components of software, but our concentration must be on the latter.
(p.78)

Unfortunately, that is all he offers on the intention of the term. We pick from
the following sentence the hint that making people interchangeable is a core
part of its success criteria.

Stability in our goals, products and performances can only be achieved
when accompanied by a sufficient supply of workers who are properly
trained, motivated, and interchangeable. (Perlis, p. 79)

Ross offers the following thought on why software development is
"engineering":

I agree very strongly that our field is in the engineering domain, for the
reason that our main purpose is to do something for somebody. (Ross,
p.74)

Since all of volunteerism is about "doing something for somebody," the
above sentence does not advance our understanding much. We would not
want for all volunteer activities to be brought inside the engineering discipline. It
is possible that Ross was thinking of the dictionary definition of engineering
("the application of science and mathematics by which the properties of matter
and the sources of energy in nature are made useful to man" [Webster]).
However, that definition runs into a problem straight away, since programming
is not about harnessing the "properties of matter" nor the "sources of energy in
nature."

David introduces the "utility" aspect of engineering:
Software engineering and computing engineering have an extremely
important and nice aspect to them, namely that people want to work on
things that meet other people’s needs. They are not interested in working
on abstractions entirely, they want to have an impact on the world. This is
the real strength of computing today, and it is the essence of engineering.
(David, p.74)

David also worries about the direction that engineering education is taking:
Incidentally, I think that a lot of engineering education in the United States
is stuck in the mud. (p. 74).

We shall see, in Section IV, "Historical Origins of the "Engineering Myth',"
why he might feel this way.

In short, the conference attendees were not asserting that software
development is actually engineering (whatever that might mean), but rather,
they presuppose that it will be fruitful to consider software development as
engineering, for whatever benefits that might bring.

ComSIS Vol. 1, No. 1, February 2004 17

Their provocative phrase has had a good run of 35 years. It is quite
reasonable that after this length of time we reconsider whether it really is the
most appropriate and fruitful term to use for our practitioners' activities.

Failure of "Software Engineering" in the Present Day

If the term they coined in 1968 had performed properly, we should be able
to find after 35 years of use that

• people in the industry have a similar interpretation for what the term
intends;

• the interpretation provides good advice on live projects; and

• the correct application of the term correlates to more successful projects.

I find people using the term "engineering" to mean
• building models [SEED].

• looking up the answers in code books.

• balancing design trade-offs in the face of conflicting demands.

• predictable and repeatable methods and outcomes.

• that a project runs like a modern factory with statistical controls.

• "the application of science and mathematics by which the properties of
matter and the sources of energy in nature are made useful to man"
[Webster].

The model-building interpretation was put in strongest form by Ivar
Jacobson as, "software development is model building" [Jacobson, public
talks]. This view carries with it the implication that the more model building one
is doing, the greater the completeness and verisimilitude of the model, the
better a job one is performing. In this interpretation, lots of model building
should correlate to project success. Experience runs to the contrary, however.
One experienced designer raised the appropriate objection this way,

"I feel when I start modeling that I am doing something useful. However,
after a time, I find that I am fiddling with the model, not making real
progress, and it is never clear when I passed the point of diminishing
returns. Nobody ever talks about when I should stop modeling." (Colaizzi,
private communication)

In other words, building models may be useful, but also may be
counterproductive. How is a person to decide which? The term "software
engineering" does not give a useful clue in the way that sufficiency-in-
communication does.

Several of the interpretations of the term "engineering" confuse the activity
of doing engineering with the results after having done engineering. People
often mean, "Make software development more like running a factory, with

18 ComSIS Vol. 1, No. 1, February 2004

statistical quality controls." However, running the factory is not the act of doing
engineering, it is what comes after the engineering activity is finished.
Designing the plant was the act of doing engineering, and it was a creative act,
fundamentally non-repeatable and very sensitive to the characteristics of the
people doing the work.

Nor is the dictionary definition useful. Converted to verb form, it advises us
to "apply more of science and mathematics." Indeed, it is clear that a portion of
software development depends on mathematics, and early efforts in software
engineering did usefully revolve around maximizing the contribution of
mathematics to solve programming problems. This work led to efficient
algorithms for searching, sorting, encryption, distributed control and compiler
generation among others. The mistake lies in thinking that software
development is mostly mathematics. It may well be that the role of mathematics
in software development has passed its peak.

The phrase, "do more software-engineering," besides generating confusion,
seems mostly to generate guilt. People are sure they have not done enough of
something, without being clear as to what that something is. This notion of guilt
was vividly illustrated in a recent interview with a programmer I'll call NJ, one of
two programmers in a four-person company. He asked me for help in
discovering what they needed to do more of in their development methodology.
Here is an approximate transcript of our discussion:

NJ: I think we're not doing enough of something, but I do not know what.

AC: Are you getting software out every few weeks or each month?

NJ: Yes.

AC: How are the bugs – are the bug counts high?

NJ: No, they're fine.

AC: What about the company owners – are they happy with the rate of
progress and what they see being delivered?

NJ: Yes.

AC: Are there any particular problems that you can see now, or in the
near future, either with the software, its quality, or the documentation you
have for it?

NJ: No.

AC: If there is nothing wrong with the way you are working, why are you
asking for something to change?

NJ: It just seems too simple. I feel like we should be doing something
more, and I thought you could tell us what we're not doing enough of.

We as a community do not know what the term "software engineering"
means after 35 years. Without that common understanding, it is of course hard
to get people to do more of it.

ComSIS Vol. 1, No. 1, February 2004 19

Nor has project success become standard over the years, despite 35 years,
establishment of "software engineering" as a valid university curriculum around
the world, and the creation of the Software Engineering Institute. The Standish
Report of 2003 indicates a success rate of only 34% of projects, with 15%
outright failures and 51% of project in what they consider the "challenged" state
[Standish]. In my own comparisons of projects [Cockburn 2000a, Cockburn
2003a], I found that

• almost any process can be made to work on some project;

• any process can manage to fail on some project;

• heavy processes can be successful,

• light processes are more often successful, and more importantly, the
people on those projects credit the success to the lightness of the
process.

The software engineering model does not predict the high success rate of
lightweight (low-ceremony) process and the low success rate of very-high-
ceremony process. Obviously, poor management is a non-methodological
factor of greatest significance, but even normalizing for that does not give
meaningful predictions.

Explaining Anomalies

Many experienced developers are not surprised by the above results. It is
exactly that lack of surprise that deserves investigation. What is the
experienced developer looking at to gauge the likelihood of success of any
given project, if not similarity to "engineering"?

In 1991, I began interviewing and debriefing project teams as part of
constructing a new methodology for the IBM Consulting Group. In each
interview, I asked people at several different levels of control (project manager
and programmer, for example) what they had done, what they thought worked
well for them, what they would do differently, and what their priorities were
[Cockburn 1998, Cockburn 2003a]. What caught me most by surprise was that
they did not talk much about the subjects I had expected them to, particularly
modeling tools, and modeling in general. In fact, those tended to be the items
they put lowest on the list of priorities [Cockburn 1998].

Instead, I encountered sentences that did not make any sense to me at the
time I wrote them down. One successful leader said:

"Give me a maximum of four people working in one big room, and access
to our users and we'll deliver software to them every month or two. That's
all I need. If you make me have more people, I could use eight people in
two rooms. But not more."

It is tempting to suggest that this person is not a competent manager, being
unable to work with more than eight people. But that is not what he is
expressing. He is describing what does work, at least for him.

20 ComSIS Vol. 1, No. 1, February 2004

Another sentence that took a long time for me to notice was the reference to
pride-in-work:

"I mean, it works. It's not broken. But it's not as though I drive home
feeling proud of the work I've done during the day."

However, the sentence that kept showing up and eluded my understanding
was this one:

"At key moments, a few key people stepped in and did whatever was
needed."

I could not find a satisfactory way to understand this. Was it heroism in a
form that signaled poor project management? Why did so many successful
project teams refer to it with pride instead of embarrassment? Should it be
stamped out, or harnessed? The "software engineering" model did not provide
any advice here.

These sorts of anomalies show up in even the oldest case studies. In the
late 1960s, Gerald Weinberg described the negative effects of removing a bank
of vending machines. Note how his, and the other excerpts in this section, are
naturally matched by the cooperative game lexicon:

[At] at large university computing center . . . a large common space was
provided near the return window, so that the students and other users
could work on their programming problems. In the adjoining room, the
center provided a consulting service for difficult problems, staffed by two
graduate assistants.

At one end of the common room was a collection of vending machines . . .
the noise from the revelers congregating at the machines often became
more than some of the workers could bear. . . . [The computing center
manager] went to investigate their complaint. . . . Without more than
fifteen seconds of observation he went back to his office and inaugurated
action to have the machines removed to some remote spot.

The week after the machines had been removed––and signs urging quiet
had been posted all around––the manager received another delegation. . .
. They had come to complain about the lack of consulting service; and,
indeed, when he went to look for himself, he saw two long lines extending
out of the consulting room into the common room. He spoke to the
consultants to ask them why they were suddenly so slow in servicing their
clients . . . For some reason, they said, there were just a lot more people
needing advice than there used to be.

The manager spent two weeks checking for a possible source of the
increased load, but all courses and other users were carrying on normally.
. . . After some time, he discovered the source of the problem. It was the
vending machines!

When the vending machines had been in the common room, a large
crowd always hovered around them––but not necessarily for fol-de-rol, as
the manager had so quickly assumed. True, they were drinking coffee and
chatting, but they were chatting about their programs. . . . Since most of

ComSIS Vol. 1, No. 1, February 2004 21

the student problems were similar, the chances were very high that he
could find someone who knew what was wrong with his program right
there at the vending machines. Through this informal organization, the
formal consulting mechanism was shunted, and its load was reduced to a
level it could reasonably handle. ([Weinberg], pp. 49-50)

Dee Hock describes how the first VISA credit card clearing system was
developed by a group of people who did not seem to have the qualifications to
do the job and used a spectacularly messy process:

We decided to become our own prime contractor, farming out selected
tasks to a variety of software developers and then coordinating and
implementing results. Conventional wisdom held it to be one of the worst
possible ways to build computerized communications systems.

We rented cheap space in a suburban building and dispensed with
leasehold improvements in favor of medical curtains on rolling frames for
the limited spatial separation required. ...

Swiftly, self-organization emerged. An entire wall became a pinboard with
every remaining day calendared across the top. Someone grabbed an
unwashed coffee cup and suspended it on a long piece of string pinned to
the current date. Every element of work to be done was listed on a scrap
of paper with the required completion date and name of the person who
had accepted the work. Anyone could revise the elements, adding tasks
or revising dates, provided that they coordinated with others affected.
Everyone, at any time, could see the picture emerge and evolve. They
could see how the whole depended on their work and how their work was
connected to every other part of the effort. Groups constantly assembled
in front of the board as need and inclination arose, discussing and
deciding in continuous flow and then dissolving as needs were met. As
each task was completed, its scrap of paper would be removed. Each
day, the cup and string moved inexorably ahead.

Every day, every scrap of paper that fell behind the grimy string would find
an eager group of volunteers to undertake the work required to remove it.
To be able to get one's own work done and help another became a
sought-after privilege. Nor did anyone feel beggared by accepting help.
Such Herculean effort meant that at any time, anyone's task could fall
behind and emerge on the wrong side of the string.

Leaders spontaneously emerged and reemerged, none in control, but all
in order. Ingenuity exploded. Individuality and diversity flourished. People
astonished themselves at what they could accomplish and were amazed
at the suppressed talents that emerged in others.

Position became meaningless. Power over others became meaningless.
Time became meaningless. Excitement about doing the impossible
increased, and a community based on purpose, principle, and people
arose. Individuality, self-worth, ingenuity, and creativity flourished; and as

22 ComSIS Vol. 1, No. 1, February 2004

they did, so did the sense of belonging to something larger than self,
something beyond immediate gain and monetary gratification.

No one ever forgot the joy of bringing to work the wholeness of mind,
body, and spirit; discovering in the process that such wholeness is
impossible without inseparable connection with the others in the larger
purpose of community effort. Money was a small part of what happened.
The effort was fueled by a spontaneous expansion of the nonmonetary
exchange of value. ...

No one ever replaced the dirty string and no one washed the cup. ... The
BASE-1 system came up on time, under budget, and exceeded all
operating objectives." ([Hock], pp. 205-207)

The standard software engineering lexicon would predict that this project
should have been a disaster. In the cooperative game lexicon, however, it is
clear that these people capitalized on the key factors of rapid communication,
cooperation, trust, community, morale, and pride-in-work.

The 1968 NATO conference itself is so rich with anomalies that question the
engineering lexicon and support the cooperative game lexicon that I cannot
include them all. Here are a representative set:

Fraser: "Design and implementation proceeded in a number of stages. . . .
Each stage produced a useable product and the period between the end
of one stage and the start of the next provided the operational experience
upon which the next design was based. . . . The first stage did not
terminate with a useable object program but the process of
implementation yielded the information that a major design change would
result in a superior and less expensive final product. During the second
stage the entire system was reconstructed; an act that was fully justified
by subsequent experience.. . . The final major design change arose out of
observing the slow but steady escalation of complexity in one area of the
system." (pp. 11-12)

Smith: I’m still bemused by the way they attempt to build software. . . . All
documents associated with software are classified as engineering
drawings. They begin with planning specification, go through functional
specifications, implementation specifications, etc., etc. This activity is
represented by a PERT chart with many nodes. If you look down the
PERT chart you discover that all the nodes on it up until the last one
produce nothing but paper. It is unfortunately true that in my organisation
people confuse the menu with the meal. (p. 52)

Kinslow: The design process is an iterative one. I will tell you one thing
which can go wrong with it if you are not in the laboratory. In my terms
design consists of:

1. Flowchart until you think you understand the problem.

2. Write code until you realize that you do not.

3. Go back and re-do the flowchart.

ComSIS Vol. 1, No. 1, February 2004 23

4. Write some more code and iterate to what you feel is the correct
solution. (p. 21)

Ross: The most deadly thing in software is the concept, which almost
universally seems to be followed, that you are going to specify what you
are going to do, and then do it. And that is where most of our troubles
come from. (p .21)

Perlis: A man can communicate with about five colleagues on a software
project without too much difficulty. Likewise he can supervise about five
people and know pretty well what they are doing. One would structure 120
people in three levels, in which no man is talking to more than about eight
people, both across his level and up and down . . . (p. 51)

Opler: I think I know how to organise reasonably successful
communication for projects of between 10 and 50 people. . . . every
member of the staff receives a three-ring binder and perhaps half-a-dozen
pages stating the very first decisions and ground rules for the project,
including an index. As the project proceeds everybody contributes sheets,
which must be countersigned by their management. . . . This had
interesting side-effects. I noticed that one part of the book was not filling in
very fast — this led to early discovery of a worker who was lagging
behind, and who eventually had to be dismissed. (p. 55)

Fraser: The question of what methods should be used for organising
information flow between members of a production team depends largely
on the size of the team.

I was associated with a 30-man project . . . We had three, or rather four,
forms of information flow. The first was based on the fact that the compiler
was written in a high-level language and hence provided, in part, its own
documentation. The second form of information flow was based on
documentation kept in a random access device which was regularly
accessed by every member of the team. This was a steel filing cabinet
kept in my office. . . . This was probably the most important form of
communication we had. Its merits were that there was only one set of
authoritative information, and that the indexing scheme, albeit crude, was
sufficient to allow one to find, in most cases, the relevant information
when you needed to make a decision. . . .

There was a fourth communications mechanism which every project has,
and which perhaps does not get encouraged as much as it should be.
There are certain people in any organization who are remarkably effective
at passing gossip. Many of the potential troubles in a system can be
brought into the open, or even solved, by encouraging a bit of gossip. (p.
55)

Even in 1999 we find the same issues in play. Here is an excerpt from a
team working at the top level of the Software Engineering Institute's Capability

24 ComSIS Vol. 1, No. 1, February 2004

Maturity Model. Note the importance given to issues of trust, communication,
pride-in-work and personal, individual interactions:

 . . . To be most effective, engineers must be motivated and energetic;
they need to be creative and concerned about the quality of their
products, and they should enjoy their work and be personally committed
to its success. This can only be achieved if management trusts the
engineers to work effectively and the engineers trust their management to
guide and support them. . . . Management also needs to ensure that the
engineers consistently follow disciplined methods and that the teams do
not develop interpersonal problems. [Webb]

4. Engineering in Action

The previous section raised the question of what professionals do while
they are doing engineering and why people do not automatically think of craft
and cooperation issues. In this section we look at the degradation of the term
"engineering" in the last half century, and consider the content that got
devalued.

Historical Origins of the "Engineering" Myth
Engineering once incorporated craft as an aspect, but lost it following WWII,

as discipline envy flowed from applied physics to engineering and thence to
software development. Schön recounts:

After World War II, in the glow of engineering triumphs which would have
been impossible without the contributions of physics, and later on under
the shadow of Sputnik, the advocates of engineering science had
succeeded in transforming the engineering curriculum into an education in
applied physics. By the late 1960s, however, leading practitioners and
educators were beginning to have second thoughts. Harvey Brooks, the
dean of the Harvard engineering program was among the first to point out
the weakness of an image of engineering based exclusively on
engineering science. In his 1967 article, "Dilemmas of Engineering
Education," he described the predicament of the practicing engineer who
is expected to bridge the gap between a rapidly changing body of
knowledge and the rapidly changing expectations of society. The resulting
demand for adaptability, Brooks thought, required an art of engineering.
The scientizing of the engineering schools had been intended to move
engineering from art to science.

Aided by the enormous public support for science in the period 1953-
1967, the engineering schools had placed their bets on an engineering
science oriented to "the possibility of the new" rather than to the "design
capability" of making something useful . . . Practicing engineers are no
longer powerful role models when the professors of highest status are
engineering scientists. . . . by 1967 engineering design had virtually

ComSIS Vol. 1, No. 1, February 2004 25

disappeared from the curriculum, and the question of the relationship
between science and art was no longer alive. . . . ([Schön], pp. 171-172)

The result of this inflation of the infallibility of mathematical prediction was
that people started expecting things made of "engineering" – and by
implication, software development – to be predictable in cost, time and quality.
However, even practitioners of the oldest field of engineering, civil engineering,
fail in the same way as the average software developer when put in a similar
situation. The project to build a highway under the city of Boston, to take one
example, was estimated in 1983 as costing $2.2 Billion and being completed in
1995. At the time of this writing in 2003, it is scheduled for completion in 2005
at an approximate cost of $14.6 Billion [Cerasoli] [Chase]. The cost overrun is
ascribed to the fact that it is larger than previous projects of this sort, and
employs new and untried technologies. Martin Fowler quips [public talk],
"Compared to civil engineers, software developers are rank amateurs at cost
overruns".

Popular expectations for engineering are faulty because the popular
understanding of engineering-as-an-activity is itself faulty. If we reframe
engineering as another entry in the economic-cooperative game category,
along with constructing laws and constitutions, the difficulty in accurately
predicting the trajectories of engineering projects becomes as understandable
as predicting the time and cost for lawmakers to frame a new law or
constitution.

Doing Engineering

"Doing engineering" involves doing direct work in a situation, reflecting on
the lessons learned in doing that work, and generating theories local to the
problem at hand.

In The Reflective Practitioner, Donald Schön (1983) considers a key aspect
of professional practice to be the engagement in a "reflective conversation with
the situation." Schön provides examples of both novice and experienced
engineers gaining intimate knowledge of materials, actions and consequences,
setting those next to their personal theories about the problems and solutions
encountered, to construct their next actions. Ehn incorporates Schön's
observations: "In the conversation with the materials of the situation, the
designer can never make a move that has only intended implications. The
design material is continually talking back to him. This causes him to
apprehend unanticipated problems and potentials, which become the basis for
further moves." [Ehn, p. 230]

The leader of Lockheed's famed "Skunk Works" facility harnessed rather
than fought the need for guessing, experimentation, feedback and
communication so crucial to effective engineering. Kelly insisted on people
sitting close together and taking accountability for decisions all the way from
design to testing [Rich]. This can be seen both as effective "reflective
conversation with the situation" and as effective play in a resource-limited
cooperative game of invention and communication:

26 ComSIS Vol. 1, No. 1, February 2004

Kelly kept those of us working on his airplane jammed together in one
corner of our [building]... My three-man thermodynamics and propulsion
group now shared space with the performance and stability-control
people. Through a connecting door was the eight-man structures group. ...
Henry and I could have reached through the doorway and shaken hands. .
. .

I was separated by a connecting doorway from the office of four structures
guys, who configured the strength, loads, and weight of the airplane from
preliminary design sketches. ... The aerodynamics group in my office
began talking through the open door to the structures bunch about
calculations on the center of pressures on the fuselage, when suddenly I
got the idea of unhinging the door between us, laying the door between a
couple of desks, tacking onto it a long sheet of paper, and having all of us
join in designing the optimum final design. ... It took us a day and a half.
..."

All that mattered to him was our proximity to the production floor: A
stone's throw was too far away; he wanted us only steps away from the
shop workers, to make quick structural or parts changes or answer any of
their questions.

The similarities in team set up between Kelley's expert group and Dee
Hock's ad hoc group are not accidental. They are essential elements to
accomplishing the group assignment [Allen]. Contrast Kelley's and Schön's
understanding of engineering with that proposed by the 1968 NATO
conference attendees:

Today we tend to go on for years, with tremendous investments to find
that the system, which was not well understood to start with, does not
work as anticipated. We build systems like the Wright brothers built
airplanes — build the whole thing, push it off the cliff, let it crash, and start
over again. (Graham, p. 12)

If we investigate the Wrights' methods, we find, much to the contrary, that
they practiced engineering in the best sense, namely, reflective conversation
with the situation, using guesses, experiment, theory, and, of course, feedback.
Their own account reads as follows [Wright]:

In order to satisfy our minds as to whether the failure of the 1900 machine
to lift according to our calculations was due to the shape of the wings or to
an error in the Lilienthal tables, we undertook a number of experiments to
determine the comparative lifting qualities of planes as compared with
curved surfaces and the relative value of curved surfaces having different
depths of curvature. . . . In September we set up a small wind tunnel in
which we made a number of measurements. . . but still they were not
entirely satisfactory. We immediately set about designing and constructing
another apparatus from which we hope to secure much more accurate
measurements. . . . we made thousands of measurements of the lift, and
the ratio of the lift to the drift with these two instruments. (pp.15-18)

ComSIS Vol. 1, No. 1, February 2004 27

Engineering as a Cooperative Game
Much of "doing engineering," along with doing research, and developing

software, is playing a goal-directed and resource-limited cooperative game of
invention and communication. Thomas J. Allen of MIT researched and
documented the essential role of proximity and communication in research and
development organizations in the 1970s [Allen]. He found, as did Kelly's Skunk
Works team and other researchers, engineers and software developers, that
the energy and time expended in detecting and transferring ideas between
minds is a key factor in the team's progress. Proximity, accountability, morale,
community and trust are aspects of reducing delay in detecting and transferring
ideas. Rapid feedback across the total process is part of Schön's "reflective
conversation with the situation."

We could attempt to bring the world back to a pre-WWII appreciation of the
craft elements of engineering. Even if we managed that, though, we would still
not address one of the primary desiderata for an underlying model for our field:
to evoke a reaction in busy practitioners to attend to community, cooperation,
amicability, trust and sufficiency-in-communication. The cooperative game
vocabulary does that.

5. Future research

The cooperative game model indicates several areas of research. The first
centers around people's abilities to create software:

• the mechanics and economics of inventing,
• the mechanics and economics of communicating over various media for

various purposes, including optimal occasions to avoid using face-to-face
communication,

• how and why people cooperate,
• what affects trust and pride,
• what affects morale.
A second area of research centers around theories of decision making with

bounded rationality and imperfect communication. A third area centers around
project funding, perhaps borrowing from venture capital financing and
strategies for options trading.

One caution is called for here. There is an old story about a man looking for
his wallet at night under a lamp post. When a passer-by stops to help and asks
him where he lost it, he points into the darkness and replies, "Over there
somewhere." The passer-by asks, "But then why are you looking for it over
here?" The man replies, "Because the light is better here." When suggesting
research for our field, I often hear the response. "We do not research people
issues because we are computer scientists. It is not that these topics are
irrelevant, but they aren't for us." These speakers are comfortable under their
lampposts and do not wish to venture into the darkness.

However, we work in the arena of software development, and so it is
incumbent on us to learn how to do a better job at creating software. If we must

28 ComSIS Vol. 1, No. 1, February 2004

learn something about people to accomplish that, then indeed, we must learn
something about people. We needn't learn everything about people, only those
things surrounding invention and communication on cooperative games. That
will, of course, include motivation, reward, fear, trust, amicability, pride, ego,
community, modalities in communication, and solo and group idea creation.

It may well be that we will do as we have done in the past with other areas
of enquiry, and learn things that other specialists do not know. It may be that
we will incorporate into our field knowledge from other fields, as we have done
in the past with fair success. Whichever way it goes, it is thoroughly part of our
job to learn more about the active component in our arena: people.

6. Summary

When "software engineering" was introduced in 1968 as a model for the
field of software development, it was introduced as a provocation rather than as
a model deduced from experience [Naur-Randell]. This paper reconsidered the
model in the light of four decades of experience, and found the model lacking in
four respects:
• The model does not intrinsically generate topics known to be important to

project success, topics such as talent and skill, team cohesion and
interpersonal communication [Boehm].

• The model fails to explain the historical record of successful and failing
projects [Cockburn 2003a]. In particular, it fails to explain the success of so
many low-ceremony, even sloppy-looking projects, and the declared
preference of experienced, successful developers with those processes.

• After 35 years of use, different people still interpret the term in very different
ways, leading to conflicting recommendations for behavior on projects.

• The term, and the model, do not lead practitioners on live projects to derive
effective advice as to how to proceed.
This paper introduced a new model:
Software development is a series of resource-limited, goal-directed

cooperative games of invention and communication.
The primary goal of each game is the production and deployment of a

software system.

The residue of the game is a set of markers to assist the players of the next game.
People use markers and props to remind, inspire and inform each other in

getting to the next move in the game.
The successor game is an alteration of the system or the creation of a

neighboring system, and so each game has as a secondary goal to create an
advantageous position for the next game.

The primary and secondary goals compete for resources in a resource-
limited situation.

This model intrinsically names issues known to be important to project
success: cooperation, communication, cost-of-, rate-of-, and sufficiency-in-

ComSIS Vol. 1, No. 1, February 2004 29

communication. It quickly hints at other relevant issues: individual talent and
skill, relations between people-as-individuals in pairs and in groups, the value
of retaining jelled teams, the diminishing returns with extended modeling and
documentation, and the importance of learning and applying different strategies
for different circumstances.

With those topics brought to the fore, the new model was shown to fit
project experience reports from untrained groups in the 1960s up through a
CMM Level-5 organization in 1999. Practitioners on live projects find the model
useful because it illuminates the key issues and the trade-offs they have to deal
with in their overconstrained situations.

The model introduces the possibility of usefully borrowing results from other
fields to help in creating project management strategies. Economic theory,
theories of decision-making with bounded information, and options trading
seem particularly relevant.

A brief retrospective of engineering in the general sense indicated that
much of engineering also belongs to the category of resource-limited, goal-
directed cooperative games of invention and communication.

The economic-cooperative game model serves primarily in building project
strategies. It does not capture the thought processes of the designer-
programmer while creating and manipulating the design and expression of the
program. An adjunct model, incorporating mental craft, needs to be added. This
adjunct model will need to handle Peter Naur's consideration of programming
as "theory building" [Naur], Donald Schön's idea of "reflective conversation with
a situation" [Schön], and the combination of efficiency, manipulability and
aesthetics in the program [Coplien]. The adjunct model will be subject to and
have a natural fit with the economic-cooperative game model.

7. References

1. Allen, T., Managing the Flow of Technology, MIT Press, 1984.

2. Ambler, S., Agile Modeling, John Wiley & Sons, 2002.

3. Beck, K., Cunningham, W., “A laboratory for teaching object-oriented thinking,”
ACM SIGLPLAN 24(10):1-7, 1989.

4. Bordia, P., Prashant, K., "Face-to-face versus computer-mediated communications:
A synthesis of the literature", The Journal of Business Communication 34(1),U of
Illinois, Champaign, IL, Jan 1997, pp. 99-120.

5. Boehm, B., Software Cost Estimation with COCOMO II, Prentice Hall PTR, 2000.

6. Brown, K., Klastorin, T. & Valluzzi J., “Project Performance and the Liability of
Group Harmony,” IEEE Transactions On Engineering Management, 37(2), May
1990, pp. 117-125.

7. Carse, J., Finite and Infinite Games, Ballantine Books, 1987.

8. Cerasoli, R., Office of the Inspector General, Commonwealth of Massachusetts, "A
History of Central Artery/Tunnel Project Finances 1994 – 2001: Report to the

30 ComSIS Vol. 1, No. 1, February 2004

Treasurer of the Commonwealth", available online at
http://www.state.ma.us/ig/publ/cat01rpt.pdf.

9. Chase, T., "Revelation 13: The Big Dig" http://www.revelation13.net/bigdig.html

10. Cockburn, A. [1998], Surviving Object-Oriented Projects, Addison-Wesley, 1998.

11. Cockburn, A. [2000a], "Characterizing People as Non-Linear, First-Order
Components in Software Development", 4th International Multiconference on
Systemics, Cybernetics, and Informatics, Orlando, FL, July, 2000. Online as
Humans and Technology Technical Report, TR 99.05, at http://alistair.cockburn.us/
crystal/articles/cpanfocisd/characterizingpeopleasnonlinear.html.

12. Cockburn, A. [2000b] "Selecting a Project's Methodology", IEEE Software, 17(4),
July/Aug 2000, pp.64-71.

13. Cockburn, A. [2001], "The Expert-in-Earshot Project Management Pattern", in
Succi, G., Marchesi, M., Extreme Programming Examined, Addison-Wesley,
Boston, MA, 2001, pp. 245-247.

14. Cockburn, A. [2002a], Agile Software Development, Addison-Wesley, 2002.

15. Cockburn, A. [2002b], "Learning from Agile Development, Part 1," in CrossTalk:
The Journal of Defense Software Engineering, October, 2002, pp. 10-14

16. Cockburn, A. [2003a], People and Methodologies in Software Development, Dr.
Philos. dissertation, Faculty of Mathematics and Natural Sciences dissertation no.
264, University of Oslo, 2003, online at
http:\\alistair.cockburn.us\htdocs\crystal\books\pamisd\peopleandmethodologiesins
oftwaredevelopment.pdf.

17. Cockburn, A. [2003b], "The 'Cone of Silence' and Related Project Management
Strategies," Humans and Technology Technical Report 2003.01, at
http://alistair.cockburn/crystal/articles/cos/coneofsilence.htm

18. Coplien, J., "Software Development as Science, Art and Engineering." In Rising, L,
ed., The Patterns Handbook: Techniques, Strategies, and Applications, pp. 321-
332. Cambridge University Press, New York, January 1998.

19. DeMarco, T., Lister, T., Peopleware: Productive Projects and Teams, 2nd Ed.,
Dorset House, 1999.

20. Denne, M., Cleland-Huang, J., Software by Numbers: Low-Risk, High-Return
Development, Prentice Hall PTR, 2003.

21. Ehn, P., Work-Oriented Development of Software Artifacts, Arbetslivscentrum,
Stockholm, 1988.

22. Herring, R., Rees, M., "Internet-Based Collaborative Software Development Using
Microsoft Tools", in Proceedings of the 5th World Multiconference on Systemics,
Cybernetics and Informatics SCI'2001). 22-25 July, 2001. Orlando, Florida., online
at http://erwin.dstc.edu.au/Herring/SoftwareEngineering0verInternet-SCI2001.pdf.

23. Highsmith, J., Agile Software Development Ecosystems, Addison-Wesley, 2003.

24. Hock, D., Birth of the Chaordic Age, Berret-Koehler, 1999.

25. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G., Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

ComSIS Vol. 1, No. 1, February 2004 31

26. Markus, M., "Asynchronous technologies in small face to face groups," Information
Technology & People, Apr 92, 6(1), p.29.

27. Maturana, H., Varela, F., The Tree of Knowledge, Shambhala Publications, 1988.

28. McBreen, P., Software Craftsmanship, Addison-Wesley, 2001.

29. McCarthy, J., Monk, A., "Channels, conversation, cooperation and relevance: all
you wanted to know about communication but were afraid to ask," in Collaborative
Computing, Vol. 1, No. 1, March 1994, pp. 35-61.

30. Naur, P. Randell, B, Software Engineering: Report on a conference sponsored by
the NATO Science Committee, Garmisch, Germany, 7th to 11th October 1968,
Naur, P., Randell, B., eds., 1969, online at
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/

31. Naur, P., "Programming as Theory Building", pp.37-48 in Computing: A Human
Activity, ACM Press, 1992.

32. Ohno, T., Toyota Production System: Beyond Large-Scale Production, Productivity
Press, 1988.

33. Olson, G., and Olson, J. "Distance Matters," Human-Computer Interaction, Vol. 15,
2001, pp. 139-179.

34. Reinertsen, D., Managing the Design Factory, Free Press, 1997.

35. Rich, B., Janos, L., Skunk Works: A Personal Memoir of My Years at Lockheed,
Little, Brown and Company, 1994.

36. Schön, D., The Reflective Practitioner: How Professionals Think in Action, Basic
Books, 1983.

37. SEED, "Object-Oriented Software Engineering", The SEED Project, online
http://seed.edrc.cmu.edu/SC/requirements/SC-req-2-development.html.

38. Snyder, C., Paper Prototyping: The Fast and Easy Way to Design and Refine User
Interfaces, Morgan Kaufmann, 2003.

39. Standish, 2003 CHAOS Chronicles, The Standish Group International
(http://www.standishgroup.com), summarized at
http://www.findarticles.com/cf_dls/m0EIN/2003_March_25/99169967/p1/article.html

40. Sullivan, K, Chalasani, P., Jha, S., Sazawal, V., “Software Design as an Investment
Activity: A Real Options Perspective,” in Real Options and Business Srategy:
Applications to Decision Making, L. Trigeorgis, ed., Risk Books, December 1999.

41. Tyler, T., Kramer, R., eds., Trust in Organizations: Frontiers of Theory and
Research, Sage Publications, 1996.

42. Webb, D., Humphrey, W., "Using TSP on the TaskView Project", in CrossTalk: The
Journal of Defense Software Engineering, Feb 1999, pp. 3-10, online at
http://www.stsc.hill.af.mil/crosstalk/1999/feb/webb.asp

43. Webster, N., Webster's New Collegiate Dictionary, 1977.

44. Weinberg, G., The Psychology of Computer Programming, Silver Anniversary
Edition, Dorset House, 1998.

32 ComSIS Vol. 1, No. 1, February 2004

45. Weisband, S., Schneider, S., Connolly, T., "Computer-mediated communication
and social information: status salience and status differences", in Academy of
Management Journal 38(4), Mississippi State, Aug 95, pp. 1124-1143.

46. Williams, L., Kessler, R., Pair Programming Illuminated, Addison-Wesley, 2002.

47. Wittgenstein, L., Logical Investigations, Basil Blackwell, Oxford, UK, 1953.

48. Wright, O., How We Invented the Airplane: An Illustrated History, edited by F.C.
Kelly, Dover, 1953.

Alister Cockburn completed his doctorate at the University of Oslo with the

study of "People and Methodologies in Software Development." In his 30-year
career he has designed graphics hardware for flight simulators, special
development environments for communications protocol designers, and custom
software development methodologies. He has led hardware and software
development projects in research, industry and government. One of the
founders of the agile software development movement, Dr. Cockburn is known
for his foundational work resulting in the award-winning books Writing Effective
Use Cases and Agile Software Development. Much of his work is available
online at http://Alistair.Cockburn.us .

