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Abstract. Adaptation in multimedia systems is usually restricted to 
defensive, reactive media adaptation (often called stream-level 
adaptation). We argue that offensive, proactive, system-level adaptation 
deserves not less attention. If a distributed multimedia system cares for 
overall, end-to-end quality of service then it should provide a meaningful 
combination of both.  
We introduce an adaptive multimedia server (ADMS) and a supporting 
middleware which implement offensive adaptation based on a lean, 
flexible architecture. The measured costs and benefits of the offensive 
adaptation process are presented.  
We introduce an intelligent video proxy (QBIX), which implements 
defensive adaptation. The cost/benefit measurements of QBIX are 
presented elsewhere [1].  
We show the benefits of the integration of QBIX in ADMS. Offensive 
adaptation is used to find an optimal, user-friendly configuration 
dynamically for ADMS, and defensive adaptation is added to take usage 
environment (network and terminal) constraints into account.  
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1. Introduction  

Adaptation is - in a general sense - the capability to respond to changes of the 
environment by the change of some own characteristics, without losing the own 
identity. If a living creature feels hungry, but sufficient food is not available, then 
it has two choices for survival: Either it is able to enlarge the available food 
resources, e.g. by moving to a better place, or to change its inner need and 
learn to be satisfied with less or worse food. The first approach could be called 
offensive, the second defensive adaptation. Obviously both have their limits 
and have a common prerequisite: flexibility. (Our creature has to be flexible 
either to go outside and find new places or to go inside and be satisfied with 
less food - or to do both, if e.g. a new place can be found, which is, however, 
still not sufficiently rich of food.) Offensive adaptation is usually proactive (it is 
better to start to look for an opulent place before getting too hungry), whereas 
defensive adaptation is usually reactive (if there is no food, there is no other 
choice than getting humble).  

In distributed multimedia systems - especially in video management systems 
- adaptation is becoming increasingly important. The reason is simple: due to 
the challenging amount of data involved and the soft real-time constraints, 
video management systems are always ”resource hungry”. This hunger can be 
satisfied neither by best-effort resource management, which cannot handle 
timing constraints, nor by reservation, which over-allocates resources (for the 
worst case). Therefore, on the long term, adaptation is a necessity. It is - 
fortunately - also an opportunity, both in its defensive and in its offensive forms.  

To find new places and new food, we have to be able to communicate with 
the environment, we must understand its signals. In a computerized world this 
means: being able to support standardized communication.  

Fairly much research has been done on media adaptation, which is 
obviously defensive [2–5]. The required flexibility lies in the inner structure of 
the media data. Especially by sophisticated video coding techniques, ample 
space is created for transcoding of video data resulting in smaller size and 
bitrate and in still acceptable perceptual quality. Fortunately, the relation 
between size and quality reduction is usually non-linear: up to a certain limit, 
large size reduction causes a moderate quality loss.  

Much less research has been done on offensive (also called server-level) 
adaptation. The reason for this reduced interest lies probably in the fact that 
most distributed multimedia systems lack the necessary flexibility. Such a 
system must be able to dynamically acquire new resources and move/replicate 
its own code and data as needed. This requires flexibility of the architecture 
and consequent adherence to standards – both rare characteristics in current 
distributed multimedia systems. In the course of the ADMITS (Adaptation in 
Distributed Multimedia IT Systems) project [6,7] we address both kinds of 
adaptation and their integration as well.  

Offensive adaptation is realized by an Adaptive Distributed Multimedia 
Server (ADMS), which is able to allocate new server nodes on the network and 
migrate functionality and data to them on demand. ADMS has a highly flexible 
architecture enabling this kind of migration operations. If for example the host 
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recommender component notices that a certain group of clients could be better 
served if the data collector component (collecting stripe units from the data 
storage nodes and streaming them to the clients) were physically located near 
to this client group, then it simply allocates a new node and sends a copy of the 
data collector code there. A detailed description of ADMS is given in Section 3.  

Defensive adaptation is realized by a Quality Based Intelligent Proxy (QBIX). 
The proxy is able to handle different quality levels of the same video (based on 
MPEG-4 [8] coding and on transcoding, supported by MPEG-7 [9] meta data). 
It can operate as a cache, in which case it uses adaptive cache replacement 
algorithms. Instead of discarding replacement candidates it reduces their 
quality as long as possible, thus raising the hit rate considerably. It can also 
operate as a gateway, in which case it serves client devices with different 
capabilities by videos of different quality. It can e.g. send a high quality version 
of a video to clients on a personal computer and a low quality version to clients 
with a PDA. A detailed description of QBIX is given in Section 4.  

An integration of the offensive and defensive adaptation is given if we use 
the intelligent proxy itself as a component of the adaptive server. Due to the 
flexible architecture this is technically easy. The usual strategy is that we first 
try to apply offensive adaptation by enlarging the server by new nodes to host 
the proxy functionality. As the proxy is able to perform defensive adaptation, it 
still can reduce the quality of the stored videos if necessary. Whereas ADMS 
and QBIX are already fully operational, the integration is still in progress. The 
quantitative evaluation of the effect of the integration is the next step in the 
ADMITS project.  

2. Related Work  

In [10] it is shown that distributed multimedia servers have benefits over 
single server architectures regarding scalability and server-level fault tolerance. 
We discussed in earlier papers [11,12] that existing distributed server 
architectures like the Berkeley Distributed VoD System [13], the Tiger Video 
Fileserver [14], or the EURECOM VoD Server [15] have a monolithic 
architecture and are performance-optimized to one main goal: serving 
thousands of simultaneous client requests. However, in heterogeneous 
environments, it is usually not the server, but the network that becomes a 
bottleneck. This is especially the case if a certain level of quality of service is to 
be guaranteed in terms of latency times, bandwidth availability or packet loss.  

Although sophisticated commercial systems like the Darwin Streaming 
Server (DSS) – an open source version of Apple’s modular QuickTime 
Streaming Server – or the Helix Universal Server (HUS) [16,17] – 
developed by RealNetworks –, show a highly distributed architecture, their 
organization is static, they cannot acquire new resources on the network on 
demand.  

Content distribution networks (CDNs) are dedicated collections of servers 
(called data centers) strategically located across the Internet. A typical 
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example for a CDN is Akamai’s distributed content delivery system, which 
deploys more than 12000 servers in over 1000 networks around our planet 
[18]. Based on the assumption that the strategic locations of the data centers 
are well chosen, a CDN is definitively a good solution for adapting the physical 
location of a media stream. It is highly available and serves the streams from 
locations where clients perceive a good quality of service. However, the 
strategic positioning of data centers and edge servers is typically done 
manually by observing client demands. A CDN does not provide means for 
performing strategic placements automatically.  

In a peer-to-peer (P2P) file sharing network, peers collaborate to form a 
distributed system for the purpose of exchanging content [19]. However, the 
applicability of P2P networks for adapting the location of media streams in a 
distributed streaming environment is rather poor. In particular, it faces the 
following two problems: (i) Participation in a P2P network is purely voluntary. A 
recent study has shown that most peers are run by end users, who suffer from 
low availability, and have network connections with a relatively low capacity 
[20]. (ii) It is server-less, which makes a controlled distribution of content very 
difficult [21]. Nevertheless, there are approaches that use P2P content delivery 
for media streaming, as e.g. presented in [21] and [22].  

An offensive server architecture requires a QoS-aware middleware providing 
active support for adaptation steps. Extensive work has been done in the area 
of QoS-aware middleware for ATM-based networks and also for systems using 
RSVP [23–25]. These systems are hardly appropriate for the Internet, where 
resource reservation is still rather theory than practice. On the other hand, 
considerable work has been done on end-to-end distance monitoring and 
estimation in the Internet [26–29]. Such bandwidth and delay 
measurement/estimation algorithms can be used to approximate QoS 
awareness for a middleware as needed for offensive adaptation. Although 
certain middleware systems support dynamic replication or migration of 
services and components, like Jini [30] or Symphony [31], they do not provide 
measurements and estimations of network distances and server resources.  

One possibility to cope with typical Internet problems such as network jitter 
and bandwidth limitations is media adaptation. QBIX [1] is a quality based 
intelligent proxy that caches whole videos and offers media adaptation support 
to reduce the size/bandwidth requirements of the cached videos. Related work 
in this area is sparse. Examples are periodic caching of layered coded videos 
[32], combination of replacement strategies and layered coded videos [33], 
quality adjusted caching of GoPs (group of pictures) [34], adaptive caching of 
layered coded videos in combination with congestion control [35] or simple 
replacement strategies (patterns) for videos consisting of different quality steps 
[36]. Most of these proposals rely on simulation to evaluate the performance of 
the caching techniques. Therefore some assumptions have to be made about 
the structure of the videos (e.g. layered videos).  

Because QBIX supports re-encoding of videos without layered encoding, a 
real implementation was used to evaluate the impact of re-encoding on the 
quality of cache replacement, something which is hard to simulate. The only 
other project we know about, also offering a real implementation is described in 
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[35]. This work relies on proprietary systems and protocols, whereas QBIX 
integrates modern multimedia standards like MPEG-4 [8], MPEG-7 [9], the 
upcoming MPEG-21 standard [37] and communication standards like RTP and 
RTSP [38]. Integrating QBIX into ADMS will create the very first distributed 
multimedia server that combines offensive and defensive adaptation.  

3. QoS-driven Server-level Adaptation  

In a statically configured distributed server architecture with a behavior 
steered by several sorts of distance metrics to the clients (e.g. by evaluating 
RTCP statistics of former clients), client requests can either be accepted or 
denied (admission control). There is no third option. In cases of increased 
denials due to network resource shortages, such a server has no chance to 
adapt its layout to serve more clients. Defensive media adaptation (see more in 
Section 4) cannot always cope with such situations either, because (1) 
adaptation of the media content is not always possible and (2) it may even be 
prohibited by the content provider.  

In the sequel, we therefore introduce an adaptive distributed server 
architecture that can modify its configuration according to client requests. We 
discuss this architecture and evaluate its performance behavior.  

3.1. Components of a Distributed Multimedia Streaming Server  

3.1.1. Guidelines for Component Identification  

In [11,12] we describe the architecture of an adaptive distributed multimedia 
streaming server (ADMS), which explicitly controls its own layout. There is a 
trade-off between the grade of flexibility and the complexity caused by too large 
a number of components. We identified four basic components that are 
necessary and sufficient for the composition of a dynamically reconfigurable 
streaming server. Figure 1 illustrates a sample combination of these 
components, including the standard protocols used.  
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Fig. 1. Components and Protocols Used in a Component-based Streaming Server Environment 

The following two guidelines have to be taken into account when designing a 
component-based distributed streaming server. First, each component must be 
independent, reusable, adaptable, and combinable as much as possible. These 
considerations are valid for a static distributed environment as well. For a 
dynamically adaptable system the components must additionally be movable.  

Second, in order to get a lean structure with a strongly limited number of 
components, each component should fulfill one substantial logical task. Such 
substantial tasks are data acquisition, data streaming, data storage 
management and overall control. For example, during a data acquisition 
scenario initiated by a production client, a media stream has to be distributed 
(”striped”) among a set of server nodes. One single component is needed to 
receive the stream data, to split the stream into smaller pieces, and to distribute 
the pieces among a set of data nodes. The data nodes themselves are 
equipped with a component for storing and retrieving pieces of media data. 
Thus, a distribution component can be combined with a number of storage 
components, which all may run on separate server nodes.  

Following these guidelines, four basic components have been identified to 
constitute a component-based distributed streaming server: data managers 
(DMs), data distributors (DDs), data collectors (DCs), and cluster managers 
(CMs). The implementation of the components can use different technologies, 
interoperability is achieved by using CORBA as communication medium [39].  

3.1.2. Data Manager  

Data managers are the key components in the ADMS architecture. A data 
manager provides means for efficient storage and retrieval of elementary 
streams or segments thereof. Since one elementary stream or segment may be 
striped among a number of data managers, each data manager only stores a 
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portion of the stream or segment. Figure 2 illustrates the internal storage 
organization of the media streams. The data manager stores a set of partial 
media streams, which themselves consist of a set of leaf and compound media 
segments. Real media data is only stored in leaf media segments. Compound 
segments are used to describe syntactic and semantic relations among 
elementary segments.  

 

 
Fig. 2. Objects Comprising a Data Manager Component 

3.1.3. Data Distributor  

A data distributor component is responsible for the distribution of media data 
received from a production client or a live camera to a selected set of data 
managers. The unit of distribution is a so-called stripe unit, which can be either 
of constant data length (CDL), or of constant time length (CTL). In CDL mode, 
parity units are generated in order to cope with data manager failures. The 
number and location of target data managers and the mode of striping (single, 
narrow or wide) is advised by the cluster manager component.  

In cases of a non-live source, the process of distribution can be driven by 
MPEG-7 [9] metadata which describe the temporal decomposition of the media 
stream. A media stream can be decomposed into a number of segments, 
organized in an arbitrary number of levels. Figure 3 presents a sample 
temporal decomposition of a video stream into two segments, using an MPEG-
7 descriptor.  

The data distributor distributes only elementary streams, since the target 
system is designed for streaming scenarios based on RTP. Thus, if the media 
source contains a multiplexed stream, it has to be demultiplexed into elemen-
tary streams before striping.  
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Fig. 3. Temporal Decomposition of a Video Stream using MPEG-7 

3.1.4. Data Collector  

The data collector performs the inverse operation of data distribution. It 
collects stripe units of a certain media stream from the appropriate set of data 
managers, re-sequences the units and sends the buffered stream to the client 
via an RTP connection. It provides server-level fault tolerance by exploiting 
parity units in case of unavailable data managers. The collector may also 
incorporate a caching component, thus reducing client startup latencies and 
bandwidth consumption. In particular, the data collector can play the role of a 
proxy server, which is dynamically assigned to serve a group of clients by the 
cluster manager. This constitutes the difference to usual proxies, which are 
selected by the clients themselves.  

An interesting approach is the integration of gateway functionalities into the 
data collector. A gateway performs transcoding in order to adapt to given 
network or client device constraints. It may e.g. reduce the resolution of a video 
which is sent to a client equipped with a small-resolution screen. A data 
collector incorporating gateway functionality is a particularly appealing example 
for the combination of offensive and defensive adaptation. We use offensive 
adaptation to bring the gateway to the proper place, and there use defensive 
adaptation to comply with the given client capabilities.  
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3.1.5. Cluster Manager  

A cluster manager is the initial entry point for clients. In contrast to the three 
component types described before, there is (usually) only one instance of it in 
an ADMS cluster. It dynamically manages the locations of the other three 
component instances and maintains knowledge about the distribution of 
elementary streams among data managers.  

An important point is that the cluster manager does not serve client requests 
by itself. Instead, it redirects a request to an appropriate data collector or 
distributor, respectively. The most appropriate node to host a data collector or 
distributor is found by the so-called adaptation engine (abbreviated as AE in 
Figure 1), which is a sub-component of the cluster manager. In a static 
distributed multimedia server (SDMS) system the adaptation engine may 
perform several selection algorithms for finding the most appropriate candidate 
among the given set of nodes. However, if no appropriate candidate can be 
found, the request has to be denied. In contrast, in an ADMS environment, the 
adaptation engine may transmit (replicate or migrate) a data collector or 
distributor instance to an idle server node candidate, thus satisfying requests 
which might have been denied by a static architecture.  

3.1.6. Protocols for Component and Client Interaction  

As demonstrated in Figure 1, the only control protocol used between clients 
and DMS components is the RTSP [38] protocol. Keeping the client 
implementation CORBA-unaware has the benefit that it may interact with any 
streaming server which conforms to media streaming standards. The control 
protocols used internally between DMS components are CORBA-based and 
conform to the IDL specifications of the components. The ”master mind” behind 
all kind of scenarios is an MPEG-7 meta database, which stores syntactic and 
semantic information about the media streams stored on the server.  

3.2. ADMS: An Adaptive Distributed Multimedia Streaming Server  

The components introduced in Section 3 could be parts of either a static or a 
dynamic distributed multimedia streaming server (SDMS resp. ADMS).  

Before introducing the middleware, which is the engine making the server 
dynamic (see Section 3.2.2), we discuss the main shortcomings of a static 
architecture.  

3.2.1. Discussion of the Static Architecture  

In [10] it is claimed that distributed video servers are load balanced 
regardless of the skew in video popularities. This is only valid for an 
architecture where the data collectors are integrated into the client application 
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(proxy-at-client model). Consider that there are M data manager and N data 
collector instances in an SDMS, supporting the proxy-at-server or the 
independent-proxy model. Each server node has the same capacity C, and 
each client request demands the same amount of resources c on a data 
collector (Figure 4).  

 
Fig. 4. Host Resource Saturation Progression in an SDMS 

 
In a fair resource reservation scheme with a uniform distribution of requests 

to the data collectors, N data collectors can admit at most 
⎥⎦
⎥

⎢⎣
⎢ ⋅

c
CN  

simultaneous requests. On the other hand, a requested media object is striped 
among the M data managers, resulting in a capacity demand of 

M
c  on each 

data manager on average. Thus, the total number of client requests that can be 
admitted on one data manager node is bound by 

⎥⎦
⎥

⎢⎣
⎢ ⋅

c
MC . Since in a typical 

static server configuration M is a multiple of N, overall load-balancing is not 
given anymore. Figure 4 illustrates this imbalance showing that although the 
M=10 data manager nodes are still under-utilized at 20%, the N=2 data 
collectors are reaching their saturation point. The assumed resource demand 
ratio is δ = 0.1 per request on a data collector.  

To get rid of the shortcomings of the SDMS architecture, an infrastructure is 
required which allows for a dynamic composition of the components described 
in section 3.1, resulting in an adaptive distributed multimedia streaming server 
(ADMS). Components should be replicable and/or migratable on demand, 
allowing the dynamic composition of a virtual server [31]. We developed a 
CORBA-based infrastructure called Vagabond2 [40], which supports dynamic 
instantiation, migration, replication and evacuation of so-called adaptive 
applications (a synonym for component in Vagabond2).  
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3.2.2. Vagabond2: A Middleware for Virtual Servers in Internet Settings  

Vagabond2 is a CORBA-based middleware, implemented in Java, consisting 
of two general modules: a module for component management, and a module 
for component adaptation (see Figure 5). The component management module 
provides two services for a distributed server like ADMS: an application service 
for component movement between Vagabond2 hosts, and a host service for 
registering and querying harbours. A harbour represents the runtime 
environment which must be running on each Vagabond2 host. Vagabond2 
enables loading the Java byte code of an adaptive application, and instantiating 
this as a CORBA servant.  

The component adaptation module provides two central services for 
offensive server adaptation: the adaptation service and the resource broker.  

 
 

 
Fig. 5. Modules of the Vagabond2 Middleware 

The adaptation service provides the so-called host recommender, which tries 
to find an optimally located host for a certain component under a given set of 
constraints. An example for a set of QoS constraints described by an MPEG-21 
descriptor embedded in an RTSP SETUP message is given in Figure 6.  

The MPEG-21 [37] network characteristics descriptor is rooted by the DIA 
(Digital Item Adaptation) element. The capability element of the descriptor says 
that a bandwidth range between 32 and 128 kbit/sec is acceptable, packets 
might be delivered out of order and may be lost. The condition element 
specifies that the 128 kbit/sec link may be fully utilized, but on average should 
only get 64 kbit/sec. The packet delay from a data collector to the client should 
not be greater than 500 msec, and delay variation not greater than 100 msec. 
Finally, the packet loss rate must be below two percent.  
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Fig. 6. RTSP SETUP Message Including an MPEG-21 DIA Descriptor 

 
The RTSP message further indicates (field Range) that the client wants to 

get the stream segment from the 20th to the 40th second (media relative time). 
Additionally, the request should be scheduled for March 1st, 2003, at 14 
o’clock. This time indication at session setup enables the adaptation engine to 
proactively schedule the request to an appropriate data collector, taking into 
account the given QoS constraints, and the location of the data managers, 
where the stream data has to be retrieved from.  

When a new client request R arrives, the host recommender has to work out 
which host should run the data collector instance servicing R, and whether it 
should be an existing or a new (replicated or migrated) instance. The host 
recommender has to solve the dynamic server selection problem to find the 
best available data collector. If no appropriate data collector exists at all, an 
SDMS has to reject the request. In contrary, the ADMS may have enough time 
to create a new place by solving the capacitated facility location problem [41].  

In order to prepare these decisions, the host recommender cooperates with 
the resource broker - the second service of the adaptation module. The broker 
provides means to admit immediate and future QoS-constrained requests, and 
to perform logical reservations of network and host resources. It achieves this 
by using two additional services: the network resource service, and the host 
resource services, the latter running on each Vagabond2 harbour.  

An excerpt of the network resource service’s IDL specification is shown in 
Figure 7. Via the NetworkInfo interface we can get for example the capacity of 
a route between two arbitrarily connected Vagabond2 server hosts. Supported 
distance metrics are bandwidth, delay, packet loss rate, and round trip time. In 
this context, the specification of a period is important. If the period covers future 
time points, the service provides an estimated value, by applying time series 
analysis based on measurements. The network resource service requires that 
on each Vagabond2 harbour a network monitor is running, which periodically 
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measures instantaneous values of all supported metrics. For the host resource 
service a similar scenario is applied: available host resources (CPU, memory, 
and disk space) are periodically measured and their throughputs are 
benchmarked on harbour start-up.  

 

 
Fig. 7. Vagabond2’s Network Resource Service Specification 

There is an important difference between finding optimally placed nodes for 
ADMS data collectors and Web server replicas as described in [42], namely the 
asymmetric character of the recommendation problem. In ADMS, the 
connections between data managers and data collectors are different from 
those between collectors and clients. In the former, data transmission must be 
error-free and is fairly irresistible against jitter, therefore TCP connections can 
be used. In the latter, videos must be streamed with limited jitter, but not 
necessarily error-free (e.g. B frames might be lost), therefore RTP/UDP based 
communication can be used. A simulation experiment has shown that when 
many data collectors are near to the client (i.e. low UDP and large TCP 
communication), the standard deviation (the jitter) remains low, but the total 
amount of data travelling in the network increases (see Figure 8).  

3.2.3. Making an ADMS Component ’Movable’  

An adaptive component must be derived from the CORBA interface 
AdaptiveApplication [40, 12]. The key functionality of this interface is the 
getApplicationInfo() method, which is used by a harbour to request for the 
binaries of the component, and optionally for a set of files it may depend on. 
Figure 9 illustrates this as an excerpt of Vagabond2’s IDL specification.  
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Fig. 8. Jitter (left) and data flow size (right). wdm/wcl is the ratio between the costs of the DC-

DM and DC-client links. 

 
Fig. 9. Vagabond2’s Core Interfaces for Adaptive Components 

Figure 10 illustrates how a data manager component is derived from the 
AdaptiveApplication interface. First, a common abstraction layer is introduced, 
which is valid for all four ADMS component types. It introduces the interfaces 
ADMSServerApplication and Session, allowing the establishment of rate-
controlled and transaction-based sessions of certain types (retrieval, 
acquisition, or management). Second, the bottom layer defines the interfaces 
and structures comprising the data manager component. An 
ADMSDataManager is used to create so-called data manager sessions 
(DMSession). Each session is associated with exactly one elementary stream. 
A data manager session provides means to store stripe units for a certain 
stream segment, to compose a segment tree of known segments, or to retrieve 
stripe units of a certain segment via a stripe unit iterator. Based on the 
session’s admitted data rate (in kbit/sec), the unit iterator allows to retrieve an 
according number of stripe units per second.  
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If an ADMS component is implemented in another language than Java, a 
Java wrapper component must be added. The binary code has to be carried in 
the dependent files archive as a shared library. Since an ADMS environment 
may consist of heterogeneous nodes, the host service provides information 
about the operating system on a certain harbour, in order to move suitable 
code to it.  

 

 
Fig. 10. Data Manager Component as Special Adaptive Application of Vagabond2 

3.2.4. Discussion of the Adaptive Architecture  

We have evaluated a prototype implementation of our component-based 
offensive server in the ADMS test bed illustrated in Figure 11. We measured 
the effect of replicating data managers between two LANs connected via the 
Internet. One of the LANs was located in Budapest (B-LAN), the other one (I-
LAN) in Klagenfurt. The geographical distance of about 500 km assured a 
”real” Internet setting. The retrieval client was located in the I-LAN and ran a 
data collector instance on its own host. Each performance test consists of five 
test runs and is repeated 50 times. In each run, a sample media stream of 
12.5MB size is retrieved from the data manager instances. In test run 0, all 
data manager instances are running in the remote B-LAN. In test run 1, the 
data manager from host 8 is replicated to host 4, meaning that one data 
manager moves ”closer” to the data collector. Both the component code and 
the requested media stream are replicated, since hosts 1 – 4 are initially 
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”empty”. In each further test run, one additional data manager is replicated from 
a host of the remote B-LAN to a host in the local I-LAN.  

Figure 12 illustrates the mean retrieval times (time needed by the DC to 
collect the entire media stream) and the mean throughput results (aggregated 
throughput over all connections from the DC to the DMs). It clearly shows that 
the more data managers are replicated to the I-LAN, the smaller become the 
retrieval times, and the higher becomes the throughput. The variation of the 
retrieval times are quite high as long as most data managers are placed in the 
remote B-LAN ((a), runs 0–2), they get much smaller as most data managers 
arrive at the local I-LAN ((a), runs 3–4).  

 

 
Fig. 11. ADMS Test Bed and Test Scenario 

 
 (a) Mean Stream Retrieval Time   (b) Mean Throughput  

Fig. 12. Performance of Test Runs in the Test Scenario 

In Figure 13(a) a head-to-head comparison of throughput is given between 
replication of four data managers from the B-LAN to the I-LAN (lower 
measurement series), and replicating them inside the I-LAN (upper series). Not 
surprisingly, a replication inside a LAN does not make much difference. An 
interesting property of data managers can be derived from Figure 13(b). It tells 
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the relative gain on throughput if a certain amount of stripe units is replicated 
from one LAN to another (including the time for component code replication). If 
the host recommender of Vagabond2’s adaptation service wants to reach 50% 
overall throughput gain, it has to replicate 95% of the stripe units (actually all 
data managers) to the LAN of the target data collector. (The different curves 
show different throughput ratios between the two LANs; more specifically, if T1 
is the throughput when every DM is on the local LAN of the DC, and T2 is the 

throughput when every DM is on the remote LAN, the ratio 
T
T

2

1  parameterizes 

the curves.) The dashed line corresponds to the lower throughput series in 
Figure 13(a), representing a throughput ratio of 20. 

 

 
  
(a) Head-to-head Throughput  (b) Relative Throughput Gain  

Fig. 13. Measured Throughput in Comparison to Estimated Throughput Gains 

Another interesting test run measures the migration times of a data collector 
component and a minimal adaptive application (Test App) to three harbours. 
Both components are migrated from their home LAN in Budapest (bme2) (1) to 
a remote LAN in Klagenfurt (itec), (2) to another LAN at the same campus in 
Budapest (bme1), and (3) to a node on the same subnet (bme2). The migration 
of an adaptive component consists of three steps: (1) downloading the byte 
code and supplementary files, (2) storing them uncompressed on the harbour’s 
file system, and (3) loading the necessary classes while activating the CORBA 
servant. The harbours have checkpoints at the start and at the end of these 
steps, and the elapsed times are stored for every started component. Figure 14 
shows the results of the experiments. Using such statistical data, the time 
needed for an adaptive component to migrate can be predicted. From the 
results we can learn that for a long distance connection the time for download 
and for activation is nearly equal, but as the distance gets smaller, the 
activation time gains a higher percentage in the total time (note that the y axes 
are scaled differently). Storing time is negligible compared to other times (thus, 
we may ignore the anomaly that storing the small application took more time 
than storing the bigger one – obviously a consequence of third party load on 
the bme2 node). The total times show that – not surprisingly – offensive 
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adaptation over the Internet costs much more than inside a LAN, however it 
pays much better as well, as shown in Figure 12.  

 

 
Fig. 14. Elapsed Times for Component Migration 

4. Capability-driven Stream-level Adaptation  

Whereas ADMS performs offensive adaptation on the number and location 
of server components, QBIX [1] is an adaptive meta-data hinted proxy that is 
able to transcode MPEG-4 videos in real-time. This kind of defensive 
adaptation is applied when e.g. the terminal capabilities of the client indicate 
that it cannot cope with the quality of the media stream. Media adaptation can 
be classified into three major categories: bit rate conversion or scaling, 
resolution conversion, and syntax conversion. Bit rate scaling can adapt to 
shortages in available bandwidth. Resolution conversion can adapt to 
bandwidth limitations, but it can also accommodate for known limitations in the 
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user device, like processing power, memory, or display constraints. Syntax 
conversion is used in a hybrid network to match sender and client compression 
protocols.  

In contrast to ADMS, QBIX was designed as a single node system. It relies 
extensively on multimedia standards like MPEG-4 for video coding, MPEG-7 
and MPEG-21 for meta-data, and transport or communication protocols like 
RTP, RTSP and SDP. While older video coding standards did not provide 
sufficient support for adaptation, MPEG-4 is actually the first standard that 
offers extensive adaptation options. 

4.1. Adaptation in MPEG-4  

4.1.1. System-level Adaptation  

An MPEG-4 system stream can contain multiple video objects. These video 
objects may be transmitted with different priorities. Adapting on this level 
means dropping video objects during transmission (object-based scalability). 
Besides object-based adaptation, MPEG-4 systems provides spatial, temporal, 
and SNR fine granular scalability (FGS) support. Combinations of spatial, 
temporal, FGS, and object-based scalability are possible, although not each 
combination is allowed (e.g. spatial and FGS). The advantage of adaptation at 
the system level is that the burden of generating all necessary information for 
adaptation is in the video production stage. The disadvantage is, however, that 
possible adaptation options are fixed during encoding and that decoding multi-
layer bit streams adds complexity to the decoder. 

4.1.2. Elementary Stream Adaptation  

Elementary stream (ES) adaptation can be applied on compressed or 
uncompressed video data. In both cases, adaptation is limited to quality 
reduction. Adaptation of elementary streams allows for adaptation options not 
known during the creation of the video in the production stage.  

Adaptation on compressed data includes mechanisms for temporal 
adaptation (frame dropping) and bitrate adaptation (color reduction, low pass 
filtering, requantization [2–4]). These mechanisms target bit rate adaptation, 
and can be combined [5].  

Finally, adaptation in the pixel domain (on uncompressed video data) is the 
conventional method for video adaptation. Again, only quality reduction is 
achievable. Since the video stream is decompressed into raw pixels, which will 
be encoded again, video adaptation in the pixel domain involves high process-
ing complexity and memory requirements. The advantage of these techniques 
is flexibility. Video characteristics such as spatial size, color, and bitrate can be 
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modified. Thus, adaptation in the pixel domain can prepare the video according 
to client properties for optimal resource usage.  

While MPEG-4 offers support for adaptation, the question remains how the 
proxy determines which adaptation step will give the most benefit in a certain 
situation. This can only be solved by adding meta-information to a video, as 
defined by MPEG-7 [9,43].  

5. Proxy Architecture 
 

 
Fig. 15. Proxy Modules 

The proxy cache consists of five large modules (Figure 15). The IO Layer is 
used to read and write video data, the Adaptation Engine uses the IO Layer to 
read/write frames and transforms them. The MPEG-7 module offers means to 
parse and generate MPEG-7 descriptions. The Cache Manager manages the 
cached videos and uses the adaptation engine to realize its cache replacement 
strategies. The Session Management module consists of three modules: The 
Server Module imitates a media server for the client, the Client Module imitates 
a client for the media server, and the third is the Session Manager that controls 
the video flow.  

5.1. IO Layer  

The IO layer realizes input/output in the proxy, hiding network and file 
access behind one abstract class. IO is frame and ES based, i.e., complete 
frames of an ES are written or read. Currently, raw ES and .mp4 files are 
supported. On the network, we support multicast and unicast streams 
packetized with RFC3016 [44]. Advanced packetization layers like MultiSL or 
FlexMux are features currently not supported; they will be added later. For a 
detailed description of the mentioned packetization layers, see [45].  
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5.2. Adaptation Engine  

The adaptation engine uses two important concepts:  
 

• Adaptors  
 
An adaptor expects as input a single frame and returns a list of adapted 

frames. An adaptor is allowed to buffer frames, until it has enough data 
available to perform one adaptation step. Currently, only visual media adaptors 
are supported; system level adaptation is not yet, nor is audio. We support 
most of the adaptations mentioned in Section 4.1.2. The following ones have 
been implemented:  
⋅ Temporal reduction: drop B-frames, or B- and P-frames  
⋅ Color reduction  
⋅ Spatial reduction  
⋅ Bitrate scaling  

 
• Data Channels  

 
A DataChannel reads from an IO object and invokes one of the aforemen-

tioned adaptors to (possibly) modify the frame. Due to complex adaptors that 
might require frame buffering, a list of result frames can be returned. To cope 
with such a bursty behavior, the DataChannel maintains a send queue where 
the result frames are inserted. After the adaptation, only one frame per 
operation is sent to the output IO objects. We allow more than one IO object, 
so that clients can be grouped together. In the simplest case we have two 
clients: one viewer and the proxy itself storing the adaptation result to its hard 
disk. 

In the worst case, a buffering adaptor will increase the startup delay, but 
there should be no additional time penalty afterwards (assuming the proxy is 
fast enough for real-time adaptation).  

The TemporalReduction adaptor is implemented as a compressed domain 
transcoder. It parses the incoming frames, and according to their frame type it 
decides to drop complete frames or not. To avoid artifacts in the displayed 
video, frame dropping follows the following rule: first, drop all B frames within a 
GOP; if this is not sufficient, drop P frames. I frames are not dropped.  

The three remaining adaptors are implemented as pixel domain transcoders, 
i.e. they decode, change and then encode an MPEG-4 visual ES. The open-
source MPEG-4 codec developed in the XviD project (http://www.xvid.org/) is 
used for transcoding. The encoder behavior is set to constant bit rate (CBR) 
mode and produces I and P frames only. This reduces the computational 
complexity significantly, and real-time behavior of the encoder is achieved [1].  

To allow for maximum flexibility, all adaptors can be arranged in an 
AdaptorChain. Figure 16 shows an example.  
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5.3. MPEG-7 Module  

The MPEG-7 module adds support for creating and parsing MPEG-7 
descriptions. In the current implementation, the focus is on variation 
descriptors.  

 

 
Fig. 16.  Example of an AdaptorChain 

MPEG-7 describes the internal structure of the source MPEG-4 file including 
size, type – such as video, audio or BIFS (Binary Interchange Format for 
Scenes) – and bit rate for each elementary stream. A variation descriptor 
contains the name of the adaptation step, the expected quality loss and the 
priority of this adaptation step. Additionally, a modified MPEG-7 description for 
each elementary stream is generated.  

5.4. Cache Management  

The Cache Manager (CM) manages all the videos stored in the cache. It 
uses the adaptation engine to perform the adaptation, and the MPEG-7 module 
to decide on the adaptation. If no description is available, a default sequence of 
variations is used. The cache manager is described in detail in [1].  

 

5.5. Session Management  

The SessionManagement module imitates a server for the client 
(ServerModule) and a client for the media server (ClientModule). It is 
responsible for creating and managing sessions. A Session always connects 
two communication partners. Thus, two different session types exist:  
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• Server session: connects client and proxy  
• Client session: connects proxy and server  

 
A Session object manages DataChannels. For each ElementaryStream, one 

DataChannel is created and controlled. A ServerSession manages all data 
flows from the local proxy disk, a ClientSession all data flows that read their 
input from the network. An example is given in Section 6.  

6. Hybrid Adaptation: A Combined Approach  

The integration of the offensive server-level adaptation and the defensive 
stream-level adaptation is subject of current and future research activities. We 
have done first steps in integrating the QBIX proxy as a data collector 
component into the ADMS system. Two major extensions to the QBIX proxy 
are necessary. First, the proxy has to be made CORBA-aware by being derived 
from Vagabond2’s AdaptiveApplication interface. Thus, the proxy must 
implement the ADMSDataCollector interface, as illustrated in Figure 17. As 
shown for the data manager (Figure 10), the data collector is also derived from 
the ADMSServerApplication interface.  

 

 
Fig. 17. Partial IDL Specification of an ADMS Data Collector 

 
The implementation of the ADMSDataCollector interface must be a Java-

wrapper class, which translates the CORBA method calls into QBIX native calls 
to control the proxy. The interface implementation must be done in Java since 
Vagabond2 requires this for instantiating it as an adaptive component in a 
harbour.  

Second, the QBIX IO layer must be enabled to retrieve stripe units from data 
manager components. This is because an ADMS data collector sees an 
elementary stream as a sequence of stripe units. In contrast, QBIX - being 
developed as a single node system - is completely unaware of striping and 
sees a video as a sequence of frames. Thus, QBIX must use CORBA to 
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establish data retrieval sessions with the target data managers, and to collect 
media stripe units.  

A DataConverter class maps the stripe unit view to a frame view. For the 
proxy the DataConverter is a black box that implements the IO interface. The 
two essential methods are Frame*read(), and write(Frame*frm). Implementing 
the read method connects QBIX directly with the data manager components. 
Implementing the write method realizes an ADMS compatible data distributor. 

  

 
Fig. 18.  Example of a Session 

An exemplary session for an ADMS server combined with a proxy acting as 
a gateway is shown in Figure 18. The MPEG-4 video in the example consists of 
four elementary streams: two visual, one audio, and the BIFS stream (the 
object descriptor stream is omitted). Assume that only a bandwidth of 40 
kbit/sec is available for the client. The source video has an original bit rate of 
136 kbit/sec. The media server does not offer a lower bandwidth version. 
Normally, this would exclude the client from viewing that video.  

When initiating a Session, the client sends an RTSP DESCRIBE to the 
cluster manager (CM). If the cluster manager admits the client, an RTSP 
REDIRECT is sent back to the client, pointing it to the server node which the 
cluster manager has chosen as its proxy node. The client resends the 
DESCRIBE to the proxy node. The DESCRIBE command also contains the 
client’s terminal capabilities, including display size and the 40 kbit/sec 
bandwidth limitation. In the mean time, the CM has informed the node which 
part of a video the client has requested and in which quality. If client and CM 
description do not match, the session is terminated and the CM is informed.  
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The SessionCreator fetches the MPEG-7 data from the meta-database. It 
then invokes the MPEG-7 module which parses the description and returns a 
sequence of adaptation steps for each elementary stream of the video. Having 
seen the video meta-data and the user capabilities, the SessionCreator detects 
the mismatch between the bandwidth of the client and the video. This 
bandwidth gap is closed by applying an adaptor to each video stream. We 
assume that a BitrateScalingAdaptor is used which reduces the bandwidth from 
64 kbit/sec down to 16 kbit/sec for each video stream. The audio stream is 
simply forwarded. The total bandwidth consumption of the adapted streams is 
reduced to 40 kbit/sec, so the client can watch a lower quality version of the 
original video. In the extreme case, it could happen that no video is forwarded 
at all, only audio (e.g. for clients without a screen).  

When the proxy receives a SETUP for each elementary stream, a 
DataChannel object is created with the aforementioned IO class as input, a 
BitRateScalingAdaptor for the visual streams and an RTP output class. As 
soon as the client sends a PLAY command, the IO input class starts to fetch 
the stripe units from the ADMS data manager nodes, converts them to a frame-
based view and stores the created frames in an internal buffer. The 
DataChannel gets the frames, invokes the Adaptor to re-encode them and 
pushes the adaptation results into the RTP class for sending.  

7. Conclusion and Future Work  

The requirements, use, and implementation of adaptation techniques in 
distributed multimedia systems have been discussed. Offensive (or server 
level) adaptation can proactively cope with situations when the resources of the 
server nodes and/or network links get saturated. This kind of adaptation is 
realized by an adaptive distributed multimedia streaming server (ADMS), 
consisting of four types of adaptive components, which can be combined in an 
arbitrary number of instances, running on an arbitrary number of server nodes. 
The resulting virtual streaming server runs on top of Vagabond2, the 
middleware used for component movement and adaptation support.  

Defensive (or stream level) adaptation is realized by varying a media 
stream’s spatial, temporal, or qualitative resolution. QBIX – an adaptive, meta-
data hinted proxy – supports this kind of adaptation by transcoding MPEG-4 
video elementary streams in real-time. Defensive adaptation is applied for 
quality-aware cache replacement or when the client has restricted terminal 
capabilities.  

Finally, we have shown how offensive and defensive adaptation can work to-
gether in the context of ADMS and QBIX. It has been demonstrated how a 
QBIX proxy becomes an ADMS data collector component, in order to be 
replicated and migrated on demand. In this case, the proxy becomes server-
aware, with the drawback that it becomes dependent on ADMS, but with the 
benefit of being optimally controlled by the ADMS cluster manager concerning 
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physical location and number of instances. A complete implementation and 
quantitative evaluation of the hybrid adaptation approach is work in progress.  
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