
ComSIS Vol. 1, No. 1, February 2004 45

Offensive and Defensive Adaptation in Distributed
Multimedia Systems♣

Roland Tusch
1
∗,

László Böszörményi

1
, Balázs Goldschmidt

2
,

Hermann Hellwagner
1
, Peter Schojer

1

1 Institute of Information Technology, Klagenfurt University, Klagenfurt, Austria
2 Department of Control Engineering and Information Technology, Budapest

University of Technology and Economics, Budapest, Hungary

Abstract. Adaptation in multimedia systems is usually restricted to
defensive, reactive media adaptation (often called stream-level
adaptation). We argue that offensive, proactive, system-level adaptation
deserves not less attention. If a distributed multimedia system cares for
overall, end-to-end quality of service then it should provide a meaningful
combination of both.
We introduce an adaptive multimedia server (ADMS) and a supporting
middleware which implement offensive adaptation based on a lean,
flexible architecture. The measured costs and benefits of the offensive
adaptation process are presented.
We introduce an intelligent video proxy (QBIX), which implements
defensive adaptation. The cost/benefit measurements of QBIX are
presented elsewhere [1].
We show the benefits of the integration of QBIX in ADMS. Offensive
adaptation is used to find an optimal, user-friendly configuration
dynamically for ADMS, and defensive adaptation is added to take usage
environment (network and terminal) constraints into account.

Key words: stream-level adaptation, server-level adaptation, MPEG-4,
MPEG-7, MPEG-21.

♣ This research project is funded in part by FWF (Fonds zur Förderung der wis-
senschaftlichen Forschung), under the projects P14788 and P14789, and KWF
(Kärntner Wirtschaftsförderungsfonds).

∗ Corresponding author. Tel.: +43/463/27003622. Fax: +43/463/27003699
Email addresses: roland@itec.uni-klu.ac.at (Roland Tusch), laszlo@itec.uni-klu.ac.at
(László Böszörményi), balage@inf.bme.hu (Balázs Goldschmidt), hellwagn@itec.uni-
klu.ac.at (Hermann Hellwagner), pschojer@itec.uni-klu.ac.at (Peter Schojer).

46 ComSIS Vol. 1, No. 1, February 2004

1. Introduction

Adaptation is - in a general sense - the capability to respond to changes of the
environment by the change of some own characteristics, without losing the own
identity. If a living creature feels hungry, but sufficient food is not available, then
it has two choices for survival: Either it is able to enlarge the available food
resources, e.g. by moving to a better place, or to change its inner need and
learn to be satisfied with less or worse food. The first approach could be called
offensive, the second defensive adaptation. Obviously both have their limits
and have a common prerequisite: flexibility. (Our creature has to be flexible
either to go outside and find new places or to go inside and be satisfied with
less food - or to do both, if e.g. a new place can be found, which is, however,
still not sufficiently rich of food.) Offensive adaptation is usually proactive (it is
better to start to look for an opulent place before getting too hungry), whereas
defensive adaptation is usually reactive (if there is no food, there is no other
choice than getting humble).

In distributed multimedia systems - especially in video management systems
- adaptation is becoming increasingly important. The reason is simple: due to
the challenging amount of data involved and the soft real-time constraints,
video management systems are always ”resource hungry”. This hunger can be
satisfied neither by best-effort resource management, which cannot handle
timing constraints, nor by reservation, which over-allocates resources (for the
worst case). Therefore, on the long term, adaptation is a necessity. It is -
fortunately - also an opportunity, both in its defensive and in its offensive forms.

To find new places and new food, we have to be able to communicate with
the environment, we must understand its signals. In a computerized world this
means: being able to support standardized communication.

Fairly much research has been done on media adaptation, which is
obviously defensive [2–5]. The required flexibility lies in the inner structure of
the media data. Especially by sophisticated video coding techniques, ample
space is created for transcoding of video data resulting in smaller size and
bitrate and in still acceptable perceptual quality. Fortunately, the relation
between size and quality reduction is usually non-linear: up to a certain limit,
large size reduction causes a moderate quality loss.

Much less research has been done on offensive (also called server-level)
adaptation. The reason for this reduced interest lies probably in the fact that
most distributed multimedia systems lack the necessary flexibility. Such a
system must be able to dynamically acquire new resources and move/replicate
its own code and data as needed. This requires flexibility of the architecture
and consequent adherence to standards – both rare characteristics in current
distributed multimedia systems. In the course of the ADMITS (Adaptation in
Distributed Multimedia IT Systems) project [6,7] we address both kinds of
adaptation and their integration as well.

Offensive adaptation is realized by an Adaptive Distributed Multimedia
Server (ADMS), which is able to allocate new server nodes on the network and
migrate functionality and data to them on demand. ADMS has a highly flexible
architecture enabling this kind of migration operations. If for example the host

ComSIS Vol. 1, No. 1, February 2004 47

recommender component notices that a certain group of clients could be better
served if the data collector component (collecting stripe units from the data
storage nodes and streaming them to the clients) were physically located near
to this client group, then it simply allocates a new node and sends a copy of the
data collector code there. A detailed description of ADMS is given in Section 3.

Defensive adaptation is realized by a Quality Based Intelligent Proxy (QBIX).
The proxy is able to handle different quality levels of the same video (based on
MPEG-4 [8] coding and on transcoding, supported by MPEG-7 [9] meta data).
It can operate as a cache, in which case it uses adaptive cache replacement
algorithms. Instead of discarding replacement candidates it reduces their
quality as long as possible, thus raising the hit rate considerably. It can also
operate as a gateway, in which case it serves client devices with different
capabilities by videos of different quality. It can e.g. send a high quality version
of a video to clients on a personal computer and a low quality version to clients
with a PDA. A detailed description of QBIX is given in Section 4.

An integration of the offensive and defensive adaptation is given if we use
the intelligent proxy itself as a component of the adaptive server. Due to the
flexible architecture this is technically easy. The usual strategy is that we first
try to apply offensive adaptation by enlarging the server by new nodes to host
the proxy functionality. As the proxy is able to perform defensive adaptation, it
still can reduce the quality of the stored videos if necessary. Whereas ADMS
and QBIX are already fully operational, the integration is still in progress. The
quantitative evaluation of the effect of the integration is the next step in the
ADMITS project.

2. Related Work

In [10] it is shown that distributed multimedia servers have benefits over
single server architectures regarding scalability and server-level fault tolerance.
We discussed in earlier papers [11,12] that existing distributed server
architectures like the Berkeley Distributed VoD System [13], the Tiger Video
Fileserver [14], or the EURECOM VoD Server [15] have a monolithic
architecture and are performance-optimized to one main goal: serving
thousands of simultaneous client requests. However, in heterogeneous
environments, it is usually not the server, but the network that becomes a
bottleneck. This is especially the case if a certain level of quality of service is to
be guaranteed in terms of latency times, bandwidth availability or packet loss.

Although sophisticated commercial systems like the Darwin Streaming
Server (DSS) – an open source version of Apple’s modular QuickTime
Streaming Server – or the Helix Universal Server (HUS) [16,17] –
developed by RealNetworks –, show a highly distributed architecture, their
organization is static, they cannot acquire new resources on the network on
demand.

Content distribution networks (CDNs) are dedicated collections of servers
(called data centers) strategically located across the Internet. A typical

48 ComSIS Vol. 1, No. 1, February 2004

example for a CDN is Akamai’s distributed content delivery system, which
deploys more than 12000 servers in over 1000 networks around our planet
[18]. Based on the assumption that the strategic locations of the data centers
are well chosen, a CDN is definitively a good solution for adapting the physical
location of a media stream. It is highly available and serves the streams from
locations where clients perceive a good quality of service. However, the
strategic positioning of data centers and edge servers is typically done
manually by observing client demands. A CDN does not provide means for
performing strategic placements automatically.

In a peer-to-peer (P2P) file sharing network, peers collaborate to form a
distributed system for the purpose of exchanging content [19]. However, the
applicability of P2P networks for adapting the location of media streams in a
distributed streaming environment is rather poor. In particular, it faces the
following two problems: (i) Participation in a P2P network is purely voluntary. A
recent study has shown that most peers are run by end users, who suffer from
low availability, and have network connections with a relatively low capacity
[20]. (ii) It is server-less, which makes a controlled distribution of content very
difficult [21]. Nevertheless, there are approaches that use P2P content delivery
for media streaming, as e.g. presented in [21] and [22].

An offensive server architecture requires a QoS-aware middleware providing
active support for adaptation steps. Extensive work has been done in the area
of QoS-aware middleware for ATM-based networks and also for systems using
RSVP [23–25]. These systems are hardly appropriate for the Internet, where
resource reservation is still rather theory than practice. On the other hand,
considerable work has been done on end-to-end distance monitoring and
estimation in the Internet [26–29]. Such bandwidth and delay
measurement/estimation algorithms can be used to approximate QoS
awareness for a middleware as needed for offensive adaptation. Although
certain middleware systems support dynamic replication or migration of
services and components, like Jini [30] or Symphony [31], they do not provide
measurements and estimations of network distances and server resources.

One possibility to cope with typical Internet problems such as network jitter
and bandwidth limitations is media adaptation. QBIX [1] is a quality based
intelligent proxy that caches whole videos and offers media adaptation support
to reduce the size/bandwidth requirements of the cached videos. Related work
in this area is sparse. Examples are periodic caching of layered coded videos
[32], combination of replacement strategies and layered coded videos [33],
quality adjusted caching of GoPs (group of pictures) [34], adaptive caching of
layered coded videos in combination with congestion control [35] or simple
replacement strategies (patterns) for videos consisting of different quality steps
[36]. Most of these proposals rely on simulation to evaluate the performance of
the caching techniques. Therefore some assumptions have to be made about
the structure of the videos (e.g. layered videos).

Because QBIX supports re-encoding of videos without layered encoding, a
real implementation was used to evaluate the impact of re-encoding on the
quality of cache replacement, something which is hard to simulate. The only
other project we know about, also offering a real implementation is described in

ComSIS Vol. 1, No. 1, February 2004 49

[35]. This work relies on proprietary systems and protocols, whereas QBIX
integrates modern multimedia standards like MPEG-4 [8], MPEG-7 [9], the
upcoming MPEG-21 standard [37] and communication standards like RTP and
RTSP [38]. Integrating QBIX into ADMS will create the very first distributed
multimedia server that combines offensive and defensive adaptation.

3. QoS-driven Server-level Adaptation

In a statically configured distributed server architecture with a behavior
steered by several sorts of distance metrics to the clients (e.g. by evaluating
RTCP statistics of former clients), client requests can either be accepted or
denied (admission control). There is no third option. In cases of increased
denials due to network resource shortages, such a server has no chance to
adapt its layout to serve more clients. Defensive media adaptation (see more in
Section 4) cannot always cope with such situations either, because (1)
adaptation of the media content is not always possible and (2) it may even be
prohibited by the content provider.

In the sequel, we therefore introduce an adaptive distributed server
architecture that can modify its configuration according to client requests. We
discuss this architecture and evaluate its performance behavior.

3.1. Components of a Distributed Multimedia Streaming Server

3.1.1. Guidelines for Component Identification

In [11,12] we describe the architecture of an adaptive distributed multimedia
streaming server (ADMS), which explicitly controls its own layout. There is a
trade-off between the grade of flexibility and the complexity caused by too large
a number of components. We identified four basic components that are
necessary and sufficient for the composition of a dynamically reconfigurable
streaming server. Figure 1 illustrates a sample combination of these
components, including the standard protocols used.

50 ComSIS Vol. 1, No. 1, February 2004

Fig. 1. Components and Protocols Used in a Component-based Streaming Server Environment

The following two guidelines have to be taken into account when designing a
component-based distributed streaming server. First, each component must be
independent, reusable, adaptable, and combinable as much as possible. These
considerations are valid for a static distributed environment as well. For a
dynamically adaptable system the components must additionally be movable.

Second, in order to get a lean structure with a strongly limited number of
components, each component should fulfill one substantial logical task. Such
substantial tasks are data acquisition, data streaming, data storage
management and overall control. For example, during a data acquisition
scenario initiated by a production client, a media stream has to be distributed
(”striped”) among a set of server nodes. One single component is needed to
receive the stream data, to split the stream into smaller pieces, and to distribute
the pieces among a set of data nodes. The data nodes themselves are
equipped with a component for storing and retrieving pieces of media data.
Thus, a distribution component can be combined with a number of storage
components, which all may run on separate server nodes.

Following these guidelines, four basic components have been identified to
constitute a component-based distributed streaming server: data managers
(DMs), data distributors (DDs), data collectors (DCs), and cluster managers
(CMs). The implementation of the components can use different technologies,
interoperability is achieved by using CORBA as communication medium [39].

3.1.2. Data Manager

Data managers are the key components in the ADMS architecture. A data
manager provides means for efficient storage and retrieval of elementary
streams or segments thereof. Since one elementary stream or segment may be
striped among a number of data managers, each data manager only stores a

ComSIS Vol. 1, No. 1, February 2004 51

portion of the stream or segment. Figure 2 illustrates the internal storage
organization of the media streams. The data manager stores a set of partial
media streams, which themselves consist of a set of leaf and compound media
segments. Real media data is only stored in leaf media segments. Compound
segments are used to describe syntactic and semantic relations among
elementary segments.

Fig. 2. Objects Comprising a Data Manager Component

3.1.3. Data Distributor

A data distributor component is responsible for the distribution of media data
received from a production client or a live camera to a selected set of data
managers. The unit of distribution is a so-called stripe unit, which can be either
of constant data length (CDL), or of constant time length (CTL). In CDL mode,
parity units are generated in order to cope with data manager failures. The
number and location of target data managers and the mode of striping (single,
narrow or wide) is advised by the cluster manager component.

In cases of a non-live source, the process of distribution can be driven by
MPEG-7 [9] metadata which describe the temporal decomposition of the media
stream. A media stream can be decomposed into a number of segments,
organized in an arbitrary number of levels. Figure 3 presents a sample
temporal decomposition of a video stream into two segments, using an MPEG-
7 descriptor.

The data distributor distributes only elementary streams, since the target
system is designed for streaming scenarios based on RTP. Thus, if the media
source contains a multiplexed stream, it has to be demultiplexed into elemen-
tary streams before striping.

52 ComSIS Vol. 1, No. 1, February 2004

Fig. 3. Temporal Decomposition of a Video Stream using MPEG-7

3.1.4. Data Collector

The data collector performs the inverse operation of data distribution. It
collects stripe units of a certain media stream from the appropriate set of data
managers, re-sequences the units and sends the buffered stream to the client
via an RTP connection. It provides server-level fault tolerance by exploiting
parity units in case of unavailable data managers. The collector may also
incorporate a caching component, thus reducing client startup latencies and
bandwidth consumption. In particular, the data collector can play the role of a
proxy server, which is dynamically assigned to serve a group of clients by the
cluster manager. This constitutes the difference to usual proxies, which are
selected by the clients themselves.

An interesting approach is the integration of gateway functionalities into the
data collector. A gateway performs transcoding in order to adapt to given
network or client device constraints. It may e.g. reduce the resolution of a video
which is sent to a client equipped with a small-resolution screen. A data
collector incorporating gateway functionality is a particularly appealing example
for the combination of offensive and defensive adaptation. We use offensive
adaptation to bring the gateway to the proper place, and there use defensive
adaptation to comply with the given client capabilities.

ComSIS Vol. 1, No. 1, February 2004 53

3.1.5. Cluster Manager

A cluster manager is the initial entry point for clients. In contrast to the three
component types described before, there is (usually) only one instance of it in
an ADMS cluster. It dynamically manages the locations of the other three
component instances and maintains knowledge about the distribution of
elementary streams among data managers.

An important point is that the cluster manager does not serve client requests
by itself. Instead, it redirects a request to an appropriate data collector or
distributor, respectively. The most appropriate node to host a data collector or
distributor is found by the so-called adaptation engine (abbreviated as AE in
Figure 1), which is a sub-component of the cluster manager. In a static
distributed multimedia server (SDMS) system the adaptation engine may
perform several selection algorithms for finding the most appropriate candidate
among the given set of nodes. However, if no appropriate candidate can be
found, the request has to be denied. In contrast, in an ADMS environment, the
adaptation engine may transmit (replicate or migrate) a data collector or
distributor instance to an idle server node candidate, thus satisfying requests
which might have been denied by a static architecture.

3.1.6. Protocols for Component and Client Interaction

As demonstrated in Figure 1, the only control protocol used between clients
and DMS components is the RTSP [38] protocol. Keeping the client
implementation CORBA-unaware has the benefit that it may interact with any
streaming server which conforms to media streaming standards. The control
protocols used internally between DMS components are CORBA-based and
conform to the IDL specifications of the components. The ”master mind” behind
all kind of scenarios is an MPEG-7 meta database, which stores syntactic and
semantic information about the media streams stored on the server.

3.2. ADMS: An Adaptive Distributed Multimedia Streaming Server

The components introduced in Section 3 could be parts of either a static or a
dynamic distributed multimedia streaming server (SDMS resp. ADMS).

Before introducing the middleware, which is the engine making the server
dynamic (see Section 3.2.2), we discuss the main shortcomings of a static
architecture.

3.2.1. Discussion of the Static Architecture

In [10] it is claimed that distributed video servers are load balanced
regardless of the skew in video popularities. This is only valid for an
architecture where the data collectors are integrated into the client application

54 ComSIS Vol. 1, No. 1, February 2004

(proxy-at-client model). Consider that there are M data manager and N data
collector instances in an SDMS, supporting the proxy-at-server or the
independent-proxy model. Each server node has the same capacity C, and
each client request demands the same amount of resources c on a data
collector (Figure 4).

Fig. 4. Host Resource Saturation Progression in an SDMS

In a fair resource reservation scheme with a uniform distribution of requests

to the data collectors, N data collectors can admit at most
⎥⎦
⎥

⎢⎣
⎢ ⋅

c
CN

simultaneous requests. On the other hand, a requested media object is striped
among the M data managers, resulting in a capacity demand of

M
c on each

data manager on average. Thus, the total number of client requests that can be
admitted on one data manager node is bound by

⎥⎦
⎥

⎢⎣
⎢ ⋅

c
MC . Since in a typical

static server configuration M is a multiple of N, overall load-balancing is not
given anymore. Figure 4 illustrates this imbalance showing that although the
M=10 data manager nodes are still under-utilized at 20%, the N=2 data
collectors are reaching their saturation point. The assumed resource demand
ratio is δ = 0.1 per request on a data collector.

To get rid of the shortcomings of the SDMS architecture, an infrastructure is
required which allows for a dynamic composition of the components described
in section 3.1, resulting in an adaptive distributed multimedia streaming server
(ADMS). Components should be replicable and/or migratable on demand,
allowing the dynamic composition of a virtual server [31]. We developed a
CORBA-based infrastructure called Vagabond2 [40], which supports dynamic
instantiation, migration, replication and evacuation of so-called adaptive
applications (a synonym for component in Vagabond2).

ComSIS Vol. 1, No. 1, February 2004 55

3.2.2. Vagabond2: A Middleware for Virtual Servers in Internet Settings

Vagabond2 is a CORBA-based middleware, implemented in Java, consisting
of two general modules: a module for component management, and a module
for component adaptation (see Figure 5). The component management module
provides two services for a distributed server like ADMS: an application service
for component movement between Vagabond2 hosts, and a host service for
registering and querying harbours. A harbour represents the runtime
environment which must be running on each Vagabond2 host. Vagabond2
enables loading the Java byte code of an adaptive application, and instantiating
this as a CORBA servant.

The component adaptation module provides two central services for
offensive server adaptation: the adaptation service and the resource broker.

Fig. 5. Modules of the Vagabond2 Middleware

The adaptation service provides the so-called host recommender, which tries
to find an optimally located host for a certain component under a given set of
constraints. An example for a set of QoS constraints described by an MPEG-21
descriptor embedded in an RTSP SETUP message is given in Figure 6.

The MPEG-21 [37] network characteristics descriptor is rooted by the DIA
(Digital Item Adaptation) element. The capability element of the descriptor says
that a bandwidth range between 32 and 128 kbit/sec is acceptable, packets
might be delivered out of order and may be lost. The condition element
specifies that the 128 kbit/sec link may be fully utilized, but on average should
only get 64 kbit/sec. The packet delay from a data collector to the client should
not be greater than 500 msec, and delay variation not greater than 100 msec.
Finally, the packet loss rate must be below two percent.

56 ComSIS Vol. 1, No. 1, February 2004

Fig. 6. RTSP SETUP Message Including an MPEG-21 DIA Descriptor

The RTSP message further indicates (field Range) that the client wants to

get the stream segment from the 20th to the 40th second (media relative time).
Additionally, the request should be scheduled for March 1st, 2003, at 14
o’clock. This time indication at session setup enables the adaptation engine to
proactively schedule the request to an appropriate data collector, taking into
account the given QoS constraints, and the location of the data managers,
where the stream data has to be retrieved from.

When a new client request R arrives, the host recommender has to work out
which host should run the data collector instance servicing R, and whether it
should be an existing or a new (replicated or migrated) instance. The host
recommender has to solve the dynamic server selection problem to find the
best available data collector. If no appropriate data collector exists at all, an
SDMS has to reject the request. In contrary, the ADMS may have enough time
to create a new place by solving the capacitated facility location problem [41].

In order to prepare these decisions, the host recommender cooperates with
the resource broker - the second service of the adaptation module. The broker
provides means to admit immediate and future QoS-constrained requests, and
to perform logical reservations of network and host resources. It achieves this
by using two additional services: the network resource service, and the host
resource services, the latter running on each Vagabond2 harbour.

An excerpt of the network resource service’s IDL specification is shown in
Figure 7. Via the NetworkInfo interface we can get for example the capacity of
a route between two arbitrarily connected Vagabond2 server hosts. Supported
distance metrics are bandwidth, delay, packet loss rate, and round trip time. In
this context, the specification of a period is important. If the period covers future
time points, the service provides an estimated value, by applying time series
analysis based on measurements. The network resource service requires that
on each Vagabond2 harbour a network monitor is running, which periodically

ComSIS Vol. 1, No. 1, February 2004 57

measures instantaneous values of all supported metrics. For the host resource
service a similar scenario is applied: available host resources (CPU, memory,
and disk space) are periodically measured and their throughputs are
benchmarked on harbour start-up.

Fig. 7. Vagabond2’s Network Resource Service Specification

There is an important difference between finding optimally placed nodes for
ADMS data collectors and Web server replicas as described in [42], namely the
asymmetric character of the recommendation problem. In ADMS, the
connections between data managers and data collectors are different from
those between collectors and clients. In the former, data transmission must be
error-free and is fairly irresistible against jitter, therefore TCP connections can
be used. In the latter, videos must be streamed with limited jitter, but not
necessarily error-free (e.g. B frames might be lost), therefore RTP/UDP based
communication can be used. A simulation experiment has shown that when
many data collectors are near to the client (i.e. low UDP and large TCP
communication), the standard deviation (the jitter) remains low, but the total
amount of data travelling in the network increases (see Figure 8).

3.2.3. Making an ADMS Component ’Movable’

An adaptive component must be derived from the CORBA interface
AdaptiveApplication [40, 12]. The key functionality of this interface is the
getApplicationInfo() method, which is used by a harbour to request for the
binaries of the component, and optionally for a set of files it may depend on.
Figure 9 illustrates this as an excerpt of Vagabond2’s IDL specification.

58 ComSIS Vol. 1, No. 1, February 2004

Fig. 8. Jitter (left) and data flow size (right). wdm/wcl is the ratio between the costs of the DC-

DM and DC-client links.

Fig. 9. Vagabond2’s Core Interfaces for Adaptive Components

Figure 10 illustrates how a data manager component is derived from the
AdaptiveApplication interface. First, a common abstraction layer is introduced,
which is valid for all four ADMS component types. It introduces the interfaces
ADMSServerApplication and Session, allowing the establishment of rate-
controlled and transaction-based sessions of certain types (retrieval,
acquisition, or management). Second, the bottom layer defines the interfaces
and structures comprising the data manager component. An
ADMSDataManager is used to create so-called data manager sessions
(DMSession). Each session is associated with exactly one elementary stream.
A data manager session provides means to store stripe units for a certain
stream segment, to compose a segment tree of known segments, or to retrieve
stripe units of a certain segment via a stripe unit iterator. Based on the
session’s admitted data rate (in kbit/sec), the unit iterator allows to retrieve an
according number of stripe units per second.

ComSIS Vol. 1, No. 1, February 2004 59

If an ADMS component is implemented in another language than Java, a
Java wrapper component must be added. The binary code has to be carried in
the dependent files archive as a shared library. Since an ADMS environment
may consist of heterogeneous nodes, the host service provides information
about the operating system on a certain harbour, in order to move suitable
code to it.

Fig. 10. Data Manager Component as Special Adaptive Application of Vagabond2

3.2.4. Discussion of the Adaptive Architecture

We have evaluated a prototype implementation of our component-based
offensive server in the ADMS test bed illustrated in Figure 11. We measured
the effect of replicating data managers between two LANs connected via the
Internet. One of the LANs was located in Budapest (B-LAN), the other one (I-
LAN) in Klagenfurt. The geographical distance of about 500 km assured a
”real” Internet setting. The retrieval client was located in the I-LAN and ran a
data collector instance on its own host. Each performance test consists of five
test runs and is repeated 50 times. In each run, a sample media stream of
12.5MB size is retrieved from the data manager instances. In test run 0, all
data manager instances are running in the remote B-LAN. In test run 1, the
data manager from host 8 is replicated to host 4, meaning that one data
manager moves ”closer” to the data collector. Both the component code and
the requested media stream are replicated, since hosts 1 – 4 are initially

60 ComSIS Vol. 1, No. 1, February 2004

”empty”. In each further test run, one additional data manager is replicated from
a host of the remote B-LAN to a host in the local I-LAN.

Figure 12 illustrates the mean retrieval times (time needed by the DC to
collect the entire media stream) and the mean throughput results (aggregated
throughput over all connections from the DC to the DMs). It clearly shows that
the more data managers are replicated to the I-LAN, the smaller become the
retrieval times, and the higher becomes the throughput. The variation of the
retrieval times are quite high as long as most data managers are placed in the
remote B-LAN ((a), runs 0–2), they get much smaller as most data managers
arrive at the local I-LAN ((a), runs 3–4).

Fig. 11. ADMS Test Bed and Test Scenario

 (a) Mean Stream Retrieval Time (b) Mean Throughput

Fig. 12. Performance of Test Runs in the Test Scenario

In Figure 13(a) a head-to-head comparison of throughput is given between
replication of four data managers from the B-LAN to the I-LAN (lower
measurement series), and replicating them inside the I-LAN (upper series). Not
surprisingly, a replication inside a LAN does not make much difference. An
interesting property of data managers can be derived from Figure 13(b). It tells

ComSIS Vol. 1, No. 1, February 2004 61

the relative gain on throughput if a certain amount of stripe units is replicated
from one LAN to another (including the time for component code replication). If
the host recommender of Vagabond2’s adaptation service wants to reach 50%
overall throughput gain, it has to replicate 95% of the stripe units (actually all
data managers) to the LAN of the target data collector. (The different curves
show different throughput ratios between the two LANs; more specifically, if T1
is the throughput when every DM is on the local LAN of the DC, and T2 is the

throughput when every DM is on the remote LAN, the ratio
T
T

2

1 parameterizes

the curves.) The dashed line corresponds to the lower throughput series in
Figure 13(a), representing a throughput ratio of 20.

(a) Head-to-head Throughput (b) Relative Throughput Gain

Fig. 13. Measured Throughput in Comparison to Estimated Throughput Gains

Another interesting test run measures the migration times of a data collector
component and a minimal adaptive application (Test App) to three harbours.
Both components are migrated from their home LAN in Budapest (bme2) (1) to
a remote LAN in Klagenfurt (itec), (2) to another LAN at the same campus in
Budapest (bme1), and (3) to a node on the same subnet (bme2). The migration
of an adaptive component consists of three steps: (1) downloading the byte
code and supplementary files, (2) storing them uncompressed on the harbour’s
file system, and (3) loading the necessary classes while activating the CORBA
servant. The harbours have checkpoints at the start and at the end of these
steps, and the elapsed times are stored for every started component. Figure 14
shows the results of the experiments. Using such statistical data, the time
needed for an adaptive component to migrate can be predicted. From the
results we can learn that for a long distance connection the time for download
and for activation is nearly equal, but as the distance gets smaller, the
activation time gains a higher percentage in the total time (note that the y axes
are scaled differently). Storing time is negligible compared to other times (thus,
we may ignore the anomaly that storing the small application took more time
than storing the bigger one – obviously a consequence of third party load on
the bme2 node). The total times show that – not surprisingly – offensive

62 ComSIS Vol. 1, No. 1, February 2004

adaptation over the Internet costs much more than inside a LAN, however it
pays much better as well, as shown in Figure 12.

Fig. 14. Elapsed Times for Component Migration

4. Capability-driven Stream-level Adaptation

Whereas ADMS performs offensive adaptation on the number and location
of server components, QBIX [1] is an adaptive meta-data hinted proxy that is
able to transcode MPEG-4 videos in real-time. This kind of defensive
adaptation is applied when e.g. the terminal capabilities of the client indicate
that it cannot cope with the quality of the media stream. Media adaptation can
be classified into three major categories: bit rate conversion or scaling,
resolution conversion, and syntax conversion. Bit rate scaling can adapt to
shortages in available bandwidth. Resolution conversion can adapt to
bandwidth limitations, but it can also accommodate for known limitations in the

ComSIS Vol. 1, No. 1, February 2004 63

user device, like processing power, memory, or display constraints. Syntax
conversion is used in a hybrid network to match sender and client compression
protocols.

In contrast to ADMS, QBIX was designed as a single node system. It relies
extensively on multimedia standards like MPEG-4 for video coding, MPEG-7
and MPEG-21 for meta-data, and transport or communication protocols like
RTP, RTSP and SDP. While older video coding standards did not provide
sufficient support for adaptation, MPEG-4 is actually the first standard that
offers extensive adaptation options.

4.1. Adaptation in MPEG-4

4.1.1. System-level Adaptation

An MPEG-4 system stream can contain multiple video objects. These video
objects may be transmitted with different priorities. Adapting on this level
means dropping video objects during transmission (object-based scalability).
Besides object-based adaptation, MPEG-4 systems provides spatial, temporal,
and SNR fine granular scalability (FGS) support. Combinations of spatial,
temporal, FGS, and object-based scalability are possible, although not each
combination is allowed (e.g. spatial and FGS). The advantage of adaptation at
the system level is that the burden of generating all necessary information for
adaptation is in the video production stage. The disadvantage is, however, that
possible adaptation options are fixed during encoding and that decoding multi-
layer bit streams adds complexity to the decoder.

4.1.2. Elementary Stream Adaptation

Elementary stream (ES) adaptation can be applied on compressed or
uncompressed video data. In both cases, adaptation is limited to quality
reduction. Adaptation of elementary streams allows for adaptation options not
known during the creation of the video in the production stage.

Adaptation on compressed data includes mechanisms for temporal
adaptation (frame dropping) and bitrate adaptation (color reduction, low pass
filtering, requantization [2–4]). These mechanisms target bit rate adaptation,
and can be combined [5].

Finally, adaptation in the pixel domain (on uncompressed video data) is the
conventional method for video adaptation. Again, only quality reduction is
achievable. Since the video stream is decompressed into raw pixels, which will
be encoded again, video adaptation in the pixel domain involves high process-
ing complexity and memory requirements. The advantage of these techniques
is flexibility. Video characteristics such as spatial size, color, and bitrate can be

64 ComSIS Vol. 1, No. 1, February 2004

modified. Thus, adaptation in the pixel domain can prepare the video according
to client properties for optimal resource usage.

While MPEG-4 offers support for adaptation, the question remains how the
proxy determines which adaptation step will give the most benefit in a certain
situation. This can only be solved by adding meta-information to a video, as
defined by MPEG-7 [9,43].

5. Proxy Architecture

Fig. 15. Proxy Modules

The proxy cache consists of five large modules (Figure 15). The IO Layer is
used to read and write video data, the Adaptation Engine uses the IO Layer to
read/write frames and transforms them. The MPEG-7 module offers means to
parse and generate MPEG-7 descriptions. The Cache Manager manages the
cached videos and uses the adaptation engine to realize its cache replacement
strategies. The Session Management module consists of three modules: The
Server Module imitates a media server for the client, the Client Module imitates
a client for the media server, and the third is the Session Manager that controls
the video flow.

5.1. IO Layer

The IO layer realizes input/output in the proxy, hiding network and file
access behind one abstract class. IO is frame and ES based, i.e., complete
frames of an ES are written or read. Currently, raw ES and .mp4 files are
supported. On the network, we support multicast and unicast streams
packetized with RFC3016 [44]. Advanced packetization layers like MultiSL or
FlexMux are features currently not supported; they will be added later. For a
detailed description of the mentioned packetization layers, see [45].

ComSIS Vol. 1, No. 1, February 2004 65

5.2. Adaptation Engine

The adaptation engine uses two important concepts:

• Adaptors

An adaptor expects as input a single frame and returns a list of adapted

frames. An adaptor is allowed to buffer frames, until it has enough data
available to perform one adaptation step. Currently, only visual media adaptors
are supported; system level adaptation is not yet, nor is audio. We support
most of the adaptations mentioned in Section 4.1.2. The following ones have
been implemented:
⋅ Temporal reduction: drop B-frames, or B- and P-frames
⋅ Color reduction
⋅ Spatial reduction
⋅ Bitrate scaling

• Data Channels

A DataChannel reads from an IO object and invokes one of the aforemen-

tioned adaptors to (possibly) modify the frame. Due to complex adaptors that
might require frame buffering, a list of result frames can be returned. To cope
with such a bursty behavior, the DataChannel maintains a send queue where
the result frames are inserted. After the adaptation, only one frame per
operation is sent to the output IO objects. We allow more than one IO object,
so that clients can be grouped together. In the simplest case we have two
clients: one viewer and the proxy itself storing the adaptation result to its hard
disk.

In the worst case, a buffering adaptor will increase the startup delay, but
there should be no additional time penalty afterwards (assuming the proxy is
fast enough for real-time adaptation).

The TemporalReduction adaptor is implemented as a compressed domain
transcoder. It parses the incoming frames, and according to their frame type it
decides to drop complete frames or not. To avoid artifacts in the displayed
video, frame dropping follows the following rule: first, drop all B frames within a
GOP; if this is not sufficient, drop P frames. I frames are not dropped.

The three remaining adaptors are implemented as pixel domain transcoders,
i.e. they decode, change and then encode an MPEG-4 visual ES. The open-
source MPEG-4 codec developed in the XviD project (http://www.xvid.org/) is
used for transcoding. The encoder behavior is set to constant bit rate (CBR)
mode and produces I and P frames only. This reduces the computational
complexity significantly, and real-time behavior of the encoder is achieved [1].

To allow for maximum flexibility, all adaptors can be arranged in an
AdaptorChain. Figure 16 shows an example.

66 ComSIS Vol. 1, No. 1, February 2004

5.3. MPEG-7 Module

The MPEG-7 module adds support for creating and parsing MPEG-7
descriptions. In the current implementation, the focus is on variation
descriptors.

Fig. 16. Example of an AdaptorChain

MPEG-7 describes the internal structure of the source MPEG-4 file including
size, type – such as video, audio or BIFS (Binary Interchange Format for
Scenes) – and bit rate for each elementary stream. A variation descriptor
contains the name of the adaptation step, the expected quality loss and the
priority of this adaptation step. Additionally, a modified MPEG-7 description for
each elementary stream is generated.

5.4. Cache Management

The Cache Manager (CM) manages all the videos stored in the cache. It
uses the adaptation engine to perform the adaptation, and the MPEG-7 module
to decide on the adaptation. If no description is available, a default sequence of
variations is used. The cache manager is described in detail in [1].

5.5. Session Management

The SessionManagement module imitates a server for the client
(ServerModule) and a client for the media server (ClientModule). It is
responsible for creating and managing sessions. A Session always connects
two communication partners. Thus, two different session types exist:

ComSIS Vol. 1, No. 1, February 2004 67

• Server session: connects client and proxy
• Client session: connects proxy and server

A Session object manages DataChannels. For each ElementaryStream, one

DataChannel is created and controlled. A ServerSession manages all data
flows from the local proxy disk, a ClientSession all data flows that read their
input from the network. An example is given in Section 6.

6. Hybrid Adaptation: A Combined Approach

The integration of the offensive server-level adaptation and the defensive
stream-level adaptation is subject of current and future research activities. We
have done first steps in integrating the QBIX proxy as a data collector
component into the ADMS system. Two major extensions to the QBIX proxy
are necessary. First, the proxy has to be made CORBA-aware by being derived
from Vagabond2’s AdaptiveApplication interface. Thus, the proxy must
implement the ADMSDataCollector interface, as illustrated in Figure 17. As
shown for the data manager (Figure 10), the data collector is also derived from
the ADMSServerApplication interface.

Fig. 17. Partial IDL Specification of an ADMS Data Collector

The implementation of the ADMSDataCollector interface must be a Java-

wrapper class, which translates the CORBA method calls into QBIX native calls
to control the proxy. The interface implementation must be done in Java since
Vagabond2 requires this for instantiating it as an adaptive component in a
harbour.

Second, the QBIX IO layer must be enabled to retrieve stripe units from data
manager components. This is because an ADMS data collector sees an
elementary stream as a sequence of stripe units. In contrast, QBIX - being
developed as a single node system - is completely unaware of striping and
sees a video as a sequence of frames. Thus, QBIX must use CORBA to

68 ComSIS Vol. 1, No. 1, February 2004

establish data retrieval sessions with the target data managers, and to collect
media stripe units.

A DataConverter class maps the stripe unit view to a frame view. For the
proxy the DataConverter is a black box that implements the IO interface. The
two essential methods are Frame*read(), and write(Frame*frm). Implementing
the read method connects QBIX directly with the data manager components.
Implementing the write method realizes an ADMS compatible data distributor.

Fig. 18. Example of a Session

An exemplary session for an ADMS server combined with a proxy acting as
a gateway is shown in Figure 18. The MPEG-4 video in the example consists of
four elementary streams: two visual, one audio, and the BIFS stream (the
object descriptor stream is omitted). Assume that only a bandwidth of 40
kbit/sec is available for the client. The source video has an original bit rate of
136 kbit/sec. The media server does not offer a lower bandwidth version.
Normally, this would exclude the client from viewing that video.

When initiating a Session, the client sends an RTSP DESCRIBE to the
cluster manager (CM). If the cluster manager admits the client, an RTSP
REDIRECT is sent back to the client, pointing it to the server node which the
cluster manager has chosen as its proxy node. The client resends the
DESCRIBE to the proxy node. The DESCRIBE command also contains the
client’s terminal capabilities, including display size and the 40 kbit/sec
bandwidth limitation. In the mean time, the CM has informed the node which
part of a video the client has requested and in which quality. If client and CM
description do not match, the session is terminated and the CM is informed.

ComSIS Vol. 1, No. 1, February 2004 69

The SessionCreator fetches the MPEG-7 data from the meta-database. It
then invokes the MPEG-7 module which parses the description and returns a
sequence of adaptation steps for each elementary stream of the video. Having
seen the video meta-data and the user capabilities, the SessionCreator detects
the mismatch between the bandwidth of the client and the video. This
bandwidth gap is closed by applying an adaptor to each video stream. We
assume that a BitrateScalingAdaptor is used which reduces the bandwidth from
64 kbit/sec down to 16 kbit/sec for each video stream. The audio stream is
simply forwarded. The total bandwidth consumption of the adapted streams is
reduced to 40 kbit/sec, so the client can watch a lower quality version of the
original video. In the extreme case, it could happen that no video is forwarded
at all, only audio (e.g. for clients without a screen).

When the proxy receives a SETUP for each elementary stream, a
DataChannel object is created with the aforementioned IO class as input, a
BitRateScalingAdaptor for the visual streams and an RTP output class. As
soon as the client sends a PLAY command, the IO input class starts to fetch
the stripe units from the ADMS data manager nodes, converts them to a frame-
based view and stores the created frames in an internal buffer. The
DataChannel gets the frames, invokes the Adaptor to re-encode them and
pushes the adaptation results into the RTP class for sending.

7. Conclusion and Future Work

The requirements, use, and implementation of adaptation techniques in
distributed multimedia systems have been discussed. Offensive (or server
level) adaptation can proactively cope with situations when the resources of the
server nodes and/or network links get saturated. This kind of adaptation is
realized by an adaptive distributed multimedia streaming server (ADMS),
consisting of four types of adaptive components, which can be combined in an
arbitrary number of instances, running on an arbitrary number of server nodes.
The resulting virtual streaming server runs on top of Vagabond2, the
middleware used for component movement and adaptation support.

Defensive (or stream level) adaptation is realized by varying a media
stream’s spatial, temporal, or qualitative resolution. QBIX – an adaptive, meta-
data hinted proxy – supports this kind of adaptation by transcoding MPEG-4
video elementary streams in real-time. Defensive adaptation is applied for
quality-aware cache replacement or when the client has restricted terminal
capabilities.

Finally, we have shown how offensive and defensive adaptation can work to-
gether in the context of ADMS and QBIX. It has been demonstrated how a
QBIX proxy becomes an ADMS data collector component, in order to be
replicated and migrated on demand. In this case, the proxy becomes server-
aware, with the drawback that it becomes dependent on ADMS, but with the
benefit of being optimally controlled by the ADMS cluster manager concerning

70 ComSIS Vol. 1, No. 1, February 2004

physical location and number of instances. A complete implementation and
quantitative evaluation of the hybrid adaptation approach is work in progress.

References

1. P. Schojer, L. Böszörményi, H. Hellwagner, B. Penz, S. Podlipnig, Architecture of a
Quality Based Intelligent Proxy (QBIX) for MPEG-4 Videos, in: World Wide Web
Conference, 2003, pp. 394–402.

2. P. Assuncao, M. Ghanbari, A Frequency-domain Video Transcoder for Dynamic
Bit Rate Reduction of MPEG-2 Bit Streams, in: IEEE Trans. on Circuits and
Systems for Video Technology, Vol. 8, IEEE Press, 1998, pp. 953–967.

3. Z. Lei, N. Georganas, Rate Adaptation Transcoding for Precoded Video Streams,
ACM Multimedia 2002, pp. 127–136.

4. H. Sun, W. Kwok, J. Zdepski, Architectures for MPEG Compressed Bitstream
Scaling, in: IEEE Trans. on Circuits and Systems for Video Technology, Vol. 6,
IEEE Press, 1995, pp. 191–199.

5. C. Kuhmünch, G. Kühne, C. Schremmer, T. Haenselmann, A Video-scaling
Algorithm Based on Human Perception for Spatio-temporal Stimuli, in: Proc. SPIE
Multimedia Computing and Networking (MMCN), SPIE Press, 2001, pp. 13–24.

6. L. Böszörményi, M. Döller, H. Hellwagner, H. Kosch, M. Libsie, P. Schojer,
Comprehensive Treatment of Adaptation in Distributed Multimedia Systems in the
ADMITS Project, in: Proceedings of the 10th ACM International Conference on
Multimedia, 2002, pp. 429–430.

7. L. Böszörményi, H. Hellwagner, H. Kosch, M. Libsie, S. Podlipnig, Metadata Driven
Adaptation in the ADMITS Project, EURASIP Signal Processing: Image
Communication Journal, Special Issue on Multimedia Adaptation, No. 8,
September 2003, pp. 749–766.

8. Moving Picture Experts Group, ISO/IEC JTC1/SC29/WG11 N4668: Overview of
the MPEG-4 Standard, http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-
4.htm (2002).

9. Moving Picture Experts Group, ISO/IEC JTC1/SC29/WG11 N5525: MPEG-7
Overview, http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm (2003).

10. J. Y. Lee, Parallel Video Servers: A Tutorial, IEEE Multimedia 5 (2) (1998) 20–28.

11. R. Tusch, C. Spielvogel, M. Kröpfl, L. Böszörményi, An Adaptive Distributed
Multimedia Streaming Server in Internet Settings, in: SPIE Proceedings of
Information Technologies and Communications (ITCom), Internet Multimedia
Management Systems IV, September 2003, pp. 312-323.

12. R. Tusch, Towards an Adaptive Distributed Multimedia Streaming Server
Architecture Based on Service-oriented Components, in: Joint Modular Languages
Conference (JMLC), 2003, pp. 78–87.

13. D. W. Brubeck, L. A. Rowe, Hierarchical Storage Management in a Distributed
VOD System, IEEE Multimedia 3 (3) (1996) 37–47.

ComSIS Vol. 1, No. 1, February 2004 71

14. W. Bolosky, J. Barrera, R. Draves, R. Fitzgerald, G. Gibson, M. Jones, S. Levi, N.
Myhrvold, R. Rashid, The Tiger Video Fileserver, in: 6th International Workshop on
Network and Operating System Support for Digital Audio and Video (NOSSDAV),
1996, pp. 97–104.

15. J. Gafsi, U. Walther, E. W. Biersack, Design and Implementation of a Scalable,
Reliable, and Distributed VOD-Server, in: Proceedings of the 5th joint IFIPTC6 and
ICCC Conference on Computer Communications, 1998.

16. Helix Community, The Helix Platform, URL:
https://www.helixcommunity.org/2002/intro/platform (2002).

17. RealNetworks, Inc., Helix Universal Server Administration Guide, URL:
http://docs.real.com/docs/HelixServer9.pdf (2003).

18. J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, B. Weihl, Globally
Distributed Content Delivery, IEEE Internet Computing 6 (5) (2002) 50–58.

19. S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, H. M. Levy, An Analysis of
Internet Content Delivery Systems, in: 5th

Symposium on Operating Systems

Design and Implementation, 2002, pp. 315–327.

20. S. Saroiu, K. P. Gummadi, S. D. Gribble, Measurement Study of Peer-to-Peer File
Sharing Systems, in: SPIE/ACM Proceedings of Multimedia Computing and
Networking, Vol. 4673, 2002, pp. 156–170.

21. D. Xu, M. Hefeeda, S. Hambrusch, B. Bhargava, On Peer-to-Peer Media
Streaming, in: 22nd

International Conference on Distributed Computing Systems

(ICDCS), 2002, pp. 363–371.

22. D. A. Tran, A Peer-to-Peer Architecture for Media Streaming, IEEE JSAC Special
Issue on Advances in Overlay Networks 21 (10), to appear.

23. J. Zinky, D. Bakken, R. Schantz, Architecture Support for Quality of Service for
CORBA Objects, Theory and Practice of Object Systems 3 (1).

24. D. C. Schmidt, D. L. Levine, S. Mungee, The Design of the TAO Real-Time Object
Request Broker, Computer Communications, Elsevier Science 21 (4) (1998) 294–
324.

25. A. Hafid, G. Bochmann, An Approach to QoS Management in Distributed
Multimedia Applications: Design and Implementation, Multimedia Tools and
Applications 9 (2) (1999) 167–191.

26. P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gryniewicz, Y. Jin, An
Architecture for a Global Internet Host Distance Estimation Service, in: IEEE
INFOCOM, 1999, pp. 210–217.

27. W. Theilmann, K. Rothermel, Dynamic Distance Maps of the Internet, in: IEEE
INFOCOM, 2000.

28. D. Andersen, H. Balakrishnan, M. Kaashoek, R. Morris, Resilient Overlay
Networks, in: Proceedings of the 18th ACM Symposium on Operating Systems
Principles, 2001, pp. 131–145.

29. T. S. E. Ng, H. Zhang, Predicting Internet Network Distance with Coordinates-
based Approaches, in: IEEE INFOCOM, 2002, pp. 170–179.

72 ComSIS Vol. 1, No. 1, February 2004

30. J. Waldo, The Jini Architecture for Network-centric Computing, Communications of
the ACM 42 (7) (1999) 76–82.

31. R. Friedman, E. Biham, A. Itzkovitz, A. Schuster, Symphony: An Infrastructure for
Managing Virtual Servers, Cluster Computing 4 (3) (2001) 221–233.

32. J. Kangasharju, F. Hartanto, M. Reisslein, K. W. Ross, Distributing Layered
Encoded Video through Caches, in: Proceedings of IEEE INFOCOM, 2001, pp.
622–636.

33. S. Paknikar, M. Kankanhalli, K. R. Ramakrishnan, S. H. Srinivasan, L. H. Ngoh, A
Caching and Streaming Framework for Multimedia, in: Proceedings of ACM
Multimedia, 2000, pp. 13–20.

34. M. Sasabe, N. Wakamiya, M. Murata, H. Miyahara, Proxy Caching Mechanisms
With Video Quality Adjustment, in: Proceedings of the SPIE Conference on
Internet Multimedia Management Systems, 2001, pp. 276–284.

35. R. Rejaie, J. Kangasharju, Mocha: A Quality Adaptive Multimedia Proxy Cache for
Internet Streaming, in: 11th International Workshop on Network and Operating
Systems Support for Digital Audio and Video, 2001, pp. 3–10.

36. S. Podlipnig, L. Böszörményi, Replacement Strategies for Quality Based Video
Caching, in: IEEE ICME 2002 International Conference on Multimedia and Expo,
2002, pp. 49–52.

37. Moving Picture Experts Group, ISO/IEC JTC1/SC29/WG11 N5231: MPEG-21
Overview, http://www.chiariglione.org/mpeg/standards/mpeg-21/mpeg-21.htm
(2002).

38. Internet Engineering Task Force, RFC 2326: Real Time Streaming Protocol
(RTSP), http://www.ietf.org/rfc/rfc2326.txt (1998).

39. Object Management Group, Common Object Request Broker Architecture: Core
Specification, 3rd Edition, http://www.omg.org/cgibin/doc?formal/02-12-02.pdf
(2002).

40. B. Goldschmidt, R. Tusch, L. Böszörményi, A Mobile Agent-based Infrastructure
for an Adaptive Multimedia Server, in: 4th Austrian-Hungarian Workshop on
Distributed and Parallel Systems (DAPSYS), 2002, pp. 141–148.

41. B. Goldschmidt, Z. Laszlo, A Proxy Placement Algorithm for the Adaptive
Multimedia Server, in: Proceedings of the 9th International Euro-Par Conference,
2003, pp. 1199–1206.

42. L. Qiu, V. N. Padmanabhan, G. M. Voelker, On the Placement of Web Server
Replicas, in: IEEE INFOCOM, 2001, pp. 1587–1596.

43. ISO/IEC, FDIS 15938-5 – MPEG-7 Standard - Multimedia Description Schemes
(2001) 539.

44. Internet Engineering Task Force, RFC 3016: RTP Payload Format for MPEG-4
Audio/Visual Streams, http://www.ietf.org/rfc/rfc3016.txt (2000).

45. M. Ohlenroth, H. Hellwagner, RTP-Packetization of MPEG-4 Elementary Streams,
in: IEEE ICME 2002 International Conference on Multimedia and Expo, 2002, pp.
465–468.

ComSIS Vol. 1, No. 1, February 2004 73

Roland Tusch received the M.Sc. degree in computer science in 1999 from the
University Klagenfurt, Austria. Since 2000, he has been working as an University
Assistant with the Institute of Information Technology at the University Klagenfurt. He
has also been working on his Ph.D. in the area of adaptive distributed multimedia
servers since then. He is designer and co-developer of Vagabond2 (a QoS-aware
middleware for adaptive servers) and ADMS (the Adaptive Distributed Multimedia
Streaming Server built on top of Vagabond2). His research interests include distributed
multimedia systems, QoS-aware middleware systems, and standards for multimedia
communication. He is an associate member of IEEE.

László Böszörményi is a full professor and the head of the Department of
Information Technology at the University Klagenfurt, Austria. He is a member of ACM,
IEEE and OCG, he is deputy head of the Austrian delegation at the Moving Picture
Experts Group (MPEG, the ISO/IEC JTC1/SC29 WG11).

In his research, he is focusing currently on Adaptation in Distributed Multimedia
Systems. He is leading a number of projects in this area, such as the QBIX (Adaptive,
Quality-Based Intelligent Video Proxy used as a gateway and as a cache), the ADMS
(Adaptive Distributed Multimedia Server, based on a mobile agent based infrastructure)
and the Calm-Video (Video applications with a large number of concurrent videos in
different quality) projects. He is author of several books, he publishes regularly in
refereed international journals and conference proceedings. He has been organising
several international conferences and workshops.

Balazs Goldschmidt received the M.Sc. degree in technical informatics in 1999 from
the Budapest University of Technology and Economics, Hungary. Since 1999 he has
been a PhD student at the university's Department of Control Engineering and
Information Technology, his topic is real-time distributed object-oriented systems. Since
2001 he has been working at the department as an assistant lecturer. His research
interest include distributed object-oriented systems and QoS-aware distributed resource
brokering. He is a co-developer of Vagabond2.

Hermann Hellwagner is a full professor of computer science at the Department of
Information Technology, University Klagenfurt, Austria. He is a member of the IEEE, GI
and OCG as well as the head of the Austrian delegation to the Moving Picture Experts
Group (MPEG – ISO/IEC JTC1/SC29/WG11).

His current research areas are distributed multimedia systems, multimedia
communications, and Internet QoS. Current projects are on digital video communication,
a streaming protocol supporting media adaptation, and multimedia bit stream
description techniques within the MPEG-21 Digital Item Adaptation (DIA)
standardization effort. He is the editor of several books, has published widely on parallel
computer architecture and parallel programming, and now publishes regularly on
multimedia communications and adaptation in refereed journals and conference
proceedings. He has organized several international conferences and workshops.

Peter Schojer received the M.Sc. degree in computer science in 2001 from the
University Klagenfurt, Austria. Since 2001, he has been working on his Ph. D. in the
area of adaptive video caching. His main research interests are proxy caching, video
transcoding and the use of meta-data in the context of proxy caching and video
streaming. He is designer and one of the main developers of ViTooKi (the library used
by QBIX), an open-source implementation of a multimedia framework supporting
adaptive, error-resilient streaming of MPEG-4 videos. The source code for ViTooKi is
available at http://vitooki.sourceforge.net.

