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Abstract. We give a brief overview of the methodology of modeling 
massive datasets arising in various applications as networks. This 
approach is often useful for extracting non-trivial information from the 
datasets by applying standard graph-theoretic techniques. We also point 
out that graphs representing datasets coming from diverse practical fields 
have a similar power-law structure, which indicates that the global 
organization and evolution of massive datasets arising in various spheres 
of life nowadays follow similar natural principles.  

1. Introduction  

Dealing with massive datasets of diverse nature and origin is an essential 
part of many practical applications arising in government and military systems, 
telecommunications, biotechnology, medicine, finance, astrophysics, ecology, 
geographical information systems, etc. [2, 10] Understanding the structural 
properties of a certain dataset is in many cases the task of a crucial 
importance.  

The analysis of massive datasets arising in real-world applications is 
challenging due to several reasons. One of the important issues addressed in 
the literature is associated with the excessive size of the datasets, many of 
which cannot fit into the computer’s internal memory. It leads to using external 
memory devices for the storage of some part of the data, which negatively 
affects the performance of algorithms applied for processing the data. The 
research area that addresses this type of problems deals with so-called 
External Memory Algorithms [3]. However, in many cases the enormous size of 
the dataset vanishes the power of even efficient external memory algorithms. 
Therefore, it is often very helpful to use an appropriate mathematical model, 
which can significantly simplify the analysis of a dataset and even theoretically 
predict some of its properties. Thus, another fundamental problem that arises 
here is modeling massive datasets.  
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In this paper, we will concentrate on one of the aspects of this problem, 
which deals with network representation of real-world datasets. According to 
this approach, a certain dataset is represented as a network, or graph, with 
certain attributes associated with its vertices and edges.  

Studying the structure of a graph representing a dataset is often important 
for understanding the internal properties of the application it represents, as well 
as for improving storage organization and information retrieval. One can 
visualize a graph as a set of dots and links connecting them, which makes this 
representation convenient and easily understandable.  

Network models allow one to extract information from massive datasets 
using various standard concepts from graph theory. In many cases, one can 
investigate specific properties of a dataset by detecting special formations in 
the corresponding graph, for instance, connected components, spanning trees, 
cliques and independent sets. In particular, cliques and independent sets are 
often used for solving the important clustering problem arising in data mining, 
which essentially represents partitioning the set of elements of a certain 
dataset into a number of subsets (clusters) of objects according to some 
similarity (or dissimilarity) criterion.  

These concepts are associated with a number of network optimization 
problems that will be discussed later in this paper.  

Another aspect of investigating graph models of massive datasets is 
studying the degree distribution of the constructed real-world graphs. The 
degree distribution is an important characteristic of a dataset represented by a 
graph. It represents the large-scale pattern of connections in the graph, which 
reflects the global properties of the dataset. One of the important results 
discovered during the last several years is the observation that many real-life 
massive graphs representing the datasets coming from diverse areas (Internet, 
telecommunications, finance, biology, sociology) follow the power-law model [4]. 
The interesting fact that graphs representing completely different datasets have 
a similar well-defined power-law structure has been widely reflected in the 
literature [5, 8, 7, 10, 23, 31, 32]. It indicates that the global organization and 
evolution of massive datasets arising in various spheres of life nowadays follow 
similar laws and patterns. This fact served as a motivation to introduce a 
concept of “self-organized networks”.  

Later in this paper, we will discuss in more detail various aspects of 
modeling massive datasets as graphs. To illustrate the practical importance of 
graph-theoretic techniques, we will briefly describe several examples of real-life 
applications of these approaches associated with the datasets arising in 
telecommunications, finance and biomedicine.  

The remainder of the paper is organized as follows. In Section 2, we briefly 
overview the basic definitions from graph theory. Section 3 discusses the 
general characteristics of the networks representing real-world datasets. 
Sections 4, 5 and 6 present the results of applying graph-theoretic approaches 
to the analysis of different massive datasets. Finally, Section 7 concludes the 
discussion.  
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2. Graph Theory Basics  

To give a brief introduction to graph theory, we introduce several basic 
definitions and notations. Denote by G =(V, E) a simple undirected graph with 
the set of n vertices V and the set of edges E. A multi-graph is an undirected 
graph with multiple edges.  

The graph G =(V, E) is connected if there is a path from any vertex to any 
vertex in the set V. If the graph is disconnected, it can be decomposed into 
several connected subgraphs, which are referred to as the connected 
components of G.  

The degree of the vertex is the number of edges emanating from it. For 
every integer number k one can calculate the number of vertices n(k) with the 
degree equal to k, and then get the probability (frequency) that a vertex has the 
degree k as P(k) = n(k)/n, where n is the total number of vertices. The function 
P(k) is referred to as the degree distribution of the graph. In the case of a 
directed graph, the concept of degree distribution is generalized: one can 
distinguish the distribution of in-degrees and out-degrees, which deal with the 
number of edges ending at and starting from a vertex, respectively.  

The distance between two vertices is the number of edges in the shortest 
path between them (it is equal to infinity for vertices representing different 
connected components). The diameter of a graph G is usually defined as the 
maximal distance between pairs of vertices of G. Note, that in the case of a 
disconnected graph the usual definition of the diameter would result in the 
infinite diameter, therefore the following definition is in order. By the diameter of 
a disconnected graph we will mean the maximum finite shortest path length in 
the graph (which is the same as the largest of diameters of the graph’s 
connected components).  

Given a subset S ⊆ V, by G(S) we denote the subgraph induced by S.A 
subset C ⊆ V is a clique if G(C) is a complete graph, i.e. it has all possible 
edges. The maximum clique problem is to find the largest clique in a graph. 
The following definitions generalize the concept of clique. Namely, instead of 
cliques one can consider dense subgraphs, or quasi-cliques. A γ-clique Cγ, 
also called a quasi-clique, is a subset of V such that G(Cγ) has at least ⎣γq(q − 
1)/2⎦ edges, where q is the cardinality of Cγ.  

An independent set is a subset I ⊆ V such that the subgraph G(I) has no 
edges. The maximum independent set problem can be easily reformulated as 
the maximum clique problem in the complementary graph ( )EV,G  which is 

defined as follows. If an edge (i,j) ∈ E, then (i,j) ∉ E , and if (i,j) ∉ E then (i,j) 
∈E . Clearly, a maximum clique in G  is a maximum independent set in G, so 
the maximum clique and maximum independent set problems can be easily 
reduced to each other.  

A legal (proper) coloring of G is an assignment of colors to its vertices so 
that no pair of adjacent vertices has the same color. A coloring induces 
naturally a partition of the vertex set such that the elements of each set in the 
partition are pairwise nonadjacent (i.e., they form independent sets); these sets 
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are precisely the subsets of vertices being assigned the same color. If there 
exists a coloring of G that uses no more than k colors, we say that G admits a 
k-coloring (G is k-colorable). The minimal k for which G admits a k-coloring is 
called the chromatic number and is denoted by χ(G). The graph coloring 
problem is to find χ(G) as well as the partition of vertices induced by a χ(G)-
coloring. The graph coloring problem considered for the complementary graph 
G is referred to as the minimum clique partition problem in the original graph G 
(since an independent set in G  is a clique in G).  

The maximum clique and the graph coloring problems are NP-hard [20]. 
Moreover, it turns out that that these problems are difficult to approximate [6, 
22, 21]. This makes these problems especially challenging in large graphs.  

For other standard definitions which are used in this paper the reader is 
referred to a standard textbook in Graph Theory [9].  

3. General Characteristics of Real-World Networks  

As it was pointed out above, massive datasets arising in various spheres of life 
can be represented as networks. One of the most well-known examples of this 
approach is representing the World Wide Web as a massive graph (known as 
the Web graph) [14]. Other examples include the call graph arising in the 
telecommunications traffic data [1], the market graph representing the structure 
of financial markets [11, 12], as well as social networks where real people are 
the vertices [13, 23, 31, 32].  

These graphs have been empirically studied, and one interesting result was 
obtained. It turns out that all these graphs coming from diverse applications 
follow the power-law model [4, 5, 7, 10, 14, 16, 23, 31, 32], which states that 
the probability that a vertex of a graph has a degree k (i.e., there are k edges 
emanating from it) is  

P(k) ∝  k
− γ 

.  (1) 

Equivalently, one can represent it as  

Log P ∝ − γ  log k,  (2) 

which demonstrates that this distribution forms a straight line in the logarithmic 
scale, and the slope of this line is equal to the value of the parameter γ.  

Another interesting observation is the fact that the aforementioned graphs 
tend to be clustered (i.e. two vertices in a graph are more likely to be 
connected if they have a common neighbor), so the clustering coefficient, 
which is defined as the probability that for a given vertex its two neighbors are 
connected by an edge, is rather high in these graphs.  

These networks are also associated with a well-known “small-world” 
hypothesis, which claims that despite the large number of vertices, the distance 
between any two vertices (or, the diameter of the graph) is small [31].  
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One more characteristic that should be mentioned here is referred to as the 
scale-free property of the power-law distribution. A power-law dependency of the 
form F(x) ∝ x

− γ 
is scale-free in the sense that it remains the same if x is 

multiplied by some constant. This property implies that the power-law structure 
of a certain network should not depend on of the size of the network. Clearly, 
the considered real-world networks dynamically grow over time, therefore, the 
growth process of these networks should obey certain rules in order to satisfy 
the scale-free property. In [7], the authors point out the necessary properties of 
the evolution of the real-world networks: growth and preferential attachment. 
The first property implies the obvious fact that the size of these networks 
continuously grows (i.e., new vertices are added to a network, which means 
that new elements are added to the corresponding dataset). The second 
property represents the idea that new vertices are more likely to be connected 
to old vertices with high degrees.  

The last principle is in many cases rather natural and easy to understand. 
For instance, if one considers the social network representing the actors’ 
collaboration (known as the Hollywood graph, where vertices are Hollywood 
actors, and two vertices are connected by an edge if these two actors have 
ever appeared in the same movie), it is clear that new actors usually appear in 
the movies with famous actors who have acted in many movies, and therefore 
have high degrees. Similar situation is typical for other collaboration networks 
incorporating scientists, sportsmen, etc. Another example is associated with 
the Web graph: new websites usually have the links to popular websites.  

It should be also noted that the growth and preferential attachment 
principles can be applied to constructing a formal mathematical procedure of 
generating power-law graphs satisfying the scale-free property [7].  

In the next sections, we present several examples of representing datasets 
of different origin as large graphs. As we will see, the graph representation is 
often convenient for visualizing the dataset represented by a graph, and in 
many cases it provides a deeper insight into its structural properties. Moreover, 
the considered graphs have the power-law structure, which indicates that the 
evolution of datasets arising in different applications follows similar natural 
principles discussed above.  

4. Call Graph  

One of the examples of applying graph-theoretic techniques to analyzing 
massive datasets is the call graph representing telecommunications traffic 
data, which was studied by Abello, et al. [1] and Aiello et al. [4]. In this graph, 
the vertices are telephone numbers, and two vertices are connected by an 
edge if a call was made from one number to another.  

The considered one-day call graph representing the data from AT&T 
telephone billing records had 53,767,087 vertices and over 170 millions of 
edges. This graph appeared to have 3,667,448 connected components, most 
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of them tiny; only 302,468 (or 8%) components had more than 3 vertices. A 
giant connected component with 44,989,297 vertices was computed [1].  

The maximum clique problem and problem of finding large quasi-cliques 
with pre-specified density were considered in this giant component. These 
problems were addressed using a greedy randomized adaptive search 
procedure (GRASP) [18, 19]. In short, GRASP is an iterative method that at 
each iteration constructs, using a greedy function, a randomized solution and 
then finds a locally optimal solution by searching the neighborhood of the 
constructed solution. This is a heuristic approach which gives no guarantee 
about quality of the solutions found, but proved to be practically efficient for 
many combinatorial optimization problems. To make application of optimization 
algorithms in the considered large component possible, the authors use some 
suitable graph decomposition techniques employing external memory 
algorithms [3].  

Abello et al. ran 100,000 GRASP iterations taking 10 parallel processors 
about one and a half days to finish. Of the 100,000 cliques generated, 14,141 
appeared to be distinct, although many of them had vertices in common. The 
authors suggested that the graph contains no clique of a size greater than 32. 
Finally, large quasi-cliques with density parameters γ = 0.9, 0.8, 0.7 and 0.5 for 
the giant connected component were computed. The sizes of the largest quasi-
cliques found were 44, 57, 65 and 98, respectively.  

It is also important to investigate the degree distribution of the Call graph. 
According to [4], the distribution of in-degrees and out-degrees of this graph, as 
well as the distribution of the sizes of the connected components, can be very 
well represented by a power law.  

5. Market Graph  

In this section, we describe the recently developed methodology utilizing a 
representation of the stock market as a large graph based on the correlation 
matrix corresponding to the set of stocks traded in the U.S. stock market. This 
graph is referred to as the market graph.  

The procedure of constructing this graph is relatively simple. Clearly, the set 
of vertices of this graph corresponds to the set of stocks. For each pair of 
stocks i and j, the correlation coefficient Cij is calculated using the following 
standard procedure.  

Let Pi(t) denote the price of the instrument i at time t. Then  

( ) ( )
( )t

ttlnt,t
P

P
R

i

i
i

∆+
=∆  

defines the logarithm of return of the stock i over the period from (t) to t + ∆t.  
The elements of the correlation matrix C representing correlation 

coefficients between all pairs of stocks i and j are calculated as  
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where E(Ri) is defined simply as the average return of the instrument i over T 
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1 [26, 27, 30].  

If one specifies a certain threshold θ, − 1 ≤  θ ≤  1, then an undirected edge 
connecting the vertices i and j is added to the graph if the corresponding 
correlation coefficient Cij is greater than or equal to θ. The value of θ is usually 
chosen to be significantly larger than zero, and in this case an edge between 
two vertices reflects the fact that the corresponding stocks are significantly 
correlated.  

Boginski et al. [11, 12]studied the properties of the market graph 
constructed using this procedure based on the time series of the prices of more 
than 6000 stocks traded in the U.S. stock market observed over several 
partially overlapping 500-day periods during 2000-2002. The intervals between 
consecutive observations were equal to one day (i.e., the coefficients Cij were 
calculated using formula (3) with T = 500 and ∆t = 1 day). These studies 
produced several interesting results that are discussed in the next subsections. 
It should be noted that since the size of the market graph in significantly 
smaller than the size of the call graph, the analysis of the market graph can be 
performed in much more detail.  

5.1. Edge Density of the Market Graph as a Characteristic of Collective 
Behavior of Stocks  

Changing the values of the correlation threshold θ allows one to construct 
market graphs where the connections between the vertices reflect different 
degrees of correlation between the corresponding stocks. It is easy to see that 
the number of connections (edges) in the market graph decreases as the 
threshold value θ increases.  

The ratio of the number of edges in the graph to the maximum possible 
number of edges is called the edge density. The edge density of the market 
graph is essentially a measure of the fraction of pairs of stocks exhibiting a 
similar behavior over time. As it was pointed out above, specifying different 
values of θ allows one to define different “levels” of this similarity. Figure 5.1 
shows the plot of the edge density of the market graph as a function of θ.  

On the other hand, one can look at the changes of the edge density of the 
market graph over time. In [12] these dynamics were analyzed for 
11overlapping 500-day periods in 2000-2002, where the 1

st 
period was the 

earliest, and the 11
th 

period was the latest. In order to take into account only 
highly correlated pairs of stocks, a considerably large value of θ (θ =0.5) was 
specified. It turned out that the edge density of the market graph corresponding 
to the latest period was more than 8 times higher than for the first period. The 
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corresponding plot is shown in Figure 5.1. The dramatic jump of the edge 
density suggests that there is a trend to the “globalization” of the modern stock 
market, which means that nowadays more and more stocks significantly affect 
the behavior of the others, and the structure of the market becomes not purely 
random. However, one may argue that this “globalization” can also be 
explained by the specifics of the time period considered in the analysis, the 
later half of which is characterized by a general downhill movement of the stock 
prices.  
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Fig. 1. Edge density of the market graph for different values of the correlation threshold. 

 

 

Fig. 2.  Evolution of the edge density of the market graph during 2000-2002. 
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5.2. Global Pattern of Connections in the Market Graph  

The edge density of the market graph discussed in the previous subsection is a 
global characteristic of connections between stocks, however, it does not 
reflect the pattern of these connections. For this purpose, the concept of 
degree distribution defined above is utilized.  

It turns out that the degree distribution of the market graph has a highly 
specific power-law structure. 

According to [11, 12], the power-law structure of the market graph is stable 
for different values of θ, as well as for different considered time periods. Figure 
3 demonstrates the degree distribution of the market graph (in the logarithmic 
scale) for several values of θ. In [12], the authors considered the degree 
distribution of the market graph for 11 overlapping time periods, and the 
distributions corresponding to four of these periods are shown in Figure 4. As 
one can see, all these plots are approximately straight lines in the logarithmic 
scale, which coincides with (2). 
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Fig. 3. Degree distribution of the market graph for a 500-day periods in 2001-2002 
corresponding to (a) θ =0.3, (b) θ =0.4, (c) θ =0.5, (d) θ =0.3. 

 

 
 (a)  (b)  

 
 (c)  (d)  

Fig. 4. Degree distribution of the market graph for different 500-day periods in 2000-2002 with θ 
=0.5: (a) period 1, (b) period 4, (c) period 7, (d) period 11. 

The stability of the degree distribution of the market graph implies that there 
are highly specific patterns underlying the stock price fluctuations.  

5.3. Interpretation of Cliques and Independent Sets in the Market 
Graph  

Another significant result of [11] is a suggestion to relate some correlation-
based properties of the stock market to certain combinatorial properties of the 
corresponding market graph. For example, the authors attacked the problem of 
finding large groups of highly-correlated stocks by applying simple algorithms 
for finding large cliques in the market graph constructed using a relatively large 
value of correlation threshold. As it was mentioned above, a clique is a set of 
completely interconnected vertices, therefore, partitioning the market graph into 
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large cliques defines a natural classification of stocks into dense clusters, 
where any stock that belongs to the clique is highly correlated with all other 
stocks in this clique. The fact that all stocks in a clique are correlated with each 
other is very important: it shows that this technique provides a classification of 
stocks, in which a stock is assigned to a certain group only if it demonstrates a 
behavior which is similar to all other stocks in this group. The possibility to 
consider quasi-cliques instead of cliques in this classification should also be 
mentioned. This would allow one to construct larger groups of “similar” stocks 
while the density of connection within these groups would remain high enough.  

Interestingly, the size of the maximum clique in the market graph was rather 
large even for a high correlation threshold. The details of these numerical 
experiments can be found in [11]. For example, for θ =0.6 the edge density of 
the market graph is only 0.04%, however, a large clique of size 45 was 
detected in this graph. It should be noted that even though the maximum clique 
problem is NP-hard, the exact solutions of this problem were found for different 
instances of the market graph, which was which was possible because of the 
fact that the market graph is clustered (i.e., it contains dense groups of 
connected vertices).  

Independent sets in the market graph are also important for practical 
purposes. Since an independent set is a set of vertices which are not 
connected with any other vertex in this set, independent sets in a market graph 
with a negative value of θ correspond to sets of stocks whose price fluctuations 
are negatively correlated, or fully diversified portfolios. Therefore, finding large 
independent sets in the market graph provides a new technique of choosing 
diversified portfolios. However, it turns out that the sizes of independent sets 
detected in the market graph are significantly smaller than clique sizes [11], 
which indicates that one would not expect to find a large diversified portfolio in 
the modern stock market.  

The results described in this subsection provide another argument in 
support of the idea of the globalization of the stock market, which was 
proposed above based on the analysis of the edge density of the market graph.  

The methodology of finding cliques and independent sets in the market 
graph also provides an efficient tool of performing clustering based on the stock 
market data, i.e., partitioning the set of stocks into clusters of “similar” objects.  

The choice of the grouping criterion is natural: “similar” or “different” 
financial instruments are determined according to the correlation between their 
price fluctuations. Clearly, the minimum number of clusters in the partition of 
the set of financial instruments is equal to the minimum number of distinct 
cliques that the market graph can be divided into (the minimum clique partition 
problem). If independent sets are used instead of cliques, it would represent 
the partition of the market into a set of distinct diversified portfolios. In this case 
the minimum possible number of clusters is equal to a minimum number of 
distinct independent sets, or the chromatic number corresponding to the 
optimal solution of the graph coloring problem.  
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6. Brain Networks  

Another application of network approaches to data analysis is associated with 
studying human brain. The enormous number of neurons and dynamic nature 
of connections between them makes the analysis of brain function especially 
challenging. Analyzing the connectivity of the brain using graph-theoretic 
approaches is an important practical task, and the results of this analysis can 
be applied in treatment of various types of brain disorders, for instance, 
epileptic seizures.  

Obviously, the analysis of the graph representing all the neurons as vertices 
cannot be empirically performed, since the number of neurons in the brain and 
the connections between them is too large: according to [28], the number of 
neurons is estimated to be 8.3×10

9
, and the number of connections is 

approximately 6.6×10
13

. However, one can still judge about some properties of 
this graph, for instance, the fact that despite its low edge density, this graph is 
clustered, which is also typical for other real-life graphs. Various aspects of the 
analysis of brain connectivity are discussed in [24].  

In order to perform a more detailed quantitative analysis of the graph 
representing the brain, one can consider much smaller graphs by treating 
certain groups of neurons (functional units of the brain) as vertices and 
investigate the connections between these functional units. For instance, this 
approach was applied to the connectivity analysis of the cortical visual system 
of the macaque monkey, which was represented by the graph with 32 vertices 
[17].  

Eguiluz et al. [15] studied a relatively large graph corresponding to 147,456 
functional units of the human brain, which were selected by dividing the entire 
brain into a set of 64 × 64 × 36 voxels of a small size. Signals representing the 
activity of each functional unit were recorded over a certain time period, and 
these time series were then used for constructing the set of edges of the graph 
representing these brain sites. The authors utilized the same idea that was 
used for creating the market graph described in the previous section. In this 
case, the correlation between each pair of brain units was calculated according 
to (3) using the time series representing the signals obtained from these units, 
and the corresponding vertices were connected by an edge if the correlation 
exceeded a specified threshold value. Interestingly, the degree distribution of 
the resulting graphs constructed for different correlation thresholds also has the 
power-law structure with the parameter γ ≈ 2 [15].  

It should be noted that the standard correlation coefficient is not the only 
possible measure of the similarity in the behavior of a pair of brain sites. In [25], 
the authors apply the statistical concept of T-index as the quantitative 
representation of the entrainment of a pair of functional units of the brain at a 
certain time moment, which is then utilized in a mathematical programming 
model for studying the predictability of epileptic seizures.  

Clearly, investigating various characteristics of brain networks is a very 
important practical task. For instance, one would be interested in locating 
spanning trees and cliques in these networks, which may provide a new insight 
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into the process of signal propagation between the neurons. This information 
could be helpful in studying various types of brain disorders.  

7. Concluding Remarks  

We discussed the network representation approach to studying massive 
datasets. This paper does not attempt to exhaust this rich and multifaceted 
research area, but rather represents a brief review of recent results concerning 
some applications of interest. A common characteristic of the considered 
examples is a highly dynamic nature of the studied datasets and, as a result, of 
the corresponding networks. Many other real-life networks representing 
massive data sets have been actively studied in the past few years. For a 
recent review of complex networks and their applications in sociology, 
information technology and biology the reader is referred to [29].  
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