Case Completion and Similarity in Case-Based
Reasoning

Hans-Dieter Burkhard

Institute of Informatics
Humboldt University, D-10099 Berlin, Germany
hdb@informatik.hu-berlin.de

Abstract. Case Completion investigates cases for complex problem solv-
ing tasks using Case-Based Reasoning. Such tasks consist of several steps,
and related cases should support each intermediate decision. Related
cases are of a constraint like style and need the handling of partial match-
ing for retrieval. Related similarity measures are investigated, and the
implementation by Case Retrieval Nets is proposed.

1 Introduction

Case-Based Reasoning (CBR) is a model for acting by experience. Cases de-
scribe former episodes of problem solving for later reuse. Important issues are
organization of memory (case base and its maintenance), reminding (retrieval),
and reuse (adaptation and application).

Case-based techniques are used in practice for many years, e.g. for customer
support [11]. CBR is used for cognitive modeling from the very beginning [9], and
for control of autonomous systems in dynamic environments [12]. The technology
of CBR applications is often described by the R* cycle ([1]) with the phases
Retrieve, Reuse, Revise, Retain. Additional phases for maintenance are discussed
in [8].

Cases are usually organized in a rule-like style: If there is a problem, then the
case provides a solution. Such cases consist of a problem-part and a solution part.
In contrast, the concept of Case Completion ([5]) considers cases as constraints:
Given some piece of knowledge of a problem, ask for possibly useful information
by experience (case knowledge) from the past.

Retrieval of constraint like cases needs handling of partial information, i.e. of
”missing values”. An appropriate measure of similarity is needed, where similar-
ity has to approximate usefulness of cases, and acceptance of users, respectively.

The paper introduces Case Completion first. Section 4 discusses similarity
and distance measures, based on some results from [6]. There is some common
understanding, that both — similarity and distance — are more or less equivalent.
Actually, there are some differences which are further discussed in Section 5.
Appropriate linked index structures for Case Completion are implementated by
Case Retrieval Nets (Section 6).

Hans-Dieter Burkhard

2 Case Completion

2.1 Cases behind ”Problem + Solution”

Case-Based Reasoning is a problem solving method: Given a problem we have
to find a suitable solution. In a simple setting, cases are split into a problem and
a solution part. Given a new problem we search for cases with related (”simi-
lar”) problems in the case memory. The solutions of those cases are supposed
to be useful (maybe after some adaptation) for the new problem. There is an
underlying hypothesis: Similar problems have similar solutions.

However, problem solving usually does not start with a complete problem
description sufficient for the identification of a case with a final solution. Instead,
the process of completing a task up to the final solution usually depends on
a number of decisions and related subsequent steps. In the case of diagnosis
and repair we start with some first observations, e.g. the vacuum cleaner is not
working. Then we test if the cable is plugged in. If so, we make a first trial for
"repair” like switching on and off several times. If it does not work, we may test
if there is power at all, e.g. if other devices are working and if the power supply
is ok. We find out that the power supply is ok. Something must be wrong with
the switch, the cable, the motor or some other part of our vacuum cleaner. We
may decide to give it away for repair, to buy a new one, or to continue with
further more specific tests and trials for repair.

We have a similar situation in design processes: There we start with a raw
specification, then we add more specific design decision and finally end up with
a complete specification.

In general, the course of actions in complex problem solving processes is ini-
tially open. The intermediate actions and the final result do not depend from the
initial problem only, they depend also on intermediate human decisions. Accord-
ing to different possible decisions we end up with different stories and different
final solutions. It is difficult to apply the simple scheme of ”problem” and ”so-
lution” to such processes. Nevertheless, the whole story of problem solving can
be useful in future similar situations. The whole story is in fact a case. Such a
case provides useful hints at the different steps of problem solving. It describes
all actions and results during the whole process of solving a problem. It is useful
for reuse at various intermediate steps.

Case Completion is an attempt to organize CBR systems to store and reuse
such complex cases. Case Completion describes the completion of a task (of a
“new case”) in the real world, usually consisting of several steps. The whole
episode of problem solving is stored as a single case in the case memory. We
do not have the distinction between problem and solution anymore, and hence
the retrieval of cases must be more flexible. For later reuse, a case has to be
accessible by arbitrary subsets of its indexes.

Such a retrieval is similar to the retrieval from a data base: Given some
indexes, a complete relation can be retrieved from a database. But for CBR, we
have to deal with similarity matches. Given some indexes (by a query), we look
for cases matching the given indexes according to some similarity measure.

28 ComsSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

The distinction between “problem” and “solution” treats cases as rules: If
the ”problem” matches the case, then the ”solution” can be adapted from that
case. In Case Completion, a case is more like a constraint than like a rule. The
constraints have been observed by former experiences. Any item in such a case
may be part of problem description and part of proposed solution at different
steps of problem solving. By past experience we may know a case where the
vacuum cleaner did not work. The control light was off. There was no power
due to a short cut. The reason for the short cut was a defect of the cable. In a
future problem with our vacuum cleaner, we may again have the first symptoms
not working and control light off. Then the item no power is a proposal for
an intermediate test by the former case. In the next step, if power is indeed
missing, no power becomes part of the problem description. Now we look for
cases with not working, control light off, no power. The former case proposes the
solution cable defect, while some other case might propose cable not plugged in.
If both proposed solutions do not apply, some other cases might be found. We
will continue the discussion in Section 2.3.

2.2 Completing a Task

We talk about a “task” for more complex problem solving processes consisting
of several steps. Initially, a task is specified in some way, but the specification
is incomplete. This means that the known information is not sufficient for the
successful completion of the task. For illustration, we will give examples from
different domains in the following.

Diagnosis: First symptoms are given, but not enough to identify the malfunc-
tion and to propose the appropriate repair steps.

Design: First functional descriptions are given, but not enough to choose the
appropriate parts and to fix their layout.

Consulting: First ideas of a customer are given, but not enough to make a
clear specification and to propose a suitable offer.

As the completion of the task is going on, more and more information is
collected and specified until the (hopefully) successful end. After completion,
a new experience was learned and may be reused later for related tasks. The
relevant content of this experience is called a case. The process of elaborating
the task under the aspect of collecting case relevant information is the essence
of Case Completion.

The finally completed case depends not only on the initially given problem. It
depends also on the subsequent steps of the problem solving processes. Different
processes lead to different cases. Each of them might be valuable as experience
for later re-use.

The underlying process usually includes several steps:

Diagnosis: Specify and perform further tests and (possibly experimental) steps
of repair. The identification of the malfunction and/or the repair is only the
final step in a chain of attempts.

ComSIS Vol. 1, No. 2, November 2004 29

Hans-Dieter Burkhard

Design: Perform a chain of design decisions (possibly with backtracking) up to
a final layout.

Consulting: Discuss and specify the wishes of a customer under different as-
pects and available alternatives.

After each step, we have collected more information for the completion of the
task. This information can be used for the next step (e.g. we may have identified
a short circuit as the reason for missing power in our previous step, next we ask
for the reason of that short).

2.3 Case Completion Supports Complex Tasks

How can CBR give support for the process of Case Completion? The essence
of Case Completion is the collection of further information. This information is
obtained by the outcomes of activities in the real world. CBR is not the source of
this information, but it can guide the activity. Possible hypotheses for underlying
(but still unknown) circumstances and possible outcomes of possible activities
are checked on the base of former experiences, given by the cases: CBR is a
matter of proactivity.

The complete cases should be useful in each step (e.g., for the choice of a next
test step as well as for a final identification of the diagnosis). This requires the
treatment of different amounts of information. Only few Information Entities are
given at the start of a new task, and each step adds new pieces of information.
Thereby, an Information Entity may change its character during the process as
follows:

Starting with the first symptom missing power, the Information Entity short
circuit is a possible explanation (which may be proposed by a related case). If it
appears to be true in reality, then the Information Entity short circuit becomes
part of the known information for the considered diagnosis task. Then it may be
used to find cases which give hints for reasons of shorts or for repair.

Following the classical approach (case = problem + solution), we would need
different cases. For example, special cases with short circuit in the solution part,
and other ones with short circuit in their problem parts. Typically, those cases
were obtained during more complex tasks. Why not use the total description
of the complex task as cases? In (pure) Prolog, parameters may serve for input
or output values: A query specifies values for certain parameters, the answer
provides values for the remaining parameters. In a similar way, the query to a
case base should specify the known Information Entities of a certain task. The
answer of the CBR system should provide further Information Entities which
have occurred together with the known ones in the past. As already discussed
above, classical CBR cases have rule-form: IF problem, THEN solution. Now the
cases should have constraint form: Cases are constraints to common occurrences
of Information Entities. It connects items (Information Entities) which have
appeared together in a problem solving process. Each subset of those items
may appear in a query, and the related cases show possible completions (where

30 ComsSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

existing constraints are satisfied because a case is an experience from reality). A
technical framework for retrieval will be given in Section 6.

Case Completion is the collection of relevant information while completing a
task. The completion of this task has to be done anyway, — in CBR we consider
this process under the viewpoint of collecting and using experiences.

Case Completion is a general view to the process of CBR problem solving.
A new case appears with incomplete and vague information. The process
of problem solving is characterized by collecting new information while
making decisions and acting in the real work until a satisfactory level is
reached. CBR can guide this process by comparison with more complete
cases from the past. Completed cases can be stored as new experiences
for later reuse.

CBR systems supporting such processes have to be designed as interactive sys-
tems. The users get information about complete cases, and they can choose the
information they consider to be relevant from that cases. They can combine in-
formation from old cases to get new proposals. Complete cases provide a good
base for argumentation (e.g., in medicine and in jurisprudence).

The technology of CBR applications is often described by the R* cycle ([1])
with the phases Retrieve — Reuse — Revise — Retain. It starts with the input of a
new “problem” and ends up with the integration of a new case (containing the
problem description and its confirmed solution). The solution may have been
proposed by the CBR system, and it could have been revised w.r.t. the practical
results.

Case Completion differs from this picture since it covers several intermediate
problem solving steps. These steps can be supported by cases from the CBR
system (retrieve, reuse) and evaluated by reality (revise). After each intermediate
step, the process continues for a next step, again with retrieve, reuse, revise. The
supporting cases in the next step may be more or less different from the cases
of the previous step. The “new case” is completed only if the whole task is
completed, and then a single retain step can add this case to the case memory.

The implementation of appropriate CBR systems needs the handling of in-
complete information. Cases are composed of Information Entities. They are
used for retrieval as indexes — as far as they are known at an intermediate step
of Case Completion.

3 Cases and Queries as Sets of Information Entities

3.1 Information Entities

A case is the result of a Case Completion process. Each step of that process adds
some new Information Entities. The current situation during the elaboration of
a task is described by the Information Entities known at that time point. The
final case, as it later may appear in the case memory, is a completed set of
Information Entities (“completed” refers to the state of information at the end
of the task):

ComSIS Vol. 1, No. 2, November 2004 31

Hans-Dieter Burkhard

1. The collected Information Entities result from the real world (e.g., as the
outcome of a test, a decision in an intermediate design step, or a specified
customer requirement in consulting). They are not the direct result of a
CBR process — CBR is used to propose the next step, e.g., the next test in
diagnosis or the next design decision. The test outcome might, but need not,
be the expected result according to former cases from the case memory, and
we might, but need not, adapt the design proposal given by a CBR system.

2. The number of Information Entities in a case may vary. It is up to a (human)
decision at which time point the task is finished (e.g. the correct functioning
of a device after replacing a special part may be sufficient without elaborating
a detailed diagnosis based on a complete set of symptoms). It is usually not
realistic to think about fixed formats of diagnosis reports in practice.

3. The Information Entities which are later used for retrieval (which appear
as indexes in the case memory) may be only a subset of the information
collected during Case Completion.

During the process of Case Completion, the current situation is described by
the set of known Information Entities. In the following, we restrict the usage of
the term ”Information Entity” to those which are used as indexes for retrieval.
Besides them, further information may be provided for the users (cases might
be pointers to more detailed descriptions).

Definition 1 (Cases and Queries Based on Information Entities).

An Information Entity (IE) is an atomic part of a case or a query: Cases
and queries are sets of Information Entities.

More formally: The set of all (potential) Information Entities in a given
domain is denoted by E.

A case is a set of Information Entities: ¢ C E.

The set of cases (in the case memory) is denoted by C, C' C 2F.

A query is a set of Information Entities: ¢ C E.

Information entities may be of various types. In some applications, Informa-
tion Entities are simply attribute-value pairs. Information entities may explicitly
express certain relations (structures) in the cases. They may be more complex
as long as they may serve as indexes with related similarity measures.

Information entities may describe concepts, e.g. for language processing. For
textual CBR, the distinction between concepts and strings (appearances of the
concepts) has proven to be useful: Concepts are modeled by Information Entities,
related strings are simply mapped to them. Therewith, all grammatical forms
(e.g. go, goes, gone, ...), and even translations (e.g. gehen, aller, ...), are mapped
to a single Information Entity (e.g. concept ”go”,). Similarity is then defined
between Information Entities (e.g. sim(concept “go”, concept “run”) = 0.8).

3.2 Case Completion using Information Entities

Useful cases from the case memory must be provided for Case Completion. A
user asks a query to the system, and the answer should help to solve a problem.

32 ComsSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

Usefulness is difficult to judge a priori. A somewhat more applicable notion is
acceptance of users. But still, for the designer of a CBR system, it is not evident
which cases the one or the other use might accept as an answer for his or her
query.

The expected user acceptance of a case for a query is approximated by cor-
responding Information Entities. If a case contains Information Entities which
correspond to a great extend to the Information Entities of a query, then the
user is assumed to accept this case as a candidate for useful information: Useful
information is expected from the cases matching the query by related Information
Entities.

Corresponding Information Entities in the query and the selected cases may
concern:

Diagnosis: Certain known symptoms, results of first attempts for repair.

Design: Certain desires for functionality, intermediate design steps and deci-
sions.

Consulting: Certain specifications and further “vague ideas”.

Useful hints for future steps are expected from the selected cases. This infor-
mation may have the form of further Information Entities, or it may appear as
additional information:

Diagnosis: Which further tests have been performed in former situations with
what results? We can look for discrimination tests (differential diagnosis) if
there remain several cases with different final diagnoses.

Design: Which further design steps may lead to what results? Are there risks
for later conflicts w.r.t. to some constraints?

Consulting: Which further specifications meet the requests of the customer?
Are there alternative offers?

Further Information Entities provided by the cases can be processed by the
CBR system for adaptation purposes.

3.3 Usefulness - Acceptance — Similarity

Usefulness of a case in the Case Completion process depends on real world cir-
cumstances which are not completely known at retrieval time. Cases are proac-
tively used, as described in Section 2.3, for making proposals. The evaluation
of those proposals is possible only after the response from reality to the user’s
activities (maybe even after completing the whole task). As widely discussed in
the literature, usefulness is only an a posteriori criterion.

The retrieval from case memory is based on the (vague) matching of certain
Information Entities. Usefulness of former cases is not restricted to those cases
which are similar to a given query for all Information Entities. Cases may contain
information entities which have no counterpart in the recent query. It is also
possible that some Information Entities of the query are not present in useful
cases. Examples are:

ComSIS Vol. 1, No. 2, November 2004 33

Hans-Dieter Burkhard

Diagnosis: A query may ask only for the recently known symptoms, while

the cases may contain complete information about solved tasks including all
tests, experiments, knowledge about final diagnosis and repair.
A query may refer to a symptom which was not recorded in a previous case.
It is even possible that the query and a useful case are different for some
symptoms; e.g., the age of a patient may not be important for the diagnosis,
but for the therapy.

Design: A query may ask for the layout of a certain detail, while the cases
contain information about complete devices.

A query may contain a specification of the material, but some useful case
giving a construction advice might refer to another material.

Consulting: A query may contain only some vague ideas of the customer, while
a case contains completely specified offers.

A query may give limitations for the price, but under certain circumstances
the customer accepts a more expensive offer.

The cases in the case memory are indexed by all Information Entities which
are potentially relevant for the retrieval. The features which are important for
queries can not be fixed at design time. Moreover, the importance of an Informa-
tion Entity may change from one query to another (i.e., the sex is important for
some, but not for all diseases). Compromises, as in the consulting example above,
may even relax special features after looking for available cases (cf. Section 5.5).

Formal approaches to acceptance are provided by similarity measures or dis-
tances. Both notions are often considered as equivalent: The nearest neighbors
according to a certain distance are considered as the most similar objects. Ac-
tually, there are some differences, which will be discussed in the next sections.

4 Similarity

4.1 Similarity and Distance: Primary Considerations

Similarity itself is not a fixed notion, it depends on the aspects under consider-
ation:

Any two things which are from one point of view similar may be dissim-
ilar from another point of view. (POPPER)

or as another quotation:

An essay is like a fish. (TVERSKY)
(Why: Both have head, body, tail etc.)

It is a central problem in the design and maintenance of CBR systems to adopt
a notion of similarity such that the following assumptions are satisfied:

1. Similarity between a query and a case (hopefully) implies usefulness of the
case for the problem to be solved. The user should understand why a case
was presented (acceptance).

34 ComsSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

2. As cases can be more or less useful for problem solving, similarity should
provide a quantitative measurement leading to an ordering of cases according
to expected usefulness.

3. Similarity must be based on a priori known facts. Complex calculations are
less helpful.

4.2 Some Basic Notions

Similarity and distances are considered over some universe U (e.g. SITM (u,v)
denotes the similarity value between two objects u and v from U). According to
our definition from above, we consider queries ¢ and cases ¢ as sets of Information
Entities: E denotes the set of all Information Entities, hence U = 2.

A case base C is a (usually) finite set of cases. A query may be any subset
g € E, while a case is a subset from E which is contained in C: ¢ € C C U = 2F.

For sake of simplicity, we will restrict ourselves sometimes to finite sets of
feature (attribute) values taken from the reals. Then we consider real valued
vectors u over the universe U := R X R X ... X R. Cases ¢ and queries ¢ are then
vectors from U.

Similarity can be considered as

— Binary relation Rgrps between objects from U (where Rgyas(u,v) stands for
“y is similar to v”):

Rsiv CU x U. 1)

Example: Two things are called similar, if they coincide w.r.t. at least 2 of
3 features:

RSIM([xthax?)]v [Z/lva’f%]) <~ El?’a] 1 S { <j S 3: Tq = yi/\$j =Yj- (2)

— Measurement of the degree of similarity by a similarity measure SIM (where
SIM (u,v) stands for the degree of similarity between u and v). The degree
may range over some interval S:

SIM : U xU — S. (3)
According to Fuzzy Theory, Stochastics, Certainty Theory etc., the range

S is often the real interval [0,1]. Varying the example from above, we can
consider the simple matching coefficient:

SIM (o1, 02, 25), [y, ws]) o= - card({i [o =uid). (@)

More sophisticated measures rely on differences x; — y; between the feature
values (as real numbers) , e.g.:

1 1
SIM ([z1, 22, 23], [y, y2,98]) == 5+ Y ————— (5)
3 i=1,2,3 1 + |1“’i - y2|

ComSIS Vol. 1, No. 2, November 2004 35

Hans-Dieter Burkhard

— Neighborhood according to a distance DIST (where DIST (u,v) stands for
the distance between u and v):

DIST : U x U — 8. (6)

An often used distance measure with S = [0, 00) is the Manhattan-Distance:

DIST([5F1,$2,CU3]7[y17y2ail/3]) = Z |x2_yl| (7)
1=1,2,3

4.3 Relations between the Different Notions

There are some relations between these approaches. At first, binary relations
Rgsra are equivalent to special similarity measures SIM with only the two binary
values 0 and 1.

Vice versa, similarity relations Rgras can be defined by the “most similar”
objects according to a similarity measure SIM . The concept of a nearest neighbor
is often used for such purposes. We consider a subset C' C U (the case base in
CBR). Then ¢ € C is called a nearest neighbor of an arbitrary object u € U (a
query in CBR) if it satisfies the following definition:

NNc¢(u,c) Ve € C: SIM (u,c) > SIM (u,c'). (8)

Equivalently, for a distance measure we can define the nearest neighbor concept
by
NN¢(u,c) = Ve € C: DIST (u,c) < DIST (u,). (9)

In a related way, the concept of the ”‘k nearest neighbors’’ is defined.
By another common concept, objects u, v are called similar if their degree of
similarity exceeds a certain threshold value b:

Rsrn(u,v) := SIM (u,v) > b. (10)

Equivalently, for a distance measure we would use DIST (u,v) < b.

Related concepts are basic in CBR: The most (hopefully) useful cases from
a case base C are selected according to a query ¢ by such concepts.

Extending the concept of a nearest neighbor, we can consider the ordering
between the pairs of objects induced by a similarity/distance measure:

ORDgip(z,y,u,v) = SIM (z,y) > SIM (u,v), (11)

ORDprsr(z,y,u,v) :< DIST(z,y) < DIST (u,v). (12)

We call two (similarity or distance) measures m; and ms relationally compatible
iff

Va,y,u,v € U : ORDp, (z,y,u,v) & ORD,y,, (2, y,u,v). (13)

Similarity and distance measures are often considered as equivalent notions. On
a first glance, the ordering according to high similarity can be substituted by

36 ComsSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

the ordering according to low distances. The nearest neighbor concept defines
similarity on the base of a distance.

More formally we consider an arbitrary one-one order inverting mapping f
of a subset S of the reals to itself. It induces for a similarity measure with range
S a relationally compatible distance measure. If S = [0,1] is the range of SIM
then f(1) =0, and SIM (x,x) = 1 would be translated to DIST (z,z) = 0 for the
induced distance measure. Vice versa, a distance measure is transformed into a
relationally compatible similarity measure. Measures with different ranges can
be mapped by related functions f, too.

In this principle sense distance and similarity are in fact mathematically
equivalent. But, certain ”common sense” properties have no correspondence.
For example, distances should be symmetric: DIST(z,y) = DIST (y,x), while
similarity measures need not. Similarity can be used between different levels of
abstraction: We can describe a penguin using similarity to a bird, but we would
not describe birds by similarity to penguins. We will go more into the details
below.

4.4 The Range of the Measures

We assume that the range S of the measures is always a (bounded or unbounded)
interval of real numbers. Most of our considerations are related to S = [0,1]
which has two major characteristics:

— There is a maximal value for the similarity, and a minimal value for the
distance, respectively.
— There are no negative values.

A second possibility is an unbounded range, say S = [0,00]. The impact for
similarity is some difficulty for defining reflexivity (see below), if there is no
maximal similarity value. For the distances the consequence is less dramatic
because it only means that there are no maximal distances.

A third possibility is the existence of negative values. For distances this is
not intuitive, and it would rise difficulties with reflexivity when DIST (x,2z) =0
is not the minimal value. An unwanted consequence could be elements which
are not the nearest neighbor of themselves. There are no direct consequences for
similarity measures. But for combining global measures from local ones, negative
similarity values could be of some interest (cf. Section 5.5).

4.5 The Domain of the Measures, Missing Values

The purpose of similarity is a ranking over the case base C' C U according to
usefulness (acceptance) with respect to a given query ¢ € U. Hence similarity
(distance) is considered in praxis only over C' x U and not over U x U. We have
this already regarded for the nearest neighbor approach.

For the moment, we consider only set theoretic relations between queries ¢
and cases ¢ composed from Information Entities, U = 2. (We do not consider

ComSIS Vol. 1, No. 2, November 2004 37

Hans-Dieter Burkhard

similarities between Information Entities). We might have ¢ =¢, ¢ C ¢, ¢ C g or
none of them. How does it affect similarity?

As a concrete example we consider the query ¢ = {b,c} and the cases ¢; =
{b,c} ca = {b},c5 = {a,b,c}, ca = {a,b}, ¢s = {a}. What is the appropriate
ranking for the cases: Which case provides most useful information for the user?
c5 is not a candidate. But for the remaining ones we have to remind that the
Information Entities are used as indexes for retrieval, and that cases may contain
further background information.

Then it depends on the concrete application, e.g. from design decisions. There
is no general argument how to rank the remaining cases. Missing Information
Entities may appear for different reasons, they may be unknown or not relevant.
An unknown Information Entity in a case might be irrelevant (like an unmen-
tioned attribute in a rule): In this situation, co might be as good as c¢;. An
unknown Information Entity in a query might have the same value as in the
case (optimistic view): In this situation, ¢z might be as good as ¢;. Combining
both arguments, ¢, might be as good as well.

We may even find arguments that c3 is more useful than c;, because it con-
tains more information, e.g. an additional repair proposal for a diagnosis task.

Related discussions can be performed for cases as feature vectors. There we
may have unspecified or unknown values for some attributes.

The consequences of treating unknown and unspecified values are sometimes
surprising. Even some ”obvious” axioms may be affected, as we will discuss
below. It is a difficult task for the designer of a CBR system to find the appro-
priate similarity assignments leading to useful rankings of cases. Moreover, the
designer must try to realize acceptance by the user with a reasonable and easily
understandable similarity measure.

4.6 Common Axioms for the Measures

There are various possible axioms for distance measures as well as for similarity
measures in the literature. We discuss some of them and assume that the range
is [0, 1].

Reflexivity
SIM (z,xz) =1 and for distances: DIST(x,z) = 0. (14)
The opposite direction can be demanded, too, — as in the case of a metric:
SIM (z,y)=1—xz=y and DIST(z,y)=0—z=y. (15)

We call this strong reflexivity.
Symmetry

SIM (z,y) = SIM (y,z) and DIST(x,y) = DIST (y, x). (16)
Triangle inequality
DIST (x,z) < DIST (z,y) + DIST(y,). (17)

(For similarity: See the discussion below.)

38 ComSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

Reflexivity Reflexivity seems to be an obvious axiom. What else should be
more similar than the object itself: SIM (z,z) = 1?7 It guarantees that u is
always a nearest neighbor of itself. Reflexivity leads to the result, that the best
answer to a query ¢ is the query itself (as far as it is contained in the case base).

There might be further objects y # a which are acceptable as well, i.e. we
might have SIM(x,y) = 1 for them. We need not insist in strong reflexivity.
Related distances with DIST (x,y) = 0 are not metrics.

But, as discussed in Section 4.5, the most useful case might even be a proper
superset of the query. Such a case can provide additional Information Entities.
According to the example given there, the case {a,b,c} can be the best an-
swer to the query {a,b} if ¢ stands for additional useful information. Then we
have SIM({a,b},{a,b}) < SIM({a,b},{a,b,c}. In the consequence we have
SIM ({a,b},{a,b}) < 1 — no reflexivity at all.

Symmetry As already mentioned, symmetry is a commonly supposed prop-
erty of distances (especially of metrics). In contrast, similarity is sometimes not
symmetric, e.g. in the case of “directed” comparisons in daily life:

— a daughter is similar to her mother, but not vice versa,

— a penguin is similar to a bird, but not vice versa,

— a query may be similar to a document, while the document might not be
similar to the query.

The last point can again be illustrated by our example from above, where we
have SIM ({a,b},{a,b}) < SIM({a,b},{a,b,c}. The case ¢ = {a,b,c}) is espe-
cially useful because it provides additional information to the query ¢ = {a, b}.
Vice versa, a case ¢ = {a,b} has no additional for a query ¢ = {a,b,c}, and
the similarity measure should give STM ({a,b,c},{a,b}) < SIM({a,b},{a,b}).
Using both inequalities we obtain STM ({a, b, c}, {a,b}) < SIM({a,b},{a,b,c})
i.e. symmetry does not hold.

As already mentioned, cases and queries are not symmetrically used. The
nearest neighbor relation NN¢(u,c) is defined on U x C and not on U x U
(which would lead to useless results). In the same way it could be reasonable to
define similarity as function

SIM : U x C — S. (18)

instead of SIM : U x U — S as in equation (3).

Transitivity, Triangle Inequality Similarity relations Rgyps are in general
not transitive (as in daily life). In the example (2) we have Rgya([1, 1, 1], [1, 1, 0])
and RSI]\/I[L 1, 0], [1, O, 0]), but not RSIM([L 1, 1], [170,OD.

As an extension of transitivity we might look for some kind of triangle in-
equality for similarity measures. The direct translation for a concrete inverting
functions f would mean

F(SIM (u,w)) < f(SIM (u,v)) + f(SIM (v, w)). (19)

ComSIS Vol. 1, No. 2, November 2004 39

Hans-Dieter Burkhard

This shows that the triangle inequality is not easy to express if all inverting
functions f have to be regarded. For the concrete function f(x) = 1 — x we
simply get SIM (u,v) + SIM (v,w) < 1+ SIM (u,w). As another candidate we
might consider the inverted triangle inequality of distances:

SIM (u,w) > SIM (u,v) + SIM (v, w). (20)
Together with reflexivity and symmetry, we obtain
1= SIM (u,u) > SIM (u,v) + SIM (v,u) = 25IM (u,v) (21)
and therewith STM (u,v) < 0.5 for arbitrary u,v. On the other hand,
SIM (u, w) < SIM (u,v) + SIM (v, w) (22)

makes problems, too. It would lead to SIM (u,v) > 0.5 for arbitrary u,v.
As a concrete illustration we consider

SIM ([z1, z2), [y1,y2]) := Min({ 1, card({ i |z; = yi} }. (23)
There we have
SIM([0,0],[0,1]) = SIM([0,1],[1,1]) = SIM([0,0],[0,0]) =1
SIM(]0,0],[1,1]) = SIM([1,1],[0,0]) =0

and hence
SIM (]0,0],[0,1]) + SIM([0,1],[1,1]) > SIM([0,0],[1,1])

SIM(]0,0], [1,1]) + SIM([1,1],[0,0]) < SIM([0,0],[0,0]).

If we replace SIM by DIST using an inverting function f with f(0) = 1 and
f(1) =0, then we have especially

DIST([0,0],[0,1]) + DIST([0,1], [1,1]) < DIST([0,0], [1, 1]).

That means that there are intuitive distance measures where the triangle inequal-
ity does not hold. It turns out that metrics may be too restrictive and cannot be
used for implementing nearest neighbor concepts in certain cases. (Remark: We
could slightly modify the example such that it satisfies the “strong” reflexivity
as in (15), but still misses the triangle inequality).

We feel that this observation is important, since many distance based ap-
proaches do have in mind a metric. On the other hand, it is always possi-
ble to define a relationally compatible metric to a given similarity function
SIM : U x U — [0,1] by:

0 , if u=wvw

3 (2= SIM(u,v)) , otherwise. (24)

DIST (u,v) = {

There we have always % < DIST(u,v) < 1, and hence the triangle inequality
must be satisfied.

40 ComSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

5 Composite Measures

5.1 The Local-Global Principle

For this section we restrict ourselves to the description of cases and queries to
real valued vectors u € U = R". Each component of a vector corresponds to
some attribute A;. Now we look for appropriate connections between the level
of the attributes and the level of the objects.

Definition 2 (Local-Global Principle).

The Local-Global Principle for similarities (and distances) is formulated in
the following way:

There are similarity measures sim; on the domains of the attributes A; (on
the reals in our case) and some composition function COMP : R™ — R such
that

SIM([q1, -y Gn), [t1y ey un]) = COMP (simy(q1, u1), ...y Sty (Gry un). (25)

The measures sim; are called local measures and SIM is the global measure. A
similarity measure SIM is called composite if it can be combined from some local
similarity measures as in (25).

Weighted Hamming measures, i.e. weighted linear functions COMP are pop-
ular measures for similarities and distances:

SIM (g1, -y @), [, s un]) = D wy - simi(gi, ws). (26)
i=1

yeeny TV

5.2 Local Similarity

Local similarity measures sim; : R x R — R determine the similarity sim(q;, ¢;)
for the values of a query ¢ = (¢1,...,¢9,) and a case ¢ = (cq,...,¢,) at the
Attribute A;. Local similarity should express acceptance of a user for different
values of this Attribute. When asking for “July 1st” we mostly accept cases
which are near to this date. Vague queries may ask for a date “during summer”,
or “during vacation” etc.

We can interpret sim;(g;, z) for a fixed query ¢; as the characteristic function
of a linguistic term “about July 1st” “during summer”, or “during vacation”,
respectively (cf. Figure 1).

Vague notions in queries can be matched with concrete values in the cases.
We could also compare concrete values in a query with related vague notions in
cases, or even vague notions in both the query and the cases, respectively. In the
latter situation, the evaluation of matching could follow operations from fuzzy
theory, cf. [6].

Characteristic functions of linguistic terms usually have non-zero values only
in a limited region of their domain. In contrast, similarity measures derived from
distances, as for example by

1

. _ 2
sim(x,y) 1+ dist(z,y)’ -

ComSIS Vol. 1, No. 2, November 2004 41

Hans-Dieter Burkhard

Junel | Jdlyl |

Aug 1 Sept1

"Summer”
---- "about July 1st"
"V acation"

Fig. 1. Local similarity functions (linguistic terms)

may result in non-zero values even for very great differences. Thus, “10” is similar
to “1 Million” to a very small, but non-zero amount. This may cause unnecessary
effort during retrieval. It is better to ignore such small values.

To express unacceptability we could even use negative ”similarity” values
(it would in fact be better to talk about ”acceptance” values as in [5]). An
example is given by Figure 2. Using weighted sums as in (26), a negative local
value sim;(q;,c;) decreases the global acceptance of a case ¢ for the query gq.
The negative value for some attribute might be as large that they cannot be
compensated by the local similarity values of the other attributes.

-0.4

-1

Fig. 2. Local similarity with negative values

42 ComSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

5.3 The Global Monotonicity Axiom

The Local-Global Principle connects the representation of queries and cases by
vectors with similarity measures. This gives rise to a new axiom for composite
measures which we call the Global Monotonicity Axziom:

SIM (u,v) > SIM (u,w) — Ji € {1,...,n} : sim;(uz, v;) > sim;(ug, w;). (28)

The axiom states a necessary condition: A higher global similarity must be sup-
ported by at least one higher local similarity.

There are situations where the monotonicity axiom does not hold. As an
example we adopt the XOR-problem known from neural nets: We consider
two boolean-valued attributes and therefore U = {[0,0], [0, 1], [1, 0], [1,1]}. The
XOR-problem is represented by SIM ([u1,us], [v1,v2]) = 1 iff XOR(uy,u2) =
XOR(’Ul, ’Ug), i.e.

SIM([0,0],[1,1]) = SIM(
SIM([0,0],[0,1]) = SIM([0,0], [1,0])
= SIM([1,1],[1,0]) = SIM([1,1],]0,1]) = 0.

We have SIM([0,0],[1,1]) > SIM([0,0],[0,1]. The Global Monotonicity Ax-
iom ist not satisfied since we have for the local similarity values: sim;(0,1) <
sim1(0,0) = 1 (reflexivity) and simo(0,1) = sim2(0,1).

A new attribute (in this case XOR(u,v)) would be needed in order to rep-
resent the XOR-problem by monotonous global similarities, i.e. an extension of
the language is necessary. It is an important issue to find attributes such that
the monotonicity axiom holds. For practical reasons, such new attributes must
be easy to compute which limits the search for useful attributes. In particular,
it is usually impossible to find an attribute which provides directly the solution.
It is, however, fair to say that the representation is not good if the monotonicity
axiom does not hold.

There is also a Local Monotonicity Axiom which demands decreasing dis-
tances/increasing similarities with decreasing absolute differences |u; — v;|. This
axiom is intuitive in a lot of cases, but we could also think of a similarity relation
over the reals, where especially the natural numbers are similar to each other:

1, if z=y or z,yeN

sim(x,y) == {0 , otherwise. .

5.4 Transformations for Composite Measures

Relationally equivalent transformations — cf. (13) — can be considered on the
local level as well as on the global level.
We have already used the function 1-%3: for a transformation on the local level
of single attributes in example (5). Thereby, dist;(x;,y;) = |x; —y;| are local dis-
tances, while sim;(x;,y;) = ﬁ are relationally equivalent local similarity
measures. They are composed in (5) to the global similarity measure SIM using

ComSIS Vol. 1, No. 2, November 2004 43

Hans-Dieter Burkhard

a (normalized) sum. We obtain a completely different similarity measure SIM’
using the transformation by the same function on the global level:

1
1+ DIST([z1, 2, 23], [Y1, Y2, Y3])

1
14z

SIM/([%,I%%], [Y1,Y2,Y3]) : (30)

ie.,
1
!
SIM'([z1, z2, %3], [y1, Y2, y3]) T S F— (31)
The example shows that composition and transformation in general do not
commute. This is another hint for the fact, that switching between similarity
and distances is not as easy as often supposed. Actually, there are even more
basic differences as shown below.

5.5 Similarity and Compromises

To be acceptable, it is often sufficient that a case is acceptable for some, but not
necessarily for all features. We may accept for example

— an expensive offer for more satisfying properties, or
— the color “red” instead of “blue” because the red car is cheaper, or
— a house in a bad state because of its wonderful garden.

Sometimes, offers are formulated in a related style; “we are looking for people
who are qualified in at least one of the following disciplines...”.

A case ¢ = (¢1,...,¢y,) is acceptable for a query g = (q1,...,q,) if SIM(q,c)
is high. This can be achieved in a weighted sum as in (26) even if sim;(q;,c;)
is low for some attributes A;. This is useful if there is no case with high local
similarities for all attributes, i.e. if some compromise between the wanted features
and the reality is necessary.

The situation is different for distances: A case ¢ is acceptable for a query ¢
if DIST(q,c) is low. In a weighted sum, a single attribute A; with a large local
distance dist;(q,c) will give DIST(q,c) a large value. Sometimes it is argued
that the problem can be solved using different weights in a weighted sum. It is,
in fact, possible to give some features a low priority by low weights. However,
these priorities must be fixed in advance, while compromises are a matter of
relaxing certain features after the presentation of cases. We do not know in
advance that, e.g., the color is the feature which corresponds to the cheaper
offer. Thus we cannot say that the color is an unimportant feature in general —
but that is what a low weight in a weighted sum means. We would surely not
agree to consider the price as unimportant in general, but we might, in some
circumstances, accept a higher price after knowing all alternatives.

The important difference between global similarity and global distance with
respect to compromises is illustrated in Figure 3 and 4. We consider the (un-
normalized) combination of two identical local measures to a global one by ad-
dition.

As local distances we consider in Figure 3 the simple distance and its square
(such that the composition will be related to the Euclidean distance):

44 ComSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

(a) disti(qi,ci) = |qi — cil
(b) disti(q;,c;) = (g — ¢i)%

The left side presents the functions for ¢; = 0, i.e., dist;(0, z). The corresponding
right hand parts of the figure show some “characteristics” of the resulting two-
dimensional global distance functions.

(a) DIST(q,¢) = |q1 — c1| + g2 — ¢2]
(b) DIST(q,¢) = (q1 — 1) + (g2 — ¢2)*.

A characteristic (an equi-distance curve) is the line of all cases ¢ = (c1, ¢2) with
fixed distance d to a given query ¢ = (q1, ¢2). The characteristics have the form
of cubes for (a) (Manhattan distance), and the form of spheres for (b) (similar
to the Euclidean distance).

-2 -1 1 2 T o 3

(a) f(z) = || lgr —cif +lg2 —c2| = d

(b) flz) = 2? (1 —c1)’+ (g2 —c2)’ =d

Fig. 3. Characteristics of Composite Distances

ComSIS Vol. 1, No. 2, November 2004 45

Hans-Dieter Burkhard

0 s (cl, oy

_a -1 i o \\1 U 2/ 3 4

(a) f() =1/(1 + |z]) (A +lg —al)+1/(1+]g —cf) =a

(d) f(z) = Gauss(,0,0.5) Gauss(q1 — c1,0,0.5) + Gauss(gz — c2,0,0.5) = a

24
1
3
0.4
2
-2 T 2
1
0.4
9 1 D 3
(c) f(z) =1~ |z =l —al)+1-lg-c)=a

Fig. 4. Characteristics of Composite Similarity Functions

46 ComsSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

As local similarity functions in Figure 4 we consider an ”inverse” of the
distance (a) in Figure 3, a Gaussian, and a similarity measure with negative
values:

(a) simi(gi,ci) =1/(1 + |g — ci])
(b) sim;(g;,c;) = Gauss(|q; — ¢;|)
(c) simi(gqi,ci) =1~ g — cil.

The left side presents the functions for ¢; = 0, i.e., sim;(0, z). The corresponding
right hand parts of the figure show some characteristics of the resulting two-
dimensional global similarity functions. Global similarity functions in Figure 4
are

(a) SIM(q,c) =1/(1+|q1 —c1]) +1/(1 + |g2 — c2]
(b) SIM(q,c) = Gauss(|q1 — c1|) + Gauss(|gz — c2])
(c) SIM(q,c) = (1 =g —c]) + (1 — |g2 — c2|).

All cases ¢ = (¢1,¢2) on a characteristic (an equi-similarity curve) have the same
similarity value a for a given query ¢ = (q1,¢2)-

The characteristics for the distances are closed. This means that there is only
limited potential for compromises. A large distance of one attribute cannot be
compensated by the other attribute.

In contrast, some characteristics for the similarity measures are open for the
lower levels of similarity. This gives potential for compromises: If one attribute
has a low similarity value, then it might be compensated by a high value of the
other attribute. A high local similarity value for one attribute of the functions
(a) and (b) is sufficient to reach a moderate global similarity value independent
of the other attribute.

The situation changes if unlimited negative similarity values are allowed as
for function (c). Here we have a situation with a similar picture as in Figure 3 (a)
with only closed characteristics. Vice versa, we can say that distances correspond
to similarity measures which allow negative values.

The difference has consequences for implementations: Closed characteristics
allow for pruning strategies. They can be realized as a top down approach. The
whole space U of potential cases is divided into different regions of cases which
are near to each other. A new query is classified according to the region it belongs
to. This can be implemented by a decision tree, and the resulting leaf of that
tree can point to the matching cases in the related region. A related compilation
process can optimize the regions and the search within a concrete case memory.

The boundaries of the regions (the test criteria in the decision tree) specify
values which serve for excluding certain cases. Problems may occur if a query
is near to that boundaries. In these situations, the necessary value for pruning
is not really reached, and it may be necessary to search in several sub-trees.
Unknown values are also critical. Without any hypothesis about the underlying
value, all related sub-trees have to be considered. Detailed discussions of this
approach including implementation issues can be found in [10].

Open characteristics need another approach. A related bottom up approach
is discussed in the next section.

ComSIS Vol. 1, No. 2, November 2004 47

Hans-Dieter Burkhard

6 Case Retrieval Nets

6.1 Basic Ideas

Information Entities (IEs) have been introduced in Section 2.3 as atomic parts
of cases. They are used as indexes, and we consider cases and queries as sets of
Information Entities. They may represent any basic knowledge item, such as a
particular attribute-value-pair, a key word, or some more complicated structure.
They are defined under the view point of relevant parts of cases to be used in
reminding (retrieval).

Case Retrieval Nets (CRN) combine some ideas of Semantic Networks, Spread-
ing Activation and Neural Networks. They have been first introduced in [2] and
[3]. A CRN describes a case base for purposes of retrieval as a net with nodes for
the IEs and additional nodes (“case descriptors”) denoting the particular cases.
The case descriptors may point to additional information (e.g. to a complete
textual description of an episode).

IEs are integrated into the CRN as far as they appear in the known cases, or
in expected queries, respectively. IE nodes may be connected by similarity arcs,
and a case node is reachable from its constituting IE nodes via relevance arcs.
Given this structure, case retrieval is performed by

— activating the IEs given by the query,

— propagating this activation according to similarity through the net of IEs,
and

— collecting the achieved activation of the IEs to the case nodes they belong
to.

Different degrees of similarity and relevance may be expressed by arcs weights.
The idea is illustrated for the TRAVEL AGENCY domain in Figure 5: A case
is a special travel offer, denoted by a case descriptor, e.g. <Offer 20219>. It
consists of a set of corresponding IEs giving the specification of that offer,
in case of <0ffer 20219> the IE nodes <Type:Swimming>, <Price:980,->,
<Place:Matala>, <Region:Crete>, <Distance to beach:500 m> are connected
with that case node. Asking for an offer in region Crete for swimming and not to
far from the beach, the IE nodes <Type:Swimming>, <Distance to beach:200
m> and <Region:Crete> are initially activated. By similarity, the IE nodes
<Region:Malta> and <Distance to beach:500 m> will be activated in the next
step, but the amount of activation may depend on arc weights. Finally, the three
offers <0ffer 20024>, <Offer 20219>, <Offer 500122> will each get some ac-
tivation. These final case node activations are computed from the incoming ac-
tivations of IE nodes, which again may be weighted according to the relevance
of an IE for case selection. The highest activated cases are proposed to the cus-
tomer. Here the conflict arises whether the customer accepts a greater distance
to the beach for being in Crete or if she changes to Malta. Special preferences
may be expressed by initial weights, similarity weights and relevance weights,
respectively. A first list of proposals might include both alternatives. Then, if the

48 ComSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

istance to beach: Malta
200m

Distance to beach:
500 m

PART OF A CASE RETRIEVAL NET: () IE-NODES O CASE-NODES

(Travel Agency Domain)
— > RELEVANCE-ARCS (annotations p(e,c) omitted)

SIMILARITY-ARCS (annotations 0(e,e’) omitted)

Fig. 5. Example of a CRN in the TRAVEL AGENCY domain.

customer decides for Crete, an appropriate tuning of net parameters can prune
other offers in the ongoing process of finding an suitable travel offer.
The example illustrates some features of the retrieval mechanism:

— It can handle partially specified queries without loss of efficiency.

— Case retrieval supports Case Completion. For any part of a case given as
a query, the retrieval algorithm can deliver the remaining part and thus
complete the case.

— Insertion of new cases (even with new attributes) can be performed incre-
mentally by injecting related nodes and arcs.

6.2 Basic Case Retrieval Nets

A formal description of Case Retrieval Net in a basic version is given in the
following. It can serve as a base for more extended models, and it allows for a
detailed investigation of the approach. We recall earlier definitions:

— An Information Entity (IE) is an atomic knowledge item in the domain, i.e.
an IE represents the lowest granularity of knowledge representation, such as
a particular attribute-value-pair. IEs are used as indexes.

— A case is a set of IEs. It is denoted by a unique case descriptor.

— A query is a set of IEs.

A CRN has links between IE nodes for similarity, and between IE nodes and
case nodes for membership of IEs to cases. The links are weighted according to
similarity and relevance.

ComSIS Vol. 1, No. 2, November 2004 49

Hans-Dieter Burkhard

Definition 3.
A Basic Case Retrieval Net (BCRN) is given by N = [E,C, o, p, I[I] with

E is the finite set of Information Entities (IE) (“IE nodes”),
C' is the finite set of case descriptors (“case nodes”),
o is the similarity function

c:EXE—-TR (32)

which describes the similarity o(e’,e") between IEs €', e,
p is the relevance function

p:ExC—R (33)

which describes the relevance p(e,c) of the IE e for the case c.
I is the set of propagation functions m, for each node n € EUC with

T, i RE = R. (34)

The graphical description (cf. Figure 5) is given by a graph with nodes EUC
and directed arcs between them. The arc from e’ € F to ¢’ € E is labeled by
a(e',e"), the arc from e € E to ¢ € C is labeled by p(e, ¢). Arcs are omitted if
they are labeled by zero. The functions , are annotations to the nodes n.

An IE e belongs to a case c if p(e, c) # 0. Its relevance for a case c is given
by the value of p(e,c) expressing the importance for remembering the case c if
the IE e is in the actual “scope of attention”. Similarity between 1Es ¢/, e is
measured by o(e’,e”). The functions 7, are used to compute the new activation
of node n depending on the incoming activations (a simple setting may use the
sum of inputs as 7, — see below).

The “state” of a BCRN is defined by the activation of the nodes:

Definition 4.
An activation of « BCRN N = [E,C,0,p,II] is a function

a: EUuC — R. (35)

In the graphical notation, an activation « can be represented as a (temporary)
annotation to the nodes n € E U C. Informally, the activation a describes a
scope of attention: All activated IEs e (a(e) # 0) play a role in the process of
reminding. The value a(e) of the IE e expresses the importance of that IE for
the actual problem. The influence of an IE to the result of the case retrieval
depends on its actual importance «(e) and its relevance p(e,c) for the cases ¢
(where 7, might express further preferences). Negative values can be used as an
indicator for the rejection of cases containing that IE.

6.3 Propagation of Activations

The dynamics of the retrieval process are described as “state transitions”, i.e.
as changing activations. Formally, the propagation process for the basic model
is given by the next definition.

50 ComsSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

Definition 5.

Consider a BCRN N = [E,C,0,p,II| with E = {ey,...,es} and let be
a; : EUC — R the activation at time t.

The activation of IE nodes e € E at time t + 1 is given by

air1(e) = me(o(er,e) - ag(er), ..., o(es, e) - aies)), (36)

and the activation of case nodes ¢ € C' at time t + 1 is given by

atJrl(c) = 7Tc(p(ehc) : at(el)7 "'7/)(6570)) at(es))' (37)

Given an initial activation g, then by Definition 5 it is well-defined how the
activation a of each node n € C'UF has to be computed at any later time point.
If we regard similarity and relevance, then the earliest time point to consider the
ranking of cases (according to their resulting activations) is after two propagation
steps. Hence for the basic model, the propagation process is a three-step process:

Step 1 — Query :
According to the query, the primary scope of attention is given by
g which is determined for all IE nodes as follows:

1 : for IE nodes e of the new problem
Ogquery(€) = {0 : else (38)

For more subtle queries, ag might assign different weights to special
IE nodes, and some context may be set as an initial activation for
further nodes.

Step 2 — Similarity propagation between IE nodes :
The activation o is propagated to all IE nodes e € E leading to an
extended scope of attention:

ay(e) = me(o(er,e) - agler),...,a(es, e) - ap(es)), (39)

Step 3 — Relevance propagation from IE nodes to case nodes :
The result of step 2 is propagated to the case nodes ¢ € C"

az(c) = me(p(er,c) - ar(er), ..., ples, ¢) - ar(es)). (40)

In this computation model all similarity computation has to be performed in
Step 2 in a direct manner between adjacent IE nodes.

More subtle computations (including e.g. concepts, micro features, rules) may
use several steps (e.g. from a “simple IE” to a more general “concept IE”, then
to another “concept IE” by “firing a rule”, and back again to certain “simple
IEs”, which then leads to the activation of cases — cf. [4])). All these steps can
be implemented as activation passing, but some care is necessary to prevent
from unwanted effects (circular activation, asynchronous propagation etc.). On
the other hand, computations over longer time intervals may be considered as
“any time” computations: If the first activations arriving at the case nodes are

ComSIS Vol. 1, No. 2, November 2004 51

Hans-Dieter Burkhard

sufficient to solve the problem, then the process of reminding may stop. Other-
wise, some reminder from more far regions may come into account by further
activation steps.

For the 3-Step activation process we obtain the final activation ay(c) at the
case nodes ¢ by combining the formulae from above:

an(c) = me(pler,c) - me, (o(e1,e1) - aquery(€1), .., 0(€s,€1) - Aquery(€s))
P(es’ C) cTeg (0(617 es) : aquery(el)v EEE) 0(687 63) : aquery(es)))
(41)
Thus we can summarize the concept of case retrieval in the basic model of
CRN:

Consider a BCRN N = [E, C, g, p, IT| and the activation functions «; as
defined above. The result of the case retrieval for a given query activation
«y is the preference ordering of cases according to decreasing activations
an(c) of case nodes ¢ € C.

It is often useful to use the Maximum-function as propagation function 7. at
the IE nodes, and the sum as propagation function 7. at the case nodes. Then
we obtain for the steps from above:

Step 2: afe) = MAX. o(e,e) - aguery(€’)
Step 3: alc) = Zp(e,c) ~afe)

and the resulting activation in the case nodes for a query aguery is given by

an(c) =Y ple,c) - MAXy (€' €) - aguery(€). (42)

6.4 Implementing Composite Functions by CRNs

Composite similarity measures (and distances in a related way) can be easily
implemented by BCRNs. According to the Local-Global Principle, a similarity
measure SIM is called composite (cf. Definition 2) if it can be combined from
some local similarity measures sim; and some composition function COMP :
R™ — R such that

SIM ([q1y s qn], (U1, oy up]) = COMP(simy(q1,u1), ..., $iMp(Gn, un)). (43)

Cases and queries are thereby n-dimensional vectors according to attributes
Aq, ..., A, 1Es have the form of attribute value pairs: e = [A;, value], and the
set E of IEs is partitioned according to the attributes the IEs belong to.

In principle, a case node ¢ = ([A1,valuey), ..., [An, value,]) has a link by a
relevance arc from the IE node [A;,value] for every attribute A;. Hence the
composition function COM P can be implemented directly by the propagation
function 7, at the case node c.

52 ComsSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

For example, weighted Hamming measures — cf. (26) —

SIM([qy, -+ n), [ua, -y un]) = ' Z w; - sim;i(gi, ui) (44)

peesTl

can be implemented by related arcs weights p([A;, value], ¢) = w; and COMP =
Zi:l,...,n' A closer look to BCRNs show, that the weights can even have indi-
vidual values for each relevance link.

It is not necessary that queries and cases really do have specified values
for each attribute A;. If a query has unspecified (unknown) values, the initial
activation agyery Wwill place non-zero activations only for the attributes with
known values. If a case has an unspecified value for some attributes, then related
relevance links are missing. CRNs can easily handle partially specified queries
and cases.

At a first view, a ”"pessimistic” approach is realized: Attributes with miss-
ing values do not contribute to the activation. But using more sophisticated
propagation functions 7, the effects can be changed, e.g. by some normalization.

6.5 Use of CRNs for Case Completion

The ranking of cases can be exploited in different ways. Some further steps may
also use the derived state of the CRN.

We call the highest activated cases (according to ay) the answer cases of the
retrieval. Usually, not all IE nodes e of the answer cases have already been in
the extended scope of attention after the similarity activation step («q(e) = 0,
computed in Step 2). Such an IE node e was a constituent part of an answer
case ¢, but it was not addressed by the query: That means it was not known
for the actual problem. Hence it is a candidate for the completion of the actual
case, and we call such IEs the completion candidates. A completion candidate
could be a proposal for the solution of the actual problem.

It is crucial here to remind that an IE may be any relevant index for a case,
especially the “solution parts” of the cases can be integrated as IEs into a CRN
(then they could be used in a query, to0o).

As far as all answer cases provide similar completion candidates of a certain
aspect, we have a high evidence that the actual problem would behave in a
similar way for that aspect. On the other hand, if there are dissimilar completion
candidates, then our actual problem needs further investigation. If for example
there are different solutions possible in a diagnosis problem, then we have to test
further symptoms. By comparing the answer cases with different solutions, we
may find the symptoms which are correlated to the different diagnostics. These
symptoms can be found by further propagation steps back from the answer cases
to the IEs in the CRN (cf. [7]).

But not all applications must try to find a single solution. In the travel
agency example the assistance system should even better make a set of different
proposals (which even should be dissimilar to some extend) and let the final
choice to the costumer.

ComSIS Vol. 1, No. 2, November 2004 53

Hans-Dieter Burkhard

7 Conclusions

Case Completion leads to an extension of cases from rule-like style to a con-
straint oriented model. It can be supported by Case Retrieval Nets. There exist
various successful implementations of CRNs ranging from electronic catalogues
to document retrieval [11]. CRNs are interesting as some kind of associative
memory from technological view point, and from cognitive view point, respec-
tively. There is ongoing work to use CBR techniques for behavior control of
autonomous systems in dynamic environments [12], and for repeated negotia-
tions in a sociological environment [13].

Acknowledgements The author wants to thank the colleagues from the
AT group of Humboldt University, especially Mirjam Minor, and the colleagues
of Empolis, especially Stefan Wess and Mario Lenz, for inspirations and helpful
discussions over many years.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations, and system approaches. Al communications, 7(1)1994, 39-59.

2. Burkhard, H.D.: Case retrieval nets. Techn. report. Humboldt University, Berlin,
1995.

3. Burkhard, H.D., Lenz, M.: Case retrieval nets: Basic ideas and extensions. In H.D.
Burkhard, M. Lenz (eds.): 4th German Workshop on CBR 1996, Humboldt Univer-
sity Berlin 1996. 103-110.

4. Burkhard, H.D.: Cases, Information, and Agents. In P. Kandzia, M. Klusch (eds.):
Cooperative Information Agents. Proc. First Int. Workshop CIA’97. LNAT 1202,
Springer-Verlag, 1997, 64-79.

5. Burkhard, H.D.: Extending some Concepts of CBR — Foundations of Case Retrieval
Nets. In: M.Lenz, B.Bartsch-Sporl, H.D.Burkhard, S.Wess (eds.): Case-Based Rea-
soning Technology: From Foundations to Applications. Lecture Notes in Artificial
Intelligence 1400. Springer-Verlag 1998, 17-50.

6. Burkhard, H.D., Richter, M.M.: On the Notion of Similarity in Case Based Reason-
ing and Fuzzy Theory In: Pal, S.K., Dillon, T.S, Yeung, D.S. (eds.): Soft Computing
in Case Based Reasoning. Springer-Verlag 2000, 29-46.

7. Lenz, M., Burkhard, H.D., Briickner, S.: Applying Case Retrieval Nets to Diagnostic
Tasks in Technical Domains. In: I. Smith, B. Faltings (eds.): Advances in Case-Based
Reasoning. Proc. of the Third European Workshop EWCBR-96. Lecture Notes in
Artificial Intelligence 1168. Springer-Verlag 1996, 219-233.

8. Roth-Berghofer, T.: Knowledge Maintenance of Case-Based Reasoning Systems
The SIAM Methodology. Akademische Verlagsgesellschaft Aka GmbH, DISKI 262,
Berlin. Ph.D. thesis. April 2003

9. R. Schank. Dynamic memory: A theory of learning in computers and people. Cam-
bridge Unv. Press, New York, 1982.

10. Wess, S., Althoff K.-D., Derwand, G.: Using kd-Trees to Improve the Retrieval
Step in Case-Based Reasoning. In: S. Wess, K.-D. Althoff, M.M.Richter (eds.):
Topics in Case-Based Reasoning. Proceedings of the first European Workshop on
Case-Based Reasoning (EWCBR-93), Lecture Notes in Artificial Intelligence 837.
Springer-Verlag 1993, 167—-181.

54 ComsSIS Vol. 1, No. 2, November 2004

Case Competion and Similarity in Case-Based Reasoning

11. http://www.empolis.de/en/index.php

12. Project ”Architectures and Learning on the Base of Mental Models” of the
Research program 1125 ”Cooperating teams of mobile robots in dynamic and
competitive environments” granted by the German Research Association (DFG).
http://www.ais.fraunhofer.de/dfg-robocup/

13. Project "INKA” (http://www.ki.informatik.hu-berlin.de/inka/) of the Re-
search program ”Socionics” granted by the German Research Association (DFG).
http://www.tu-harburg.de/tbg/Deutsch/SPP/Start_SPP3eng.htm

Hans-Dieter Burkhard, Prof. Dr. sc.,(born 1944) is the leader of the Artificial
Intelligence group in the Institute of Informatics at Humboldt University Berlin. He
is Fellow of the ECCAI and Vice President of the International RoboCup Federation.
He has worked on Automata Theory, Petri Nets, Distributed Systems, VLSI Diag-
nosis and Knowledge Based Systems. Current interests include Distributed Artificial
Intelligence, Agent Oriented Techniques, Case Based Reasoning, Information Systems,
Sozionics, Al-applications in Medicine, and Intelligent Robotics. His group has been
world champion in the RoboCup in 1997 (Simulation League) and in 2004 (Four Legged
Robots League, German Team).

ComSIS Vol. 1, No. 2, November 2004 55

