
UDC 65.01

A Method and a Tool for Rapid Prototyping of Large-
Scale Business Information Systems

Gordana Milosavljević, Branko Perišić

Faculty of Engineering
University of Novi Sad

Trg Dositeja Obradovića 5,
21000 Novi Sad, Serbia and Montenegro

{grist, perisic}@uns.ns.ac.yu

Abstract. This paper presents a method and concepts of a supporting
tool for rapid prototyping of large-scale business information sys-
tems. Our method is based on the following guidelines: (1) small
team of highly skilled members with combined skills, (2) prototype-
based development of subsystems and the system as a whole, (3)
brainstorming sessions always involving system analysts, database
and application designers, and user representatives (if needed), and
(4) application generator providing for efficient prototype develop-
ment by maximum automation of all design phases. The also pre-
sented application generator (AppGen) is based on standardization of
functional and visual characteristics of an application, a library of
high-level, coarse-grained components, and a set of rules for model-
to-application mapping enabling automatic application reconfigura-
tion in case of changes in the data model.

1. Introduction

Despite the large number of methodologies, standards, and tools, devel-
opment of large-scale information systems remains a challenging task.
The percentage of unsuccessful development projects in terms of exceeding
time and/or budget is constantly between 50% and 70%, from the early
80’s [1] to the late 90’s [2]. Thirty percent of all projects never reaches de-
ployment.
 Projects developed using classical software life-cycle models (e.g., the
waterfall model) typically fail for the following reasons: output-driven ori-
entation of design process, application backlog due to the document main-
tenance workload, user dissatisfaction due to inability to “see” the system
before it is operational, etc. [3].
 Prototype-based methods, intended to correct these shortcomings and
to bring a software project closer to its users, have other problems:

Gordana Milosavljević, Branko Perišić

− It is hard to identify aspects of the large system to be prototyped and to
set boundaries [5]. In order to get an overview of the overall system, a
detailed understanding of the different tasks is mandatory, while one
cannot understand the different tasks without an overview of the sys-
tem as a whole (the “abstraction” paradox [6]).

− It is hard to determine the level of fidelity for a prototype capable of
capturing significant user feedback while being cheap enough for devel-
opment. Low-fidelity prototypes have low development cost, but because
they are often demonstrated to, rather than exercised by the user, it is
more difficult for user to identify design inconsistencies and shortcom-
ings [4]. On the other hand, high-fidelity prototypes make greater end-
user acceptance, but usually their development becomes a development
effort in itself, sometimes requiring many weeks of programming sup-
port [4].

 Project teams using the prototype approach, respecting large-scale sys-
tems more than it is actually needed and in fear of making errors, repeat
the same mistakes as teams using classical methods. Only in this case,
users’ time and patience are spent on evaluation of different prototypes of
low usability. In our opinion, both approaches share the same problems
concerning the belief that the software construction (or a high-fidelity pro-
totype construction) is expensive, takes a long time, and requires many
developers. Hence, construction phase is delayed as much as possible,
while communication with users utilizes “cheaper means”. Even if an ini-
tial specification obtained this way is good enough, the lack of capability of
quick adaptation to changes will raise problems for the project, since busi-
ness rules are changing during project development and users’ require-
ments grow while gaining experience in using the system.
 Since users are “extremely capable of criticizing an existing system but
not too good at articulating or anticipating their needs” [5], we argue that
the solution is to present them a fully functional prototype as fast as is
possible. Such an approach to development does not necessarily need to be
expensive and time-consuming provided that the appropriate methods,
tools, and team organization are used.
 The aim of this paper is to present our method for rapid prototyping,
including our standards and tools, as well as experiences gained in prac-
ticing it. This method enables a small development team to develop and
deploy large-scale information systems in a relatively short period of time.
It is based on appropriate team organization, brainstorming techniques,
and a simple and highly efficient application generator, AppGen. AppGen
is based on our HCI (Human-Computer Interaction) and programming
standards, a library of high-level, coarse-grained components, and a set of
rules for model-to-application mapping with embedded expert knowledge.
 The rest of the paper is structured as follows. Section 2 presents our
method for large-scale information system development. Section 3 de-

58 ComSIS Vol. 1, No. 2, November 2004

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

scribes high-level, coarse-grained components used by AppGen and gives a
short overview of the HCI standard. Essential features of AppGen are de-
scribed in Section 4. Section 5 presents our experiences in applying the
method and the tool to several real-life projects. Section 6 reviews the re-
lated work. Finally, Section 7 concludes the paper.

2. The Method for Information Systems Development

Our method for large-scale information system development is character-
ized by the following four main principles.

 1. The development is undertaken by a small team, so there is less ef-
fort needed to organize it and for members to communicate. Since the
whole team can be present in the same room, or can go to the users’ loca-
tion, all participants immediately have information on how requirements
might have changed or, conversely, enables them to question or adapt to
changing requirements immediately [10].
 2. The development process comprises brainstorming sessions on sys-
tem or software aspects. The core of these sessions always includes system
analysts, database designers and application designers, while domain ex-
perts and end-users attend sessions as needed. Domain experts and end
users need to attend sessions on requirements elicitation, specification of
user interface functionality, system (subsystem) characteristics, and sys-
tem verification. On the other hand, they do not have to be present in da-
tabase generation and software construction sessions (see Section 2.1). As
these specialists observe the system from different aspects, their united
work significantly decreases the number of iterations needed to reach an
acceptable prototype. In contrast to the Rational Unified Process (RUP)
[18], we do not take the serial approach of completely developing and ac-
cepting one type of a model before moving on to the next one, but develop
multiple types of models1 in parallel allowing rapid switching of modeling
sessions. This way of conducting the development process assumes that
each expert is acquainted with the areas of expertise of others, while all of
them must have the knowledge of the modeling tools and the standards of
the application being built.
 3. In order to gain team credibility and significant user feedback it is
necessary to show “something that works” as soon as possible. The system
as a whole is not suitable for prototype-based development because of its
initial vagueness and inherent complexity. Therefore, the first task is to
decompose the system to a set of well-defined subsystems, each corre-
sponding to a group of related jobs, and to create a plan of their imple-

1 UML (Unified Modeling Languange) models, physical database models, user interface mod-

els, etc.

ComSIS Vol. 1, No. 2, November 2004 59

Gordana Milosavljević, Branko Perišić

mentation, integration, and deployment. Each subsystem can then be im-
plemented by an evolutive prototype method. Really rapid and effective
system decomposition requires, besides cooperative users, an analyst fa-
miliar with the application domain.
 4. Development team translates elicited requirements for subsystems
into UML diagrams, using an appropriate modeling tool. Class diagrams
are used as a basis for generating the physical data model and the data-
base itself (a feature present in most CASE tools). The application genera-
tor uses the CASE tool’s repository containing information on class dia-
grams and the physical model to generate a fully functional application
prototype. The generating process is based on a set of rules and applica-
tion templates supplied with library components. The application appear-
ance is based on our HCI standard developed to provide easy learning,
robustness, and comfortable environment for users.

2.1. Brainstorming Sessions

Information system development takes place in brainstorming sessions
starting from system identification and decomposition phase, to verifica-
tion and deployment phase. A single brainstorming session usually lasts
several hours. A single development phase may take from several to sev-
eral dozen sessions.
 The system identification and decomposition sessions are lead by appli-
cation domain experts (users), end-users and system analysts. Other par-
ticipants take part in terms of understanding the system structure, appli-
cation domain and system constraints. The primary source of “information
leaking” due to indirect access to information about user requirements by
means of various specification documents, is avoided in this approach. The
aim is to constrain this phase to last not more than a month.
 After the system as a whole is decomposed into subsystems, each
subsystem is developed with an evolutive prototype method. Activity
diagram in Figure 1 presents development phases for a single subsystem.
 The goal of the initial phase of subsystem development, lead by a sys-
tem analyst and end users, is identifying the requirements. The next
phase, involving design and construction of a prototype, is lead by applica-
tion and database designers. Prototype evaluation and refinement is the
goal of the third phase, with all necessary team members and relevant
users taking part in the process.
 As soon as the initial (requirements specification) session is finished, it
is immediately followed by a prototype design session where class dia-
grams (and other types of diagrams, as needed) are formulated. The core
of the class diagram is designed by the system analyst and is based on en-
tities of the given subsystem and documents obtained from users. Applica-

60 ComSIS Vol. 1, No. 2, November 2004

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

tion designer closely follows the development of the model2 and can sug-
gest adding supplemental attributes, methods, or classes needed for con-
struction. Database designer, involved in translating the class diagrams to
the physical model, can suggest alternative ways of associating particular
classes and/or modeling some situations in order to ensure adequate per-
formance of database operations. Shortcomings in user requirements are
usually detected very quickly during this session. These shortcomings can
be corrected in the next requirements session taking place the next day (or
even on the same day, if the work is conducted at the users’ site). This
way, only a few days are needed to formulate a quality subsystem model
acting as a basis for prototype construction.

2 A model of a subsystem is actually a submodel, ie. a package in the model of the whole pro-

ject.

ComSIS Vol. 1, No. 2, November 2004 61

Figure 1. Development phases of a single subsystem.

Prototype
 evaluation

Prototype

 construction

1-2 weeks

Prototype

design

Requirements

elicitation

Exploitation

 Exploitation

Prototype evaluation

Prototype refinement

Application
generating

Database
generating

Physical database
model design

UML diagrams
design

Requirements
elicitation

[OK]

[Business rules
 changed]

[Refinement
 needed]

[OK]
[Less significant
errors found]

[Significant errors
found]

[OK]

[Errors /
Imperfections]

[OK][Vagueness
found]

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

 The prototype construction phase is used by a database designer mak-
ing further customizations, defining constraints, implementing rules,
managing indexes, and performing feasibility analyses for data processing
operations about to be implemented. A database designer can initiate a
new cycle of subsystem model refinement, returning the model to the pre-
vious phase for further improvements. When all team members agree on
the model, the database schema and the working prototype are generated
(see Section 4 for the
description of the application generating process). At this point, the proto-
type has a fully functional user interface conforming to our HCI standard.
However,
instead of presenting the prototype to users at this point, we choose to
spend one or two extra days on construction of complex data manipulation
procedures (by the database designer), customization of forms layout, and
construction of the most important reports (by the application designer).
In our experience, the time spent on initial prototype refinement pays
back in later development phases, because quality user feedback is gained
in a far less number of sessions.
 The prototype evaluation phase begins with a prototype presentation.
Users then perform the first interactions with the subsystem, assisted by
team members, who answer the questions and gather new suggestions.
Users should use their real documents during this test, so that data ma-
nipulation procedures and reports can be evaluated as well. In the case
that significant errors are detected, the process is returned to the re-
quirements elicitation phase. Less significant errors and imperfections can
be corrected on the spot allowing the evaluation to continue. The correc-
tion of “less significant errors” consists of activities that do not require
model changes and can be performed fast enough, without significant user
engagement (label and form layout customization, etc.). This way, a user
is directly involved in the creation of his or her future working environ-
ment, resulting in reduced users’ resistance to system deployment.
 When users and the development team agree on prototype functional-
ity, the team undertakes burn-in tests (on system stability and scalabil-
ity), and integrates the subsystem with the rest of the system. Users can
then proceed to verify the subsystem on their own entering the subsystem
exploitation phase.
 The final phase includes possible refinements as users gain more ex-
perience in using the subsystem. The subsystem then moves on to its sta-
ble phase that lasts until the business environment or rules are changed.
 In optimal conditions (users motivated for cooperation, the work taking
place at the users’ site), an average subsystem (30-50 tables, 10-15 com-
plex data manipulation procedures, 10-20 reports) takes at most two
weeks to be deployed.
 The description given above assumes the subsystem is completely new
to the project team. In case a similar subsystem exists in previous pro-

ComSIS Vol. 1, No. 2, November 2004 63

Gordana Milosavljević, Branko Perišić

jects, it is integrated in the current project (using the CASE modeling tool
and our construction tool) and then evaluated and reconfigured until it
satisfies user requirements. This way a subsystem can be deployed in a
matter of days.

t The initial phase of system identification and decomposition

Single subsystem development

Subsystem integration

Figure 2. An information system development “pipeline”

 Final phases of subsystem development (users’ independent subsystem
verification, fine tuning) witnesses reduced team activity, so the team may
start initial phases of the next subsystem (see Figure 2). This way a period
of team idleness is avoided and the process reaches a “pipeline”, thus fu-
ther accelerating development. The pipeline may also facilitate develop-
ment progress in cases when users are not ready for an intensive subsys-
tem verification. By moving on to the next subsystem, development block-
ing is avoided.
 In order to enable the incremental and iterative development, it is nec-
essary to possess a strategy of integrating new subsystems with the ones
already deployed. The strategy includes the following:

− Careful planning of a sequence of developing subsystems, based on in-

ter-subsystem dependencies, and
− The use of tools supporting iterative and incremental development.

 The CASE tool used for system modeling must support incremental
development and generating partial scripts for modifying database
schema. The application generator must support repetitive code genera-
tion while preserving manual code customizations. The development team
must follow programming standards providing an efficient integration of a
new subsystem into the rest of the project. The use of a version control

64 ComSIS Vol. 1, No. 2, November 2004

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

software facilitates system integration and keeping different versions of
the project source code.

3. Application Structure

The concept of model-based automated code generating is not new [13].
Usually, tool design aims to reach the largest possible amount of gener-
ated code. On the other hand, we strive to build a fully functional proto-
type with as little generated code as possible. A large body of program
code complicates management and reconfiguration. The strategy of reduc-
ing the program code size is carried out at two different levels.

 1. At the project level, the required functionality should be imple-
mented with keeping the number of coarse-grained components as small
as possible. The concept of a generic application is introduced.
 2. At the level of coarse-grained components, the concept of a generic
component is introduced.

 A generic application is an application comprising a union of all coarse-
grained components. Information on these components is stored in an ap-
plication repository. The basic coarse-grained components (application
building elements) are forms, reports, and data manipulation procedures
(DMPs). Higher-level building elements are subsystems corresponding to
particular tasks in an enterprise (see Figure 3). Subsystems are created
using the basic building elements by an application administrator. This
way, a single basic element can appear in multiple subsystems. Each sub-
system appears as a pull-down menu in the generic application’s main
menu.
 Subsystems represent elements for building user roles. A user role
bears information about self-contained software unit that models a group
of tasks associated to a specific job or user. Each role behaves as an inde-
pendent application that has the appearance and functionality of the ge-
neric one, with the main menu reduced to the necessary and sufficient
group of items.

ComSIS Vol. 1, No. 2, November 2004 65

Gordana Milosavljević, Branko Perišić

Has

1
 IsGroupedIn0..1

 *GenericApplication

1 Subsystem

IsUnionOf
 * 1..*

 * IsGroupOf HasAssociated BuildingElement

Figure 3. Generic application structure

The rest of the section discusses features of the basic building elements.

3.1. Forms

We have distinguished several standardized types of forms within busi-
ness applications as follows:

− Simple form – providing basic operations (browse, add, update, copy,

delete, query-by-form) on the rows of one database table (every table
has exactly one associated simple form).

− Complex or “Many-to-Many” form – intended for intensive row inserting
into database tables with the primary key composed of two or more
primary keys from referenced tables (see Figure 10).

− Report parameterization form – entering data-filtering parameters for
the report.

− Form displaying the set of available reports within a subsystem, where
the user can invoke a report.

− The main user role form, comprising the main menu with options
conforming to current user rights.

Data manipulation forms (both simple and “Many to Many”) are descen-
dants of the generic form that provides (see Figure 4):

− Navigation through current set of rows.
− Row operations (if permitted): add, update, delete, and copy.

1..*

D efinesWorking
E nvironmentFor

 1..*

1..*

1..* *

 UserRole

Form Report DMP

User

66 ComSIS Vol. 1, No. 2, November 2004

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

− Query by form.
− Possibility to change a display mode (row browse or single record view).
− Zoom (lookup) buttons (see Figure 8).
− “Next form” functionality. “Next form” function provides access to sim-

ple forms associated to child tables of the current one (see Figure 9).
− Calculated, aggregated and lookup values, when appropriate.
− Online help.

 a)

b)

4 3 8 1 2 6

7 5

Figure 4. Simple form a) Browse view b) Single record view

 A generic form is represented by a generic superclass encapsulating the
full functionality defined by the HCI standard. Concrete data manipula-
tion forms in a project are descendants of this superclass. A concrete form
can extend or redefine the behavior of its ancestor. Conversely, a change
in behavior of all forms can be made by changing the implementation of
the superclass. In order to reduce the number of descendants defined, the
generic form is supplied with the possibility of dynamic adjustment of its
appearance and the presented set of data according to current application
context, data from the application repository, access rights of the current
user, and a set of parameters. In most cases, a single database table has a

ComSIS Vol. 1, No. 2, November 2004 67

Gordana Milosavljević, Branko Perišić

single corresponding concrete form that can be invoked within different
subsystems.
 In the prototype evaluation mode, the form loads initialization parame-
ters from the application repository (see Figure 5) and adjusts its appear-
ance and behavior on-the-fly. This way it is possible to tune form appear-
ance and behavior without changing and compilation of the program code.

ManyToMany Form * Browses 1

Table

Figure 5. The segment of the AppGen repository for specifying forms

3.2. Data Manipulation Procedures

The notion of a data manipulation procedure (DMP) stands for the pro-
grammatic procedure operating on the database data. There are two types
of DMPs in our model:

− Basic DMPs, performing elementary operations on a single database

table (insertion, update, and removal of a single row).
− Complex DMPs, implementing whole or part of business transactions

(stock entry shipping, payroll calculation, etc.), that generally may mod-
ify contents of multiple database tables.

Invokes

*
* ZoomButton

1
* IsAttachedTo

1
1 *

IsAssociated
With Invokes1 *

SimpleForm1 * NextForm1 *1

1
11Data-Aware Component 1

*

LookupValue *
* *

CalculatedValueGridColumn
*

TakesData *
From *

TakesData AgregatedValueFrom
Calculates

* DataOn1 *

11 AggregatesDataOnColumn

68 ComSIS Vol. 1, No. 2, November 2004

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

 DMPs are executed within a transaction control mechanism provided
by the application server or database server and may be implemented in
different ways. There are two versions of the application generator tool;
the former uses Enterprise JavaBeans [21] while the latter uses Transact-
SQL stored procedures [22]. Each standard data manipulation form in-
vokes three basic DMPs and, if needed, particular complex DMPs (see Fig-
ure 6).

PerformsBussines
Transactions

DeletesFrom
Updates

InsertsInto

Executes

1..*

*

Executes 1..*

1

Executes 1..*
1

Executes
1..*

1

Table

Create DMP

Update DMP

Delete DMP

Complex Bussines DMP

Form

Figure 6. Standard data manipulation form structure

Removal of DMPs from client applications achieves the following benefits:

− Reduced client application complexity and increased development effi-

ciency (higher-level languages used for developing DMPs increase pro-
ductivity up to ten times compared to general purpose languages [15,
17]).

− Faster execution (DMPs are precompiled and optimized before they are
used, making them faster than other ways of executing operations in
the database server [15, 16]).

3.3. Reports

We have distinguished two types of reports in the generic application as
follows:

− Hand-coded reports implemented within the development tool used,

intended for efficient printing on dot-matrix printers.
− Graphical reports implemented using a report generating tool (i.e., Sea-

gate Crystal Reports, Progress Report Builder etc.), intended for print-
ing on laser printers.

ComSIS Vol. 1, No. 2, November 2004 69

Gordana Milosavljević, Branko Perišić

Each report, independently of its type, comprises the following:

− Parameterization dialog.
− Destination choice dialog (screen, printer, and file).
− Reports are grouped within subsystems and can be invoked using the

appropriate standard form.

4. Application Generator Tool

The application generator tool comprises several elements presented in
Figure 7.
 Model Analyzer imports models from the CASE modeling tool’s reposi-
tory into the application generator repository. The import process also in-
cludes generation of concrete form specifications according to given rules.
The rules contain expert knowledge about the HCI standard and the
model-to-application mapping. This process analyzes the type and cardi-
nality of associations, the structure of primary and foreign keys, special
comments embedded in code, etc. The details of the process are presented
in more details in [19, 20, 21].
 During this process, all necessary data is imported from the CASE tool
repository into “entrance” tables of the application generator repository.
Further implementation of the given subsystem is carried out depending
on data from these tables, while designers can independently work on the
other subsystems.

 Generator Model
analyser

 Application

repository

Documentation
Generator

Doc. templates

Forms
generator

DMP
Generator

Generic form DMP templates
Forms DMP

procedures /
methods

Documentation

Administration
Subsystem

tool
repository

Modeling tool
repository

Figure 7. Structure of the application generator AppGen

70 ComSIS Vol. 1, No. 2, November 2004

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

 Data in “entrance” tables and a set of rules (see Table 1 and Figures 8,
9, and 10 for an example) are used by AppGen to automatically generate
an initial specification of standard forms. This initial set is stored in the
AppGen repository and can be reviewed by a Forms Generator visual tool
(see Figure 12). Changing the initial specification usually includes addi-
tion of calculated, aggregated, or lookup fields, correcting spelling errors
in field labels, removal of columns not intended for display, etc.

Table 1. Set of rules for model-to-application mapping

From model To application
Diagram Subsystem
Table Simple form
Table name Form caption, main menu item

caption
Table code name Associated form name (“frm” + ta-

ble code name), basic DMP names
(“c_”, “d_”, “u_” + table code name)

Column Data-entry component, grid col-
umn

Column name Data-entry component / grid col-
umn label

Column code name Associated component/ column
name, DMP parameter and vari-
able names

Column comment Component /column help
Column type and format Component/column type and for-

mat
Relations Zoom buttons, Next menus,

Lookup values
Relations names Next menu captions
Constraints Component/column constraints,

custom error messages

ComSIS Vol. 1, No. 2, November 2004 71

Gordana Milosavljević, Branko Perišić

 (1)

(3)

(2)

Customer

Customer ID
Customer Name
Postal Code
Address
Phone

char(7)
varchar(25)
char(5)
varchar(100)
char(20)

<pk>

<fk>

Order

Order ID
Customer ID
Order Date

int
char(7)
datetime

<pk>
<fk>

a)

b)

Figure 8. An illustration of zoom buttons. a) Physical model segment. b) Corre-
sponding application segment

72 ComSIS Vol. 1, No. 2, November 2004

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

Product

Category ID
Product ID
Product Name
Description
Price

char(2)
int
varchar(100)
varchar(1000)
decimal(9,2)

<pk,fk>
<pk>

Contains Material

Category ID
Product ID
Mat Category ID
Material ID
Quantity

char(2)
int
char(2)
char(5)
decimal(8,2)

<pk,fk2>
<pk,fk2>
<pk,fk1>
<pk,fk1>

Contains Semi-products

Product ID
Category ID
SemiProduct ID
SemiPrCategoryID
Quantity

int
char(2)
int
char(2)
integer

<pk,fk1>
<pk,fk1>
<pk,fk2>
<pk,fk2>

Product Operations

Product ID
Category ID
Operation ID
Final Operation?

int
char(2)
char(4)
char(1)

<pk,fk2>
<pk,fk2>
<pk,fk1>

a)

b)

 Figure 9. An illustration of next forms. a) Physical model segment. b) Corre-
sponding application segment

ComSIS Vol. 1, No. 2, November 2004 73

Gordana Milosavljević, Branko Perišić

Product

Category ID
Product ID
Product Name
Description
Price

char(2)
int
varchar(100)
varchar(1000)
decimal(9,2)

<pk,fk>
<pk>

Order

Order ID
Customer ID
Order Date

int
char(7)
datetime

<pk>
<fk>

Ordered Items

Order ID
Product ID
Category ID
Quantity

int
int
char(2)
DC8,2P

<pk,fk1>
<pk,fk2>
<pk,fk2>

a)

b)

Figure 10. An illustration of a “Many to Many” form. a) Physical model segment b)
Corresponding application segment

Forms Generator implements a user interface for previewing and editing
the application specification produced by Model Analyzer. This element
implements the code generating process as well. Any of Model Analyzer’s
“design decisions” can be overridden, with the changes being stored in the
application repository thus enabling repetitive form generating. Forms
Generator provides for rapid user interface development because of the
use of high-level components and a set of functions minimizing the need
for manual form customization. However, if a need to customize a gener-
ated form arise (in terms of changing the form layout or extend-

74 ComSIS Vol. 1, No. 2, November 2004

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

ing/overriding functionality), it can be done with a general-purpose devel-
opment tool for the chosen platform. By parsing the program code, Forms
Generator gathers information on manual changes in the code and stores
it in the repository, making it available for the next generator iteration.
Hence, each generated form is completely described in the repository,
enabling both application recovery after changes to the database schema
and documenting the application.
 Changes in the model require reconfiguration of the generated forms.
The first, Model Analyzer applies changes to the application specification
(adds new forms, or adds and removes form fields). Then, Forms Genera-
tor forwards these changes to generated forms and presents a list of
changes made.

Figure 11. Forms Generator

DMP Generator is a tool for efficient construction of complex data ma-
nipulation procedures. DMP Generator comprises a set of templates for
the most common operations in business transactions and a user interface
enabling a database designer to apply these templates to selected tables
and columns (see Figure 12). A skilled database designer, well acquainted
with the database structure and the business logic, is able to implement
all DMPs of a subsystem in a day.

ComSIS Vol. 1, No. 2, November 2004 75

Gordana Milosavljević, Branko Perišić

Figure 12. DMP Generator

Administration Subsystem. After forms, reports, and DMPs are finalized,
the application administrator can integrate them in a subsystem as its
basic building elements. The AppGen application administration subsys-
tem serves this purpose. The integration consists of defining the subsys-
tem’s vertical menu layout, associating menu items to application building
elements, and defining user rights on these elements (see Figure 13).
 Upon finalizing subsystem definitions, the user roles are formed and
associated to application users. User rights on application elements are
defined for user roles, with the possibility of expressing restrictions for
particular users. The main application menu is dynamically created de-
pending on the structure of subsystems associated with the current user
during application startup. Hence, each application user can have a cus-
tomized version of the application, while maintenance is carried out cen-
trally on the generic application.

76 ComSIS Vol. 1, No. 2, November 2004

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

User Right

User
ReportDMP Form

*
1..*

1..* MayUse
DefinesWorking
EnvironmentFor *

BuildingElement
1..* User Role Right

* *

Figure 13. The AppGen application administration repository segment

Documentation Generator uses the data from the repository to generate
documentation in HTML and RTF formats.

5. Experiences

This section describes experiences gained by applying our approach and
the tool, from 1997 until today. It presents a brief overview of realized
projects, as well as analysis of percentage of generated code, tool perform-
ance, and end users’ attitude.

5.1. Realized Projects

The development approach and the tool presented here have been verified
by intensive application on several real-life engineering/reengineering
projects. Those projects had a number of tables in the database ranging
from 320 to 430, and the number of subsystems ranging from 11 to 14, re-
spectively.
 The first project, for a large trade company, took seven months from
the initial decomposition to the deployment of the last subsystem. The
team comprised one system analyst, two application designers, and one

Invokes
1..1

IfSubmenu

1..1

*IsGroupOf

1..*
* UserRole MayUse

Menu Item

CreatesVertical
Submenu1..* 1..*

Subsystem 1

1..*

HasAssociated

ComSIS Vol. 1, No. 2, November 2004 77

Gordana Milosavljević, Branko Perišić

database designer. The users were very cooperative, and the team was
able to work at the users’ location.
 The second project, for a trade company with a different business pro-
file, was deployed in two months. This project was able to reuse about 50%
of the results of the previous project. The users and their management
were extremely cooperative, since the old system had a problem with Y2K
compliance. The team comprised one analyst, two application designers
and one database designer.
 The third project, for a production-based company, took more than a
year. Users were satisfied with the old system, and unmotivated for coop-
eration and verifying the prototype; the development of the new system
was forced by the company management because the old one was devel-
oped using an obsolete platform. The team comprised one analyst, two da-
tabase designers, and two application designers.

5.2. Generated Code Percentage

 The performance of our tool cannot be expressed with commonly used
measures, because it is not a commonly used application generator. In-
stead, it uses concepts of generic forms, generic applications, and applica-
tion specifications in the repository. Our estimate is that the tool would, in
the case of classical code generating, provide as much as 90 to 95 percent
of program code, depending on the application.

5.3. Tool Performance

 Tool performance from the standpoint of time savings can be expressed
with the results of the following experiment. Three specialists for the cho-
sen platform were given the task of building a small subsystem with 8
forms, according to our HCI standard. The first specialist started from
scratch, the second one used generic classes as a basis for development,
and the third one used our tool.
 The first expert needed 3.2 hours on average to build a form that con-
forms to the standard (query by form, navigation, basic data manipulation
in a multi-user, transactional environment, printing).
 The second expert had a task of inheriting the generic form superclass,
defining the form layout. This task took 20 minutes per form on average.
 The third expert that used our tool needed 4 minutes to analyze the
suggested form specification and start the automatic form generating.
 If it is estimated according to the results of this experiment, and as-
suming the linear life cycle model, to complete the project comprising 500
forms, it would take about 200 working days for the first expert, 20.8 days
for the second expert, and 4.3 days for the third.

78 ComSIS Vol. 1, No. 2, November 2004

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

5.4. End-users’ Attitude

 In order to validate end-user attitudes we have conducted a poll at one
of the large-scale reengineered systems site. The results of the poll with 46
participants have shown that the application, standardized in this way,
suits end-user particular needs. The time for a novice user to start a self-
reliant usage of the associated user role (job) varied from 30 minutes to 2
hours. Since none of the polled users suggested any change in the domain
of HCI standard, we have concluded that the standard was transparent to
them, i.e. it allowed them to concentrate on their job, and not on the appli-
cation software that served as a mediator. It is worth mentioning that all
of those polled were individually trained in their own working environ-
ment.

6. Related Work

Work related to the topics discussed in this paper includes research in the
areas of team organization strategies, rapid prototyping and tools con-
struction.
Recommendations for the use of small highly-skilled teams in rapid soft-
ware development are given in [7], [8], and [14].
 Positive experiences in team working with the whole teams present in
the same physical environment are the subject of a number of papers deal-
ing with “war rooms”. A review on this subject is given in [10].
 Successful application of brainstorming sessions, within the software
storming method that deals with rapid software development for military
applications can be found in [9]. Although authors claim that such an in-
tensive way of work is not suitable for broadly focused problems, we have
showed that it is applicable to business information systems.
 In the area of development tools research, there is a large number of
papers dealing with a model-based code generating or descriptive lan-
guages, some of these intended to support rapid prototyping. The closest
research to our work, in terms of concepts presented and results achieved,
are the CAPS tool for building real-time systems using an abstract lan-
guage as its foundation (see [11], [12]), and the Quava tool [13] for synthe-
sizing distributed, object-oriented servers for the enterprise from object
models. Both these tools use a repository as a knowledge base about the
previously developed systems and to store a model of the application being
built. However, they do not provide on-the-fly adjustment of the generated
application based on changes in the repository data during testing.

ComSIS Vol. 1, No. 2, November 2004 79

Gordana Milosavljević, Branko Perišić

7. Conclusions

This paper presents a method and a supporting tool for rapid development
of large-scale information systems. The method is based on an optimal
organization of a small highly-skilled development team, brainstorming
techniques and a simple to use, highly efficient tool. The tool efficiency
comes from the existence of a HCI standard, a library of high-level, coarse-
grained components, a set of rules for model-to-application mapping with
expert knowledge embedded and the ability of on-the-fly modification dur-
ing testing.
 The presented approach provided the following benefits: (1) fully work-
ing business subsystem prototype can be finalized in a matter of hours, (2)
minimal number of team coordination documents is needed, hence the
most of the effort can be focused on the product itself, (3) the possibility of
introducing errors in early development phases is minimized, and (4) high
user satisfaction and cooperation due to rapidly achieved results.
The limits of the presented approach can arise from the following re-
quirements: (1) the approach assumes a team with motivated, highly-
skilled members, and (2) optimum results require a continuous contact
with the users motivated for cooperation.

8. References

1. Kalle Lyytinen. Different Perspectives on Information Systems: Problems and

Solutions. ACM Computing Surveys, Volume 19, Issue 1, March 1987.
2. E. H. Conrow and P. S. Shishido. Implementing Risk Management on Soft-

ware Intensive Projects. IEEE Software, May / June 1997.
3. David E. Avison and Guy Fitzgerald. Where Now for Development Methodolo-

gies? Communications of the ACM, January 2003. Vol. 46. No. 1.
4. Jim Rudd, Ken Stern, and Scott Isensee. Low vs. High-Fidelity Prototyping

Debate. ACM Interactions, Volume 3, Issue 1, January 1996.
5. M. Alavi. An Assessment of the Prototyping Approach to Information Systems

Development. Communications of the ACM, June 1984/Vol. 27, Issue 6.
6. A. Krabbel, I. Wetzel, and H. Zullighoven. On the Inevitable Intertwining of

Analysis and Design: Developing Systems for Complex Cooperation. Sympo-
sium on Designing Interactive Systems, 1997, Amsterdam, The Netherlands.

7. D. Millington and J. Stapleton. Developing A RAD Standard. IEEE Software,
Vol. 12, No. 5, September 1995.

8. E. Demirors, G. Sarmasik, O. Demirors, and D. Eylul: The Role of Teamwork
in Software Develpment: A Microsoft Case Study. 23rd EUROMICRO Confer-
ence '97 New Frontiers of Information Technology, Budapest, Hungary

9. P. W. Jordan, K. S. Keller, R. W. Tucker, and D. Vogel. Software Storming:
Combining Rapid Prototyping and Knowledge Engineering. IEEE Computer,
May 1989 (Vol. 22, No. 5). pp. 39-48

80 ComSIS Vol. 1, No. 2, November 2004

A Method and a Tool for Rapid Prototyping of Large-Scale Business Information Systems

10. Gloria Mark. Extreme Collaboration. Communications of the ACM, June 2002.
Vol.45, No.6.

11. Luqi. Knowledge-Based Support for Rapid Software Prototyping. IEEE Intelli-
gent Systems, 1988. Vol. 3, No. 4. pp. 9-15.

12. V. Berzins, O. Ibrahim, and Luqi. A Requirements Evolution Model for Com-
puter-Aided Prototyping. Proceedings of the 9th International Conference on
Software Engineering and Knowledge Engineering, Madrid, Spain, June 1997.

13. William J. Ray, and Andy Farrar: Object Model Driven Code Generation for
the Enterprise. Proceedings of the 12th International Workshop on Rapid
System Prototyping (RSP’01)

14. J. D. Blackburn, G. D. Scudder, and L. N. Van Wassenhove: Improving Speed
and Productivity of Software Development: A Global Survey of Software De-
velopers. IEEE Transactions on Software Engineering, Vol. 22, No. 12, De-
cember 1996.

15. M. Grechanik, D. Perry, D. Batory. An approach to evolving database depend-
ent systems. Proceedings of the workshop on Principles of software evolution,
Orlando, Florida, 2002

16. Microsoft SQL Server 2000 Books Online,. Microsoft Corporation, 2000
17. A. S. Fisher. CASE:Using Software Development Tools. John Wiley & Sons.

Inc.1988.
18. I. Jacobson, G. Booch and J. Rumbaugh: The Unified Software Development

Process. Addison-Wesley Longman, Inc. 1999.
19. G. Milosavljević, B. Perišić. An Approach to Automating Large-Scale Business

Software Systems Construction Phase. 6th Conference on Operational Re-
search, Thessaloniki, Greece, 2002.

20. B. Milosavljević, M. Vidaković and Z. Konjović. Automatic Code Generation for
Database-Oriented Web Applications. In J. Power and J, Waldron, eds., Re-
cent Advances in Java Technology: Theory, Application, Implementation.
Computer Science Press, Trinity College Dublin, 2002. pp. 89-98.

21. B. Milosavljević, M. Vidaković, S. Komazec and G. Milosavljević. User Inter-
face Code Generation for Data-Intensive Applications with EJB-Based Data
Models. Software Engineering Research and Practice, Las Vegas, NV 2003.

22. G. Milosavljević, B. Perišić. Really Rapid Prototyping of Large-Scale Business
Information Systems. 14th IEEE Intl. Workshop on Rapid System Prototyping,
San Diego, CA, 2003. pp. 100-106.

Gordana Milosavljević is a teaching assistant and Ph.D. student at University of
Novi Sad, Faculty of Engineering, Computer Sciences Department. She has re-
ceived her B.Sc. and M.Sc. from University of Novi Sad, Faculty of Engineering,
Computer Sciences Department. Her research interests focus on software engi-
neering methodologies, rapid development tools and enterprise information sys-
tems design. Contact her at grist@uns.ns.ac.yu.

Branko Perišić is an associate professor of computer science and software engi-
neering at University of Novi Sad, Faculty of Engineering, Computer Sciences De-
partment. Professor Perišić has received his B.Sc. from University of Sarajevo,
Faculty of Electrical Engineering. He has received his M.Sc. in computer system

ComSIS Vol. 1, No. 2, November 2004 81

Gordana Milosavljević, Branko Perišić

82 ComSIS Vol. 1, No. 2, November 2004

security and Ph.D. in management information systems at University of Novi Sad,
Faculty of Engineering. His research interests focus primarily on software engi-
neering methodologies, software product standards, management information sys-
tems design and rapid software development. He is a member of PATIENT
CLASSIFICATION SYSTEMS/EUROPE (PCS/E) and IEEE Computer Society.
Contact him at perisic@uns.ns.ac.yu.

	Introduction
	The Method for Information Systems Development
	Brainstorming Sessions

	Application Structure
	Forms
	Data Manipulation Procedures
	Reports

	Application Generator Tool
	Experiences
	Realized Projects
	Generated Code Percentage
	Tool Performance
	End-users’ Attitude

	Related Work
	Conclusions
	References

