
UDC 681.3.064 

Composing Transformations of Compiled Java 
Programs with Jabyce 

Romain Lenglet, Thierry Coupaye, and Eric Bruneton 

France Telecom – R&D Division 
28 chemin du Vieux Chêne, 38243 Meylan, France 

{romain.lenglet, thierry.coupaye, eric.bruneton}@francetelecom.com 

Abstract. This article introduces Jabyce, a software framework for 
the implementation and composition of transformations of compiled 
Java programs. Most distinguishing features of Jabyce are 1) its 
interaction orientation, i.e. it represents elements of transformed 
programs as interactions (method calls), which generally consumes 
less memory and CPU time than representing programs as graphs of 
objects; and 2) its component orientation, i.e. it allows for the design 
and composition of transformers as software components based on 
the Fractal component model. This latter point is strongly connected 
to infra-structural and architectural issues, and software engineering 
aspects such as composing, scaling, maintaining and evolving 
transformers. Jabyce is compared with other existing compiled Java 
programs transformation systems, using an extension of a previous 
well-known categorization of program transformation systems. 

1. Introduction 

The work presented in this article is motivated by the increasing need for 
adaptability in distributed systems. Distributed systems and middleware 
platforms are deployed in highly heterogeneous and highly evolving 
environments in terms of computing resources (processing, memory, 
database connectivity, network resources…). Therefore they need to be 
easily specialized and configured (assembled) statically and dynamically. 
Program transformation is one of the most general and efficient technique 
for the adaptation of complex systems, in a non intrusive way. 
Indeed, program transformation deals with the automated modification of 
programming elements by (other) special executable programming 
elements called transformers. Traditionally, program transformation has 
been very much connected to the software engineering area. Most program 
transformation systems [9] have been or are developed by software 
engineering teams or groups in the context of software maintenance. Most 
often described uses of program transformation hence include software 
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evolution, refactoring, change logging, reverse engineering, etc. Software 
development and programming languages also make use of program 
transformation for compilation, optimization, partial evaluation, etc. In 
contrast with those uses, in the context of complex distributed systems, 
the main targeted uses of program transformation concern load-time 
weaving of code as a support for runtime adaptability (transparent 
insertion of so-called technical se vices or non functional aspects to 
components and composition of these technical services). In that respect, 
motivations for the development of transformation systems, such as the 
Jabyce transformation system presented in this article, converge with that 
of aspect weaving in Aspect Oriented Programming (AOP) which is 
strongly related with program transformation - but with a special interest 
in dynamic weaving. 
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Jabyce1 is a software framework that allows for the implementation and 
composition of software components (trans ormer components) that 
transform compiled Java classes. The main goals concerning the design of 
this framework are the following: 

• to be able to implemen  any transfo mations of compiled classes in 
contrast to some transformation systems that limit themselves to a 
subset of all the transformations - for example to ensure some integrity 
constraints.  

• to be able to separate transformers as individual software components, 
that can then be composed without modifying their code. This is 
important to be able to reuse transformers, which are generally complex 
pieces of software.  

• to be able to compose transformers in an efficient way. In particular, the 
system should avoid redundant computations made in separate 
transformers. 

These objectives have guided the design process of Jabyce, which is 
presented in this article. We also consider them as criteria to compare 
Jabyce to other transformation systems. From a general point of view, 
Jabyce is the only Java bytecode transformation system that reaches all 
those three objectives simultaneously. 
These objectives are achieved 1) by using well known object oriented 
design patterns and principles - such as the Interface Segregation 
Principle -and by using a component-based architecture; and 2) by 
introducing the representation of transformation program elements as 
sequences of interactions, instead of the generally used graphs of objects 
or terms. 
The rest of this article is organized as follows. Section 2 introduces and 
extends the characteristics (or dimensions) that have been introduced in a 
previous categorization of program transformation systems. Sections 3 to 6 

 
1 In “Jabyce”, “ja” is pronounced as in “jacket” and “abyce” like “abyss”. 
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describe Jabyce and compare it with other compiled Java program 
transformation systems, along the dimensions of that extended 
categorization. Section 7 provides a more general and synthetic 
description of Jabyce. Section 8 details an example of a Jabyce 
transformer, and execution time measurements that are compared with 
those of two other transformation systems. Finally section 9 shows how 
the design process used in Jabyce can be generalized, and the conclusion 
gives some perspectives for future work. 
From a general point of view, the purpose of this article is twofold. It is 
both theoretical and practical, as 1) it considers new theoretical aspects of 
program transformation systems, in the form of an extension of a well-
known categorization of such systems, and 2) it thoroughly describes the 
Jabyce transformation system, which is implemented and functional, and 
the process of its design. 

2. Categorization of Program Transformation Systems 

We define the following terms that will be used in the rest of this article to 
describe Jabyce and other systems homogeneously. Although no 
homogeneous terminology is used in the literature, the following terms are 
a good compromise. We call trans ormations the computations that 
produce a transformed program from an original program. 
Transformations are performed by runtime entities called transformers, 
which are software components that may be composed into various 
transformer configurations. A transformation system, for instance Jabyce, 
is an infrastructure, or a oftware framework, used to develop transformer 
implementations and transformation programs. In Jabyce, we use a 
second term to refer to a special kind of transformers: transformation 
operations. In Jabyce, the difference between a transformer component 
and an operation component lies in their architecture, as further 
explained in section 7.1. 

f

s

r

[32] presents a taxonomy and categorization of program transformation 
systems. The taxonomy deals mainly with the scope of transformation 
systems but the whole survey in itself can be considered as a more general 
categorization as it introduces additional dimensions, or characteristics: 
program rep esentation and transformation paradigm. The rest of this 
section provides an overview of this categorization. 

2.1. Scope 

The scope dimension concerns the possible uses of a transformation 
system, i.e. the range of transformer implementations and transformation 
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programs that can be implemented using it. [32] provides a taxonomy of 
program transformation systems, according to the possible uses of such 
systems, that is illustrated as a tree in Fig. 1. Two main categories are 
identified: 

• rephrasing: programs are transformed into programs in the same 
model; 

• transla ion: programs in a source model are transformed into programs 
in a different target model.  

t
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Figure. 1. Possible uses of program transformation 

All those uses are relevant in the context of transformation of compiled 
Java programs. For example, a compiled Java program can be no malized 
by removing its debugging information. As another example, a compiled 
Java program can be optimized, by removing dead code and unused 
methods and fields [31]. Also, method calls can be devirtualized, i.e. some 
virtual method calls can be resolved to particular implementations of such 
methods, and be performed faster at runtime. As a very common use of 
translation, compiled Java programs must be interpreted or compiled into 
native binary programs, in order to be executed. Compilation can occur 
statically, or dynamically during the program execution using a “Just-In-
Time” compiler. 

r
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2.2. Transformation Paradigm 

This dimension deals with the computational and architectural models of 
transformation systems. We consider that these models are the result of 
choices that answer to the following questions: 

• How to express or implement transformers?  This is related to the 
“transformation language” design activity.  

• How to package and deploy transformers?  This is related to the 
programming interfaces design, transformer maintenance and testing 
activities.  

• How to control the computation of transformations, and how to compose 
transformers?  These questions relate to the design of the infra-
structural environment required to develop transformers.  

The categorization proposed in [32] is part of a survey of the 
transformation strategies based on declarative rewrite rules, also called 
schematic rules or pattern repla ement rules [27]. There are two general 
ways to specify transformations as declarative rules: rules are either 
interpreted or compiled into an imperative programming language, as it is 
done in Stratego [32]. It is also possible to specify transformations directly 
in an imperative programming language, such as Java or C. Such 
transformer implementations are called procedu al rules [27]. As this 
article considers procedural rules, in contrast with [32], it also considers 
more general software architecture issues, such as software component 
composition. 

c

r

r c

2.3. Program Representation 

The program representation dimension concerns the choice of a 
representation model for programs to be transformed. In [32] it is asserted 
that programs are either represented as trees or as graphs of objects (or 
terms). As an innovative characteristic, Jabyce represents programs as 
sequences of interactions between transformers. This new way of 
representing program elements is described in details in the rest of this 
article. As a consequence, we propose an extension of Visser’s 
categorization, by splitting the program representation dimension into two 
related dimensions: 

• the conceptual model dimension: the choice of the types of the elements 
of programs that are represented to be transformed.  

• the prog ammati  model dimension: the abstractions of the transformer 
implementation language that are used to make the represented 
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program elements concrete. This dimension is closely related to the 
transformation paradigm dimension.  

The two categories of programmatic models that we have identified are: 1) 
graphs of objects (e.g. structs, in C), and 2) sequences of interactions 
(method calls). These two dimensions are independent: a given conceptual 
model can be combined with either an object graph representation, or an 
interaction sequence representation. 

2.4. Proposed Extended Categorization 

As a conclusion, we propose the following extension of Visser’s 
transformation system categorization proposed in [32], that consists of 
four dimensions: 

• scope: the possible uses of a transformation system.  

• transforma ion paradigm: the computational and architectural models 
of a transformation system.  

t

• conceptual model: the choice of the model of the types of elements of 
programs to be manipulated.  

• programmatic model: the abstractions of the transformer 
implementation language that are used to make the represented 
program elements concrete.  

This categorization is used as the structure of this article: one section is 
dedicated to the description of Jabyce and its comparison with other 
systems, in each dimension. 

3. Scope 

This section lists the Java bytecode transformation systems that are 
considered in this article, and compares those systems along the scope 
dimension. The discussion about Jabyce and other transformation systems 
is restricted to systems that are close to Jabyce, i.e. systems that 
transform Java programs and that are portable, i.e. that perform 
transformations without requiring modifying the Java Virtual Machine. 
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3.1. Considered Transformation Systems 

ASM2 [3, 26] is developed in the same team as Jabyce in France Telecom. 
It is a Java-based framework for the implementation of very efficient 
transformations of compiled Java classes. JOIE [6] (Java Object 
Instrumentation Environment), JMangler [19] and Javassist [5] are 
frameworks for the transformation of compiled Java classes, that also offer 
abstractions to implement transformers in Java. Those three systems are 
very similar. They allow for load-time transformations, i.e. the compiled 
classes of a transformed program are transformed when the program is 
loaded. The first academic works on Java bytecode transformation were 
BIT (Bytecode Instrumentation Toolkit) [20] and BCA (Binary Component 
Adaptation) [18]. However, these two systems are no more maintained, so 
we do not consider them in this article, as JOIE, JMangler and Javassist 
offer similar features. 
jclasslib [16], Serp [30] and BCEL (ByteCode Engineering Library) [4] are 
Java libraries that offer representations of compiled Java classes as 
graphs of Java objects, and that can be manipulated. Unlike the 
transformation systems described above, these libraries do not offer 
abstractions for the implementation of transformers, and therefore are not 
transformation systems. But such libraries are widely used to implement 
transformation systems. For instance, BCEL is used in the 
implementation of JMangler. Serp and BCEL are therefore evaluated in 
the rest of this article, for the conceptual and programmatic model they 
offer for the representation of compiled Java programs. jclasslib offers a 
model that is too basic to be used in practice to implement complex 
transformers. jclasslib is therefore not considered in the rest of this article. 

3.2. Comparison 

Since JOIE, JMangler and Javassist are designed for load-time 
transformations of Java classes, they mainly target only certain kinds of 
rephrasing transformations, such as optimization, normalization and code 
weaving. While JOIE allows for any kinds of transformations of Java 
classes, including removal of methods and fields, JMangler and Javassist 
restrict the transformations that can be performed, in order to preserve 
binary compatibility of transformed programs, i.e. they allow only for 
transformations that do not require transforming also client classes. 
Jabyce is intended to support any kinds of transformations of compiled 
Java programs. Since transformers implemented with Jabyce transform 
compiled Java programs to produce only compiled Java programs, Jabyce 
alone does not support translation transformations. However one can 
                                                      
2 Free software available at http://www.objectweb.org/asm/ 
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combine Jabyce and a similar transformation system to implement 
translations, as described in section 9. That way, Jabyce can be used to 
implement any translation and rephrasing transformers of compiled Java 
programs. ASM has a similar scope as Jabyce. However, unlike Jabyce, 
the design process of ASM is not easily reproducible, which makes it 
difficult to design a similar transformation system that can be combined 
with ASM to implement translations. ASM is therefore limited to 
rephrasing transformation, like JOIE, JMangler and Javassist. 
Since all the considered transformation systems, including Jabyce, 
manipulate only compiled Java programs, which are generally not directly 
manipulated by human users, transformations related with program 
design are not considered because these generally deal with the source 
code of programs. However, one could still implement transformers that 
interact with users. 
Manipulating compiled Java programs allows performing transformations 
either statically, i.e. before the transform program is executed, or 
dynamically, i.e. when the program is loaded just before it is executed. 
Performing transformations at program load-time is possible in Java, 
thanks to characteristics of the JVM [21]. The compiled classes forming a 
Java program are dynamically loaded by the JVM when required, by 
special objects called class loaders. Such objects return to the JVM the 
sequences of bytes that form the compiled classes, given their name. The 
JVM then executes the program by interpreting or compiling and 
executing these classes. It is possible to implement custom class loaders, 
including class loaders that perform transformations on the loaded 
classes, for example using Jabyce transformers. All of the considered 
transformation systems either directly offer such mechanism, or can be 
used to implement it easily. 

4. Transformation Paradigm 

The main point in this dimension is the distinction between two categories 
of paradigms offered to implement transformers: decla a iv  rew i e rules, 
and procedural rul s that are specified directly in an imperative 
programming language [27]. The choice between declarative and 
procedural rules is a trade-off between simplicity and generality. 
Declarative rule languages make it simple to define transformations, but 
implicitly restrict the range of the transformations that can be defined. On 
the contrary, procedural rules offer the widest range of transformations, at 
the cost of an increase of the complexity of implementation. Since one of 
our objectives is to allow for the implementation of any transformations, 
procedural rules are the preferred choice in our context. This latter choice 

r t e r t
e
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has been made in ASM, JOIE, JMangler, Javassist and Jabyce: 
transformers are implemented in the Java programming language. 
The rest of this section mainly deals with the abstractions offered by 
transformation systems to implement transformers as procedural rules, 
and to compose them. 

4.1. Global Architecture 

The global architecture of transformer configurations is the same for all 
transformation systems. This section introduces some concepts and a 
terminology to describe such global architecture. Let’s first consider, for 
the sake of simplicity, a transformer configuration that does not perform 
any transformation. We identify two main components in the 
configuration, as illustrated in Fig. 2: 

• a deserializer that analyses the programs to transform, in a possibly 
unstructured form that we call a serialized form, such as a stream of 
characters, and produces representations of the programs that it 
transmits to the serializer.  

• a serializer that receives the program representations to produce 
corresponding serialized forms of the programs. 

In the literature, deserializers and serializers are commonly called front-
ends and back-ends, or parsers and pretty-printers [7, 22]. We call an 
intermediate representation the form of a program representation that is 
communicated between components. The model of the intermediate 
representation of programs corresponds to the conceptual model and 
programmatic model dimensions, described in sections 5 and 6. 

deserializer serializer

serialized forms of programs

intermediate representations of programs  
Fig. 2. A deserializer and a serializer 

A transformation system should offer a means to support the 
implementation of any serializer and deserializer, to support any 
serialized forms of compiled Java programs. This is the case with Jabyce 
and ASM. In Jabyce, currently one serializer and one deserializer are 
implemented to support compiled Java classes in the form of sequences of 
bytes that correspond exactly to the content of .class files. The ASM 
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deserializer and serializer classes are used internally to implement the 
deserializer and the serializer implementations provided in Jabyce, that 
support sequences of bytes as a serialized form. JMangler can also support 
any serialized form for which a serializer and deserializer can be 
implemented to serialize and deserialize BCEL object graphs. BCEL 
provides serialization and deserialization for sequences of bytes. In 
contrast, JOIE and Javassist support only compiled classes in the form of 
sequences of bytes.  
We propose to describe transformers as decorators of a serializer, by 
referring to the Decorator design pattern [10], as illustrated in Fig. 3. 
Such decorator receives all the program representations, and forwards 
them to the serializer. When forwarding program representations, it can 
modify them, e.g. add or remove elements in them, leading to the 
representation of a transformed program. Several transformers can easily 
form a chain, one transformer decorating another one. At that level of 
abstraction, transformers are called operations in Jabyce. 
 

deserializer serializertransformer
(or operation)

transformer
(or operation)

serialized forms of programs

intermediate representations of programs  
Fig. 3. Transformers as decorators of serializers 

All the considered Java bytecode transformation systems considered here 
match with this general description. However, one limitation of Javassist 
is that Java classes are deserialized before each transformer is run, and 
serialized after each transformer is run. Actually, Javassist offers a means 
to construct chains of “pools” of classes to be loaded by the JVM. A 
transformer can be associated with each pool, and run when a class is 
loaded from that pool. However, a Javassist class pool stores the classes as 
arrays of bytes, that must therefore be (de)serialized to be transformed by 
the associated transformer. This characteristic of Javassist violates our 
objective of an efficient composition of transformers. 
At this point, it is necessary to make choices about the implementation of 
transformers and of their infra-structural environment, including the 
flexibility points of the system (what can be changed in the system?), the 
identified abstractions, and the implementation model. We consider that 
all these characteristics form the transformation paradigm offered by a 
transformation system. The next subsections describe the Jabyce 
transformation paradigm, and compare it to those of the other systems. 
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4.2. Principles for the Design of Jabyce 

The design of transformation systems developed using an object-oriented 
programming language, such as Java in the case of Jabyce, boils down to 
object-oriented system design. When designing Jabyce we have applied the 
following well-known object-oriented design principles to express the 
desired properties of transformation systems, in order to attain our 
objectives to make transformer implementations easily reusable and 
composable. 

The Open-Closed Principle [24] 

Modules should be both open and closed.  
 
A module is said to be open if it is possible to extend it. A module is said to 
be closed if its description is stable and well defined, so that it can be used 
safely by other modules. Openness is necessary to adapt a system to 
changes that were not planned initially. Closure is also necessary, because 
if the description of a module is unstable or not well defined, a change in 
its implementation or an extension of it may imply modifications in the 
modules that depend on it. This makes the whole system potentially 
unstable. 
In a transformation system we consider that the most important modules 
are the transformer implementations, since they are the most complex 
pieces of code. Since we describe a transformer as a decorator of a 
serializer, the description common to all transformers based on a given 
transformation system, is the specification of the program representations 
that it can receive. This specification is defined precisely, once, and for all 
the transformer implementations based on the transformation system, 
making these modules closed. Any transformer implementation can be 
developed as long as it respects this specification, making the system open 
to the use of new transformer implementations. 
All the considered transformation systems apply this principle. However, 
the challenge is to provide the most precise specification of the programs 
that can be represented, in order to maximize the “closure” of the 
transformer implementations. An ambiguous specification of the program 
representation model would make transformers incompatible. An 
approach for the formal specification and on-line validation of program 
representations is applied in Jabyce, but it is out of the scope of this 
article. The other considered systems do not use such formal specification 
approach. 
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The Common Closure Principle [22] 

 The classes in a package are reused together. If you reuse one of the 
classes in a package, you reuse them all.  
 
If we abstract the concepts of class and package in this definition, this 
principle means that the implementation parts of a program that are 
modified together should be packaged and reused together. 
In the context of program transformation, there can exist causal 
dep ndencies between transformations, that are due to semantic relations 
between the elements of a program. For example, the renaming of a 
method in a Java class implies to transform all the method call 
instructions that refer to that method. According to the Common Closure 
Principle, the corresponding two transformer implementations must be 
packaged and reused together. 

e

No existing transformation system enforces such principle. However, 
Jabyce makes it easy to do this by ensuring structurally (through 
subtyping relations between the Java classes and interfaces of the Jabyce 
framework, cf. section 9) that a transformer that transforms program 
elements of type “A” also transforms program elements of type “B” that 
depend semantically on type “A” elements. These semantic dependencies 
are expressed between element types. For example, Jabyce ensures that a 
transformer implementation that transforms methods also implements 
transformations of method call instructions. Therefore a transformer 
implementation in Jabyce is well encapsulated and can be reused easily. 
We claim that this is a prominent feature of Jabyce. 

The Interface Segregation Principle [23] 

 Clients should not be forced to depend upon interfaces that they do not 
use.  
 
In the context of transformer implementation design, we interpret this 
principle as follows: transformation implementations should not be forced 
to implement computations that are not related to the program elements 
that they transform. For instance, a transformer that only renames the 
methods in a Java program should not need to manipulate the fields in 
that program. In declarative rewrite rules systems, this is achieved in a 
simple way because a rule is declared to rewrite elements of only certain 
types. For instance, in Stratego [32], a declarative rewrite rule that 
transforms methods does not deal with fields. 
As described in sections 5 and 7.1, a prominent feature of Jabyce is a 
representation of elements of programs as interactions which, in the case 
of Jabyce, allows transformers to manipulate only the representations of 
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the program elements that it transforms. The other considered 
transformation systems do not apply this principle. 

4.3. Jabyce Transformers as Fractal Components 

To exhibit these desired properties of an object-oriented transformation 
system, and to apply the design principles discussed above, it is necessary 
to choose an appropriate platform to implement this system. In all the 
considered transformation systems except Jabyce, that platform is limited 
to the Java programming language and the JVM. In Jabyce, we have 
chosen a more powerful component model, to ease the application of the 
design principles and the implementation and composition of 
transformers. 

The Fractal Component Model 

To implement transformers, deserializers and serializers in Jabyce, we 
choose the F actal component model [1, 2, 27]. It is an extension of object 
models such as RM-ODP [14] or Java, that exhibits several properties that 
are interesting here: 

r

t

s

e

t e c

• dynamism: components are runtime entities: they can be manipulated 
and (re)configured at runtime.  

• encapsula ion: components interact, only through well defined access 
points called interfaces. An explicit binding can link two interfaces. 
Bindings are arbitrary communication paths.  

• nested composition: components can contain components, recursively. 
Recursion ends up with primitive components which have an empty 
content and directly encapsulate plain objects. Components that do 
have a content, i.e. that contain sub-components, are called compo ite 
components.  

• control: components transparently provide introspective and 
int rcessive capabilities (i.e. to access and modify metadata, 
respectively) to exercise arbitrary reflexive control over their execution. 
Fractal provides standard controls: adding or removing of sub-
components in composite components, starting and stopping 
components, bindings reconfiguration, etc.  

Fractal components expose interfaces to interact with other components. 
Server interfaces specify the functionalities offered to other components, 
while clien  int rfa es specify the functionalities required for the 
components to run. In the projection of Fractal into the Java language, 
component interfaces are specified by Java interfaces that define method 
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signatures, i.e. that specify the possible int ractions between components. 
A binding is a directed link from a client interface to a server interface, so 
that the components can interact. Only interfaces with compatible types 
can be bound. The minimum requirement of the Fractal type system is 
that the Java interface that specifies the server interface must be or 
extend the Java interface that specifies the client interface. Components 
and bindings are created and manipulated at runtime. Special control 
interfaces allow for the control of the components lifecycle, bindings and 
content (subcomponents of a composite component). 

e

Application to the Design of Transformers in Jabyce 

In Jabyce, we specify that transformer configurations are built exclusively 
by instantiating and composing components, dynamically. By components, 
we mean deserializers, serializers, and transformers. These components 
are bound using Fractal bindings, to allow for interactions between these 
components that communicate intermediate representations of programs 
to transform. The details of the architecture of such components, including 
the interfaces they offer, are described in section 7. 

4.4. Transformation Strategy 

Generally, we consider that transformation systems, including Jabyce, 
apply the Hollywood Principle [33] (“don’t call us; we’ll call you”), also 
called the Inversion of Control Principle [15]. In these systems, additional 
components, distinct from the transformers and (de)serializers in a 
transformer configuration, control the components and control the 
interactions between them. This separation makes the system more 
flexible, because the way the transformers are controlled can be modified 
without modifying the transformer implementations. Adding information 
into transformer implementations about how to apply them would reduce 
their reusability. 
The main control is the application of a strategy, defined in [32] as an 
algorithm for choosing a path in the triggering of transformations in the 
transformed programs. For example, applying a bottom-up strategy means 
transforming first the instructions, then the method signatures, then the 
class signatures. Applying a top-down strategy means transforming first 
the class signatures, then elements in them, recursively. In the Stratego 
declarative rewrite rule language [32], users can define their own 
strategies, that are either dependent on specific rules, or independent such 
as the standard strategies provided by Stratego, but rules are never 
dependent on strategies. 
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In Jabyce, operation components in a chain are composed together using 
user-specified component bindings. The manipulation of such bindings, 
outside of the components, is allowed by the standard control interfaces 
provided by the implementations of the Fractal model. The transformation 
strategy is therefore expressed in Jabyce as a set of component bindings. 
The triggering of the transformers is determined by the order by which 
they “decorate” each other in a chain. The flexibility offered by such 
mechanism lets users specify arbitrary chains of transformers, without 
modifying the implementation of transformers. It also allows for more 
complex configurations with multiple deserializers and serializers. This is 
an advantage of Jabyce over most other systems: it does not only allow 
chain configurations, but offers immediately almost arbitrary strategies. 

4.5. Comparison 

In the other Java bytecode transformation systems, transformers are Java 
objects that implement Java interfaces that are specific to the 
transformation system. The transformation paradigm is therefore the 
Java object model, and abstractions such as Java interfaces. 
JMangler defines the Java interface CodeTransformerComponent, to be 
implemented by method implementations transformers, and the Java 
interface InterfaceTransformerComponent, to be implemented by 
transformers of signatures of Java interfaces and classes and of members 
defined in them. Those interfaces define methods that accept intermediate 
representations of programs to transform. JMangler limits the range of 
transformers that can be implemented, in order to maintain the binary 
compatibility of the transformed Java classes. Any method 
implementation transformer can be implemented, but transformations of 
class and interface signatures are limited to adding fields, methods and 
inheritance relations, etc. For instance, it is impossible to rename a 
method in JMangler. This is opposed to our objective to offer the widest 
range of implementable transformers. A similar pattern is used in JOIE 
(ClassTransformer interface), Javassist (Translator interface) and ASM 
(ClassVisitor and CodeVisitor interfaces). However, these systems do not 
limit the range of implementable transformers like JMangler. The 
advantage of the use of the Fractal component model in Jabyce, is to allow 
for a better design and maintenance of complex transformer 
implementations, compared to these systems. 
It must be noted that the Decorator design pattern, described in the 
beginning of this section, is applied literally only in Javassist, ASM and 
Jabyce. More precisely, in these systems, a transformation strategy is 
directly expressed as links between transformers in a configuration. The 
links are Fractal component bindings in the case of Jabyce, direct Java 
object references between transformers in the case of ASM, and direct 
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Java object references between compiled class pools in Javassist. In 
JMangler and JOIE, a strategy is implemented in a separate object that 
schedules the executions of transformers. In JMangler two strategies are 
combined. The program interface transformations are applied in a non-
deterministic order until the transform program reaches a fixed point, 
thus the transformations are applied always with the same strategy, and 
any order produces the same transformed program. The code transformers 
are run in a user-specified sequential order, i.e. with a user-specified 
strategy. In JOIE, the transformers are run in a user-specified sequential 
order, on one whole class at a time. 
Jabyce already allows for transformer configurations that are more 
complex than simple chains, for instance multiple transformer chains that 
are bound to a single serializer component at their end. In other systems, 
arbitrary configurations could be implemented on top of the systems, by 
implementing transformers that control other transformers. For example, 
in JMangler, one can use an object which class implements 
CodeTransformerComponent and that interacts with other transformers, 
to build a complex configuration. However, there is no generally defined 
mechanism to do so, and such class must be implemented “by hand”. It is 
therefore more difficult than in Jabyce. 

5. Transformed Programs Programmatic Model 

This dimension concerns the abstractions offered to implement 
manipulations of elements of programs to be transformed. In [32] it is 
assumed implicitly that programs are either represented as graphs of 
terms, i.e. as graphs of Java objects in our context. This is the case for all 
considered transformation systems, except Jabyce and ASM. In Jabyce 
and ASM, we propose to represent program elements as interactions 
between parts of transformers, and not as Java objects. 

5.1. Interaction Sequences vs. Object Graphs 

Our proposal is based on an analogy between programs and semi-
structured documents. As described in [28], there are two ways to 
represent XML and SGML documents in Java programs that manipulate 
them: 

• using a graph-based API such as DOM (Document Object Model) [12], 
which represents a document as a graph of Java objects;  

• using an interaction-based API such as SAX (Simple API for XML) [29], 
which represents a document as a sequence of method calls that notify 
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for instance the beginning or the end of the parsing of an XML element 
in the document.  

In a DOM object-graph approach it is possible to transform a document by 
interacting with the object graph, to add new node objects, remove sub-
graphs, modify node objects, etc. The edges in such graphs are represented 
as direct references between Java objects. These edges model not only the 
composition relations between XML elements, but may also model XML 
element references. 
In a SAX interaction-sequence approach, transformations would be 
performed in a transformer by producing a new document based on the 
received sequence of interactions and by performing decorations of those 
interactions. The new document is produced by calling the same methods 
as those implemented by the transformer. For example, it is possible to 
remove an XML element simply by ignoring the interactions that notify 
the start and end of the parsing of this XML element. The other elements 
are kept back by reproducing them when receiving the corresponding 
interactions. For example, Fig. 4 shows the source code of a SAX content 
handler class that transforms parsed XML documents to add an XML 
element <someNewElement/> into each parsed XML element. 
 
public class XMLLogicalModelParser 
        implements ContentHandler { 
 
    public ContentHandler delegate; 
 
    public void startElement(String namespaceURI, 
            String localName, String qualifiedName, 
            Attributes attributes) 
            throws SAXException { 
 
        delegate.startElement(namespaceURI, 
            localName, qualifiedName, attributes); 
 
        delegate.startElement(…, "someNewElement",…); 
        delegate.endElement(…, "someNewElement",…); 
 
    } 
    public void endElement(String namespaceURI, 
            String localName, String qualifiedName) 
            throws SAXException { 
        delegate.startElement(namespaceURI, 
            localName, qualifiedName); 
    } 
    public void characters(char[] chars, int offset, 
            int length) throws SAXException { 
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        delegate.characters(chars, offset, length); 
    } 
    /*…*/ 
} 
Fig. 4. Source code of a SAX content handler that transforms XML documents 

Any of these two programmatic models can be used to transform 
programs. Both models fit well with the general architecture proposed in 
section 4.1, and based on the Decorator design pattern. In the example 
above, which illustrates the interaction-sequence representation of XML 
documents, the transformer object is a decorator of another SAX 
ContentHandler object, which reference is given in the delegate field. The 
links between several such transformer objects, i.e. the values of their 
delegate fields, forms an XML document transformation strategy. 

5.2. Performance vs. Simplicity 

The choice of a programmatic model for the representation of program 
elements is motivated by two contradictory characteristics of 
transformation systems: transformation performance and implementation 
simplicity. Globally transformers consume two resources: memory and 
CPU time. High performance is achieved by minimizing this consumption. 
Using an object graph representation, memory is consumed to represent 
the objects that represent program elements, and time is consumed to 
create these objects, proportionally to the size of the programs to 
transform. Therefore the size of the programs that can be transformed is 
limited by the available memory size. Another drawback is that when 
using a transformation system one generally needs not to manipulate all 
the objects in the graph, leading to excessive memory and time 
consumption. It is possible to implement an incremental construction of 
the graph of objects into memory, like in BCEL and JOIE, but at the cost 
of an increase of the complexity of the system. Using an interaction 
sequence representation, it is not necessary to store a complete 
representation of programs into memory. Memory is used only for the 
interactions stack and to store the minimal state necessary to perform the 
transformations. CPU time is consumed only to perform transformations 
and the interactions that represent program elements; no CPU time is 
consumed to create unused objects. An interaction sequence 
representation is therefore the preferred programmatic model when 
considering resource consumption. 
On the other hand, complex transformers are easier to implement using 
an object graph representation of programs. For example, when a 
transformation consists in adding a method in a Java class, it is necessary 

100                                                                                      ComSIS Vol. 1, No. 2, November 2004 



Composing Transformations of Compiled Java Programs with Jabyce 

to make sure that no method with the same name and signature is already 
defined in that class. Such verification is easy to perform when it is 
possible to visit at that time the whole representation of the transformed 
Java class. Using an interaction sequence representation, it would be 
necessary to maintain “by hand” (i.e. apart from the transformation 
system in use) as a state the list of all the method names and signatures 
represented by the interactions, and to wait until all the interactions for 
the class have happened, to perform the verification. An object graph 
representation is therefore the preferred programmatic model when 
implementing transformers that have a state. 
As a conclusion, the choice of a programmatic model for the representation 
of program elements is the result of a trade-off between transformation 
performance and implementation simplicity. This choice is made at 
transformation system design time. 

5.3. Comparison 

The purpose of Jabyce is primarily to implement transformers that weave 
code into programs, possibly at program load-time. Transformation 
performance is a major concern in this case, in order to perform 
transformations efficiently dynamically on large programs or in 
constrained environments. Therefore we choose to represent programs as 
interactions in Jabyce. The range of transformers that we consider 
implementing can be implemented simply using Jabyce, as demonstrated 
by the example transformer implementation presented in section 8.1. 
Their low complexity does not require using an object graph 
representation of programs. However, when a transformer needs to keep a 
state, it must be explicitly implemented by the developer. The same choice 
has been made in ASM [3]. 
The other systems (JOIE, JMangler and Javassist) use a Java object 
graph representation of the manipulated program elements. To our 
knowledge, no other program transformation system, for other languages, 
uses an interaction representation of programs. This is a prominent 
feature of our systems Jabyce and ASM. 

6. Transformed Programs Conceptual Model 

This dimension deals with the identification of the types of elements that 
can be distinguished in a program representation manipulated by a 
transformer. In the context of compiled Java programs transformation, 
one must identify the abstractions in a Java class that correspond to the 
transformed elements, i.e. one must define the granules of trans ormation, f
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for instance “class”, “method”, “formal argument”, etc. Using a Java object 
graph representation, these abstractions correspond to the possible types 
of node Java objects. Using an interaction sequence representation, these 
element types correspond to the possible kinds of interactions. For 
instance, a “formal argument” element can be represented by a Java object 
of type FormalArgument using an object graph representation, or by a call 
to a method formalArgument() using an interaction representation. The 
choice of a conceptual model concerns the two following aspects:  

• granularity of transformations: one must make a trade-off between the 
size and complexity of the representations of program elements, and the 
total number of transformations necessary to transform a complete 
program.  

• abstraction of transformed elements: which details of the format of the 
serialized forms of programs does the system hide?   

The granularity has an impact on the performance and simplicity of 
implementation of transformers. For example, a coarse-grained model of a 
Java class may define only three complex abstractions: “class”, “method” 
and “field”. A method representation may contain the instructions of that 
method as an array of bytes. Therefore each transformer that transforms 
instructions must decode these bytes itself, which costs a lot and is 
complex to implement. In very fine-grained models, such as BCEL, there 
are a lot of fine-grain abstractions, e.g. an object type is defined for each 
instruction type. The decoding of the instructions is performed by the 
system, making the implementation of instruction transformers simple, 
but memory and time is consumed to create an object for each instruction 
even if not all instructions are manipulated. The Javassist framework has 
been designed to implement only structural transformations. Its model of 
a Java class is therefore very coarse-grained, and offers only a few element 
types, similar to that of a class source file, including fields, methods, 
constructors, inheritance relations, access modifiers, formal arguments, 
“new” instructions and field access instructions. All other details are 
hidden. Therefore we claim that the choice of a granularity is motivated by 
the desired transformations, i.e. it is motivated by the scope of the system, 
and the model is chosen to optimize transformations in that scope. 

6.1. General Issues About Modeling Java Classes 

In Jabyce, Java programs are transformed one class at a time, because we 
want to be able to transform programs at load time, and classes are loaded 
one at a time by the virtual machine. The same choice has been made in 
JOIE, Javassist and ASM for the same reason. In JMangler, transformers 
can manipulate several classes at a time, i.e. they can manipulate whole 
programs. JOIE is the only transformation system which transformers 
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cannot produce several classes when transforming a class, i.e. the 
transformation of a class must result in exactly one transformed class. 
The format of a compiled Java class, as specified in the JVM specification 
[21], defines several abstractions that are difficult to deal with when 
performing transformations. Some of these abstractions are presented 
thereafter, to compare how Serp, BCEL (and therefore JMangler), JOIE, 
Javassist, ASM and Jabyce deal with them. Javassist offers two models for 
manipulating compiled Java classes: a high-level model that offers 
abstractions similar to Java source-level element, and a low-level model. 
However, the low-level model does not hide enough details of the format of 
compiled Java classes to be used in practice in complex transformers. For 
instance, the decoding of the bytecode instructions must be performed by 
each transformer. In the rest of this section we therefore consider only the 
high-level model offered by Javassist. 

Constant Pool 

 The constant pool contains and indexes all the constants that are used in 
the compiled class: string constants, names of accessed classes, methods 
and fields, etc. For example, in an instruction that accesses a field, the 
name and type of the field, and the name of the class that defines it, are 
indicated in the instruction by the index of a constant that contains the 
name, in the pool. Therefore changing the name of a field requires adding 
a string constant containing the new name, into the constant pool of the 
defining class and of all the classes that access it, and changing the field 
definition and all the corresponding field instructions, to use the index of 
the new constant in the constant pool. JOIE, BCEL and Serp make these 
constant indexes explicit, but provide utility methods to insert new 
constants into the constant pool and to modify constants. In Javassist, 
ASM and Jabyce, the constant indexes are hidden, and the constants are 
directly manipulated by transformers. In Jabyce, for example, a string 
constant, such as a string pushed by an ldc instruction, is directly 
manipulated by transformers as a string object. The constant pool of the 
transformed class is constructed while the class is progressively 
represented. As a secondary effect, the constant pool is therefore 
automatically optimized to contain only the constants that are actually 
used in the transformed class, which is difficult to achieve with BCEL for 
instance. 

Branch Addresses 

 A method can contain control transfer instructions, that branch to other 
instructions in the method. The target instructions are specified as offsets, 
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in number of bytes, to the address of the transfer instructions. Each 
instruction has a unique address, which is a number of bytes from the 
start of the method. Therefore, inserting or removing instructions from a 
method potentially requires to modify the target offsets of control transfer 
instructions. In Javassist, instruction addresses are never manipulated, 
since transformers can only manipulate source-level abstractions. In 
JOIE, BCEL and Serp, transfer addresses are represented as direct 
references between Java objects representing bytecode instructions. In 
ASM and Jabyce, instruction addresses are abstracted, by the use of 
abstract ins ruction label objects. Instruction labels are inserted in a 
method to “tag” instructions, so that they can be referred to by branch 
instructions. In all systems, the offsets are automatically calculated. 

t

Local Variables 

 In a method, each local variable is identified by its integer index and its 
size (32- or 64-bit). This index is specified in each instruction that loads or 
stores a local variable. The this pointer and the formal arguments are 
represented like normal local variables initialized with the passed values, 
whose indexes are 0 for this, and 1 and higher for the arguments in the 
same order as in the signature. The normal local variables, that are 
uninitialized at the beginning of the method, have the next higher indexes. 
Therefore, adding a formal argument, such as when adding a hidden 
software capability [11] to an argument, requires incrementing the index 
of all the uninitialized local variables, in the instructions that access them. 
In Javassist, it is not possible de transform method signatures, nor to 
manipulate local variables. In JOIE, BCEL, ASM and Serp, the local 
variable indexes and sizes are manipulated explicitly. In Jabyce, local 
variables indexes and sizes are abstracted, by the use of 
FrameSlotIdentifier objects that uniquely identify local variables when 
representing local variable access instructions. Therefore transformers 
never directly manipulate local variable indexes. When representing a 
formal argument, an identifier is given to identify its corresponding local 
variable, its index is automatically calculated, and the indexes of the 
already represented normal local variables are automatically modified in 
the instructions. When representing a normal local variable, an identifier 
is given to identify it, and it is assigned automatically the next unused 
index. This design choice makes it very easy to implement transformers 
that add or remove local variables or formal arguments, using Jabyce. 
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Instructions 

 Several instruction types have similar semantics, and therefore require 
similar transformations. For example, all getstatic, putstatic, getfield and 
putfield instructions access fields. When transforming fields, it is also 
necessary to manipulate instructions of these four types. A transformation 
system should therefore provide information to easily identify the element 
types that require similar transformations. Javassist does not allow for 
the direct manipulation of instructions. In BCEL, a Java class is defined 
for each instruction type specified in the JVM specification, and abstract 
classes are inherited from these classes to identify similar instructions. 
For example, the FieldInstruction abstract class is subclassed by the 
GETSTATIC, PUTSTATIC, GETFIELD and PUTFIELD classes. BCEL 
defines more than 180 Java classes to represent instruction nodes in 
graphs. This design choice makes BCEL the most complex of the 
considered systems. Serp follows a similar approach, by defining an 
Instruction class that is inherited by 31 classes to represent bytecode 
instructions, including abstract classes to group semantically similar 
instruction types like in BCEL. JOIE defines an Instruction class, that is 
inherited by 17 classes to represent instructions. However, not all 
instructions have a dedicated class to represent them. For instance, the 
bytecode instruction monitorenter and monitorexit are represented as 
Instruction objects. The JOIE conceptual model is therefore not 
homogeneous, which makes it difficult to implement certain 
transformations of instructions. In ASM, the CodeVisitor interface defines 
12 “visit” methods for instructions, that correspond to groups of 
instruction types that have the same structure. In some cases, this 
structural grouping of instruction types also corresponds to a semantic 
grouping. For example, the visitFieldInsn method is used to represent 
instructions that access fields, i.e. instructions that have a similar 
semantics. These instructions have also the same structure, i.e. they 
contain an opcode (the identifier of the instruction type), the name of the 
class that defines the field, the name of the field and the type of the field. 
But in some other cases, a “visit” method concerns instructions that have a 
different semantics. For example, the visitInsn method is called to 
represent instructions that contain only an opcode, such as pop 
instructions that pop values from the stack, and such as i2l instructions 
that convert integer values into long values. Therefore implementations of 
this method must deal with semantically dissimilar instructions, and must 
analyze the given opcode to identify the semantics of an instruction. This 
contradicts the Interface Segregation Principle, as presented it in section 
4.2. In Jabyce, we choose a model similar to the ASM model, but we refine 
it to group only semantically similar instruction types. For example, 
instructions that access fields are FieldAccessInstructions, instructions 
that manipulate the stack like pop are StackInstructions, and instructions 
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that perform arithmetic conversions like i2l are 
ArithmeticTypeConversionInstructions. In addition, instruction opcodes 
are hidden to transformers, so that the decoding of opcod s is performed 
once and for all transformers in a chain, and transformers manipulate 
only high-level information about instructions, making them easier to 
implement than with ASM. Jabyce defines 30 instruction kinds, which 
makes it only slightly more complex than ASM. 

e

Optimized Instruction Forms 

 Some instruction types have optimized forms. For example, an iload 
instruction loads an integer value from a local variable, which index is 
specified in the instruction after its opcode. An iload instruction is 
therefore encoded as two bytes, in a compiled class file. But four optimized 
forms of this instruction type exist (iload_0, iload_1, iload_2 and iload_3), 
with distinct opcodes and no index in the instructions, that can be used 
when the local variable index is 0, 1, 2 or 3. These instructions are encoded 
as only one byte containing the opcode. A transformation system should 
automatically use the most optimized form of instruction according to the 
instruction parameters. All systems, including Jabyce, do not offer specific 
abstractions for the optimized instruction forms, and implicitly produce 
the most optimized forms of instructions. 

Conclusion 

As a conclusion, Jabyce offers the most abstract model of a Java class, 
after Javassist. As opposed to Javassist, it still allows for the 
implementation of any transformer of compiled Java classes, and the 
additional abstractions are introduced only to automate the optimization 
of the generated code, and to simplify the implementation of transformers. 

6.2. The Model of a Java Class in Jabyce 

In Jabyce the model of a Java class is a graph, which nodes are element 
types, and edges are composition relations. Element types which elements 
can contain other elements are called composite element types. The other 
types are primitive. A top-level composite element is a Class. A Class can 
contain InterfaceInheritanceDeclaration and InnerClassDeclaration 
elements, for the declaration of inherited interfaces and inner classes. A 
Class can contain composite Field elements, which can contain a 
FieldConstantValue. A Class can contain composite Method elements. A 
Method can contain ThrownExceptionDeclaration and 
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MethodFormalArgument elements for the method signature declaration. 
It can also contain LocalVariable, MethodFormalArgumentLocalVariable 
and ThisLocalVariable elements for the declaration of local variables, 
InstructionLabel elements to identify instructions, and instruction 
elements. Jabyce defines 30 instruction element types, such as 
ReturnInstruction, LocalVariableAccessInstruction, and 
FieldAccessInstruction. As a conclusion, Jabyce defines 50 element types 
to construct Java classes, including three composite element types. 
Next section describes how the element types defined above are used to 
define in Jabyce the possible interactions between transformer 
components which represent program elements. 

7. Putting It All Together 

This section describes more thoroughly Jabyce, by combining the two main 
characteristics of Jabyce introduced in the preceding sections: 1) the use of 
the Fractal component model, and the expression of transformation 
strategies as component bindings, and 2) the representation of program 
elements as interactions between components. 

7.1. Transformation Operation Internal Architecture 

In Jabyce, transformer configurations are built exclusively by 
instantiating and composing components dynamically, which are 
deserializers, serializers, and transformers. The interactions (method 
calls) between these components represent elements of transformed 
programs. Between two components, we define that there is one binding 
for each type of element that makes up a compiled Java class. For 
instance, one binding is used for interactions that represent fields 
(element type Field), one is used for interactions that represent method 
formal arguments (element type MethodFormalArgument), etc. According 
to the Jabyce conceptual model defined in section 6, each component must 
therefore offer 50 interfaces, one for the representation of entities of one 
type. Those bindings are illustrated in Fig. 5. The interfaces define 
methods, which calls represent each a program element.3 

                                                      
3 Although all the interfaces in Jabyce are called “factory” interfaces, this architecture is not 

an orthodox application of the Abstract Factory design pattern [10]. That terminology is 
motivated by the need for a prefix for method names to avoid name clashes. We have 
arbitrarily chosen the “create” prefix, hence “Factory” interfaces. 
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Fig. 5. Operations bound to form a chain 

 
The most basic operation does not perform any transformation, which is 
achieved simply by not intercepting the interactions that represent 
program elements through bindings. We design such an operation in 
Jabyce as a composite component whose server and client interfaces are 
directly bound, as illustrated in Fig. 6. If the reference implementation of 
Fractal in Java (named Julia4) is used, such an architecture does not add 
any overhead to the interactions on the bindings, and the binding of such 
an empty operation in a configuration has no cost, thanks to optimization 
mechanisms. 
 
 

class−factory
ClassFactory

method−factory
MethodFactory

client−class−factory
ClassFactory
client−method−factory
MethodFactory

empty operation

 
Fig. 6. An operation that performs no transformation 

 
One way to construct operations that actually perform transformations is 
to add transformers, i.e. sub-components, into such composite component, 
whose interfaces are bound to the composite component interfaces. Fig. 7 
illustrates an operation that contains one transformer that decorates the 
interactions representing program elements received on one interface, and 
that uses two client interfaces to represent program elements of two kinds. 
                                                      
4 Free software available at http://www.objectweb.org/fractal/ 
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The other interfaces are directly bound, i.e. the program elements 
represented by calling methods on them are not transformed. Such 
transformer has a small granularity, therefore it would naturally be 
implemented as a primitive component. From a general point of view, a 
configuration of transformers therefore concerns two abstraction levels: 
between deserializers, operations and serializers, and inside operations. 
 

transformer transformation operation

 
Fig. 7. An operation composed of one transformer 

An operation is a kind of transformer that always has the same set of 
client and server interfaces, i.e. all operations have externally the same 
form, while an ordinary transformer has only the minimum necessary 
interfaces. As illustrated in Fig. 5, 6 and 7, operations have several 
interfaces, each one is used to represent program elements of one kind. 
For example, one interface is used to represent field access instructions, 
another one is used to represent constant value push instructions, etc. The 
list of the element types of the Jabyce conceptual model is presented in 
section 6. All the operations have the same set of interfaces, on the server 
and the client side, like deserializers and serializers. Inside operations, 
transformers offer only the minimum set of interfaces that are needed. 
Their only server interfaces are for receiving the interactions for the 
representation of the elements to transform; their only client interfaces 
are used to represent elements in the resulting program. In transformers, 
the only computations are therefore performed to transform elements. 
This is an application of the Interface Segregation Principle, and is an 
improvement over ASM, which was not designed with interface 
separation. ASM decorators must implement the “visit” methods for all the 
element types of a Java class even if some are not transformed. There is 
therefore always an overhead on the representation of each program 
element. 
Components interact only through interfaces specified by the Jabyce Java 
interfaces, that are general, abstract and stable, since they do not depend 
on specific transformers. Therefore, as stated in the Open-Closed 
Principle, the Jabyce transformation system is both open, i.e. a 
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transformer can be implemented to perform any transformation, and 
closed, i.e. its specification consists of the Jabyce interfaces, which are 
closed. Therefore a transformer implementation, i.e. a Java class that 
implements a primitive component and uses the Java interfaces defined in 
Jabyce, can be easily reused, so we define it as the granule of euse. r

7.2. Specification of the Interfaces 

For each element type we define a server interface, on each serializer 
component and each operation. Therefore the Jabyce framework defines 
50 Java interfaces: ClassFactory, FieldFactory, LocalVariableFactory, 
FieldAccessInstructionFactory, etc. Each Java interface defines one 
method, to represent elements of the corresponding type. For example, the 
source code of the FieldAccessInstructionFactory interface is partially 
given in Fig. 8. The arguments specified in the signature are used to 
parameterize the representation of the instruction. The ObjectType and 
FieldDescriptor classes are defined in Jabyce to communicate Java types 
when representing elements. In this method, all the field and type names 
are specified as objects, not as indexes in the constant pool. This 
illustrates our choice to hide such details. The given 
MethodBuildingContext object identifies the method in which the 
instruction is represented. 
 
public interface FieldAccessInstructionFactory { 
    /** 
     * Creates the instruction that accesses a field 
     * with the specified fields. 
     * 
     * @param compositeMethodBuildingContext 
     *   the context for the building of the composite 
     *   method that will contain the created 
     *   instruction that accesses a field. 
     * @param type the type of the target object that 
     *   defines the accessed field. 
     * @param fieldName the name of the accessed field. 
     * @param fieldIsStatic the flag that indicates 
     *   that if true, the field is static. 
     * @param fieldType the accessed field type. 
     * @param loadOrStore the flag that indicates that 
     *   if true, the field is loaded; otherwise it is 
     *   stored. 
     * @pre compositeMethodBuildingContext 
     *   ! = null 
     * @pre type ! = null 
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     * @pre fieldName ! = null 
     * @pre fieldType ! = null 
     */ 
    void createFieldAccessInstruction( 
        MethodBuildingContext 
            compositeMethodBuildingContext, 
        ObjectType type, String fieldName, 
        boolean fieldIsStatic, 
        FieldDescriptor fieldType, 
        boolean loadOrStore); 
} 
Figure 8. Source code of the FieldAccessInstructionFactory interface 

A building context object is used to identify a composite element when 
representing elements inside it, i.e. Jabyce defines the 
ClassBuildingContext, FieldBuildingContext and MethodBuildingContext 
classes. Such objects are returned by the methods which calls represent 
composite element types. For example, the source code of the 
MethodFactory interface is partially given in Fig. 9. 
 
public interface MethodFactory { 
  
    MethodBuildingContext createMethod( 
    ClassBuildingContext compositeClassBuildingContext, 
    ...); 
  
 void finishMethodBuilding( 
     MethodBuildingContext buildingContext);  
} 
Figure 9. Source code of the MethodFactory interface 

Each building context must be explicitly “closed” after it has been used, by 
calling the corresponding “finish” method in the interface, when all the 
elements have been represented in the corresponding composite element. 
For example, when all the elements (instructions, etc.) have been 
represented inside a method, the method finishMethodBuilding must be 
called with the building context object. 
From a general point of view, Jabyce relies on the equality of object 
references between the context object returned when representing a 
composite element such as a method, and the context object passed when 
representing an element inside it, as a general mechanism to r present 
composition relations between program elements. More generally, Jabyce 
uses that mechanism to represent the edges of the conceptual graph that 
models a Java class. 

e
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In Fig. 10 is given the source code that initiates the interactions with a 
serializer, to represent one class that contains one method. These 
interactions are equivalent to the interactions initiated by a deserializer 
that analyzes the corresponding existing class. 
 
// create a class: 
ClassBuildingContext classBC = 
    classFactory.createClass(...); 
  
// create a method: 
MethodBuildingContext methodBC = 
    methodFactory.createMethod(classBC, ...); 
  
// create a formal argument: 
formalArgumentFactory.createFormalArgument( 
    methodBC, ...); 
  
// create instructions: 
// ... 
fieldAccessInstructionFactory 
    .createFieldAccessInstruction(methodBC, ...); 
  
// end the building: 
methodFactory.finishMethodBuilding(methodBC); 
classFactory.finishClassBuilding(classBC); 
Figure 10. Source code for the creation of a class 

7.3. Jabyce: a Transformation Framework 

The Jabyce transformation system is designed as a transformation 
framework. A framework is defined as “a reusable design of all or part of a 
system that is represented by a set of abstract classes and the way their 
instances interact” [17], and is described to “bind certain choices about 
state partitioning and control flow; the user completes or extends the 
framework to produce an actual application” [8]. The abstract reusable 
parts that make up Jabyce are the Java interfaces that are the 
specifications of component interfaces, and abstract classes that help 
implementing transformers. It comes as well with a set of classes that are 
predefined general-purpose transformers. It is also a specification of how 
the components should be bound together, and how they should interact. 
The transformer configurations are defined by users so that they can 
express transformation strategies according to their context. The Jabyce 
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framework can be extended, by implementing new transformers, new 
deserializer and serializer components, and by specifying new strategies 
as transformer configurations. 

8. Experiments 

8.1. An Example Transformer 

This section presents the design of a Jabyce transformer that inserts code 
at the beginning of the implementation of each method of each class, to 
print a trace message into the standard output. This transformer is 
similar to the example XML document transformer presented in section 
5.1. For example, the result of the transformation of the compiled class 
which source code is given in Fig. 11 is a compiled class which is 
equivalent to the compiled class whose source code is given in Fig. 12. The 
inserted trace printing code is the sequence of bytecode instructions given 
in Fig. 13. 
 
package some.package; 
public class HelloWorld { 
  public void printHello() { 
    System.out.println("hello"); 
  } 
  public void printWorld() { 
    System.out.println("world"); 
  } 
  public static void main(String argv[]) { 
    HelloWorld obj = new HelloWorld(); 
    obj.printHello(); 
    obj.printWorld(); 
  } 
} 
Figure 11. Source code of the original example class to transform 
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package some.package; 
public class HelloWorld { 
  public void printHello() { 
    java.lang.System.out.println( 
"called printHello in class some.package.HelloWorld"); 
    System.out.println("hello"); 
  } 
  public void printWorld() { 
    java.lang.System.out.println( 
"called printWorld in class some.package.HelloWorld"); 
    System.out.println("world"); 
  } 
  public static void main(String argv[]) { 
    java.lang.System.out.println( 
"called main in class some.package.HelloWorld"); 
    HelloWorld obj = new HelloWorld(); 
    obj.printHello(); 
    obj.printWorld(); 
  } 
} 
Figure 12. Equivalent source code of the transformed example class 

1. getstatic: push the object reference stored in the static field out defined 
in class java.lang.System, of type java.io.PrintStream; 

2. ldc: push the message string to print, identified by an index of the string 
in the constant pool; 

3. invokevirtual: call the println(String) method defined in 
java.io.PrintStream, with the target object and argument that have 
been pushed. 

Figure 13. Bytecode instructions inserted for trace printing 

The corresponding transformer transforms methods. Therefore it exposes 
one server interface of type MethodFactory. It must be able to represent 
methods (to reproduce the representation of the transformed methods), 
field access instructions (getstatic), string constant push instructions (ldc) 
and method call instructions (invokevirtual). Therefore it exposes four 
client interfaces of type MethodFactory, FieldAccessInstructionFactory, 
StringOrNullConstantPushInstructionFactory and 
MethodCallInstructionFactory. It is illustrated in Fig. 14. It can be 
integrated into an operation, as illustrated in Fig. 15, by binding its 
interfaces to the interfaces of the operation. Only the server 
MethodFactory interface is bound to the transformer component, to 
transform the method representations, while the others are directly 
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bound. The client interfaces of the transformer are bound to the 
corresponding client interfaces of the operation. To perform 
transformations, a simple configuration is a pipe-line composed of one 
deserializer, the operation, and a serializer bound together. 
 

trace insertion
transformer

MethodFactory

FieldAccessInstructionFactory

StringOrNullConstantPushInstructionFactory

MethodCallInstructionFactory

MethodFactory

 
Figure 14. Trace insertion transformer 
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trace insertion operation

trace insertion transformer

MethodFactory

FieldAccessInstructionFactory

StringOrNullConstantPushInstructionFactory

MethodCallInstructionFactory

 
Figure 15. Trace insertion operation 

In this example, the transformer is a primitive component. Therefore its 
implementation is a Java class, as specified in the Fractal framework. The 
source code of this class is partially given in Fig. 16. The 
BindingController interface is defined in the Fractal component 
framework, to define callback methods used by the framework to give to a 
component the references to the components bound to its client interfaces. 
Implementing this interface is the only constraint imposed by the Fractal 
framework. 
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public class TraceInterceptor implements 
    MethodFactory, BindingController { 
 
  /* references to components bound 
    to client interfaces */ 
  protected MethodFactory boundMethodFactory; 
  protected FieldAccessInstructionFactory 
    boundFieldAccessInstructionFactory; 
  protected StringOrNullConstantPushInstructionFactory 
    boundStringOrNullConstantPushInstructionFactory; 
  protected MethodCallInstructionFactory 
    boundMethodCallInstructionFactory; 
  
  /* defined inUserBindingController, to query, 
    set and unset the client component references */ 
  public String[] listFc() {/*…*/} 
  public Object lookupFc(String clientItfName) {/*…*/} 
  public void bindFc(String clientItfName, 
    Object serverItf) {/*…*/} 
  public void unbindFc(String clientItfName) {/*…*/} 
  
  /* defined in MethodFactory, to represent methods */ 
  public MethodBuildingContext createMethod( 
    ClassBuildingContext compositeClassBuildingContext, 
    String name, MethodReturnDescriptor retType, 
    boolean isPublic, boolean isPrivate, 
    boolean isProtected, boolean isStatic, 
    boolean isFinal, boolean isSynchronized, 
    boolean isNative, boolean isAbstract, 
    boolean isStrict, boolean isSynthetic, 
    boolean isDeprecated) { 
  
    /* re-represent the method using 
      the bound factory component */ 
    MethodBuildingContext methodBuildingContext = 
      boundMethodFactory.createMethod( 
        compositeClassBuildingContext, name, retType, 
        isPublic, isPrivate, isProtected, isStatic, 
        isFinal, isSynchronized, isNative, isAbstract, 
        isStrict, isSynthetic, isDeprecated); 
  
    /* do not transform initializers */ 
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    if (name.equals("<init>")) { 
      return methodBuildingContext; 
    }  
    String className = 
      boundClassFactory.getBuiltClassClassType( 
        compositeClassBuildingContext).toString(); 
 
    /* compose statically the trace message */ 
    String messageToPrint = "called " + name 
      + " in class " + className; 
  
    /* represent the instructions for 
      System.out.println("called…"); 
      just at the beginning of the method */ 
    boundFieldAccessInstructionFactory 
      .createFieldAccessInstruction( 
        methodBuildingContext, 
        new ObjectType("java.lang.System", false), 
        "out", true, 
        new ObjectType("java.io.PrintStream", false), 
        true);  
    boundStringOrNullConstantPushInstructionFactory 
      .createStringOrNullConstantPushInstruction( 
        methodBuildingContext, messageToPrint);  
    boundMethodCallInstructionFactory 
      .createMethodCallInstruction( 
        methodBuildingContext, 
        new ObjectType("java.io.PrintStream", false), 
        false, "println", false, false, VoidType.VOID, 
        new FieldDescriptor[] { 
          new ObjectType("java.lang.String", false)});  
    return methodBuildingContext;  
  } 
  public void finishMethodBuilding( 
    MethodBuildingContext buildingContext) { 
    /* finish the method represented 
      with createMethod(...), when all instructions 
      have been created in its context */ 
    boundMethodFactory 
      .finishMethodBuilding(buildingContext); 
  } 
} 
Figure 16. Source code of the transformer Java class 
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This example implementation of a transformer illustrates our choice to 
prefer high performance, by representing program elements as sequences 
of interactions, over implementation simplicity. This trade-off is discussed 
in section 5.2. This example shows that simple transformations are easier 
to implement when representing program elements as graphs of objects. 
However, our other experiments have also demonstrated that complex 
transformations are equally difficult to implement using either object 
graphs or interaction sequences. Next section gives some execution time 
measurements for the example transformer above. 

8.2. Measurements 

This section compares the time consumption of the execution of the Jabyce 
transformer described above, with the same transformer implemented 
using ASM, and another implemented directly using BCEL. The measured 
execution times comprise the transformation time and the .class files 
deserialization and serialization time, and exclude the file access time and 
the configuration initialization time. Transformations are performed for 
all the 8251 classes of the Blackdown Java 2 SDK 1.4. The transformation 
program is executed using that JVM on an unloaded Pentium III 1GHz PC 
running GNU/Linux. The measured execution real (wall clock) times are 
indicated in Table 1, as the means of 10 measures. 

Table 1. Execution time measurements 

 ASM BCEL Jabyce 
Total time 31380 ms 92444 ms 45301 ms 
Time / class 3.8 ms 11.2 ms 5.49 ms 

 
According to our measures, the Jabyce transformations are performed in 
only 1.44 times the time of the ASM transformations. This additional 
execution time is mainly due to our choice of a more abstract model of a 
Java class, as described in section 6, which implies for example more 
computations for the local variables. However, we have measured no 
overhead due to the Fractal component model, thanks to optimizations 
implemented in the Julia reference implementation of Fractal. 
The Jabyce transformations are performed twice as fast as the BCEL 
transformations. This confirms our choice to represent programs as 
interaction sequences, in ASM and Jabyce, instead of representing 
programs as graphs of objects as in BCEL, to reach our objective of high 
performance program transformations. This choice is discussed in section 
5.2. 
As a conclusion, from the point of view of transformation performance, 
these measures validate the two main decisions that we make in the 
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design of Jabyce, i.e. the use of a general component model that offers a 
high level of control without reducing performance, and the representation 
of program elements as interactions. 
A Jabyce operation is typically a composite Fractal component that has a 
sparse internal architecture, i.e. in which most server interfaces are 
directly bound to client interfaces. We therefore predict that the 
composition of a high number of operations in a chain is more efficient 
using Jabyce than using ASM, where each transformer must intercept all 
interactions that represent program elements. A perspective is to perform 
measurements using such transformer configurations to confirm that 
prediction. 

9. Generalization of the Approach 

The design process of a transformation framework like Jabyce is 
reproducible. For instance, one may need to design and implement a 
similar transformation framework, to transform LaTeX documents, which 
has the same characteristics, i.e. 1) that uses the Fractal component model 
and 2) that represents documents as interactions between components. 
The only difference between that framework and the Jabyce framework is 
the conceptual model of the elements to transform, which is expressed as 
the set of component interfaces as described in section 7.2. In order to 
automate the design and implementation of such framework, we provide 
the Jaidee5 tool. Jaidee takes as input a formal description of the elements 
to be transformed, in the form of an XML file, and generates the source 
code of most of the Java classes and interfaces of a transformation 
framework. These are: the component interfaces for the representation of 
program entities, similar to the interfaces presented in section 7.2, the 
building context interfaces and base classes, and abstract classes that help 
implement transformer components. Jabyce is the first transformation 
framework generated by Jaidee: 165 source files are completely 
automatically generated with Jaidee, out of the 226 source files that make 
up Jabyce. The 61 human-coded classes are the classes used as formal 
arguments in the signatures of methods which calls represent program 
elements, and the classes that implement deserializers and serializers. 
This demonstrates that Jaidee minimizes the effort of design and 
implementation of such transformation framework. 
The XML file expressing a conceptual model specifies: 

• the name and textual description of element types;  

• the composition relations between element types;  
                                                      
5 In the Thai language, “jaidee” is an adjective that means “nice”. “ja” is pronounced as in 

“jacket”, and “idee” like “ID” with a long final “ee”. 
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• the dependencies between element types;  

• the information necessary to represent elements, as “fields” that make 
up an element type;  

• constraints on the element type fields, in the form of assertions. 
For example, the description of the FieldAccessInstruction element type, 
in the Jabyce model is expressed as the XML element partially given in 
Fig. 17. The complete Jabyce model is an XML file that contains one such 
element for each one of the 50 element types described in section 6. The 
text elements are used to generate the comments in the source files, as 
illustrated in Fig. 8. The fields are used to define the formal arguments of 
the “create” method. The validity test expression elements are used to 
generate the pre-conditions, i.e. @pre tags in the comments of the “create” 
method, that are interpreted and compiled using the iContract [13] Design 
by Contract [24] tool. 
 
<entityType name=’FieldAccessInstruction’> 
 
<singularTextName>instruction that accesses a field</…> 
 
<compositeEntityType name=’Method’/>  
<depTargetEntityType name=’Field’/> 
 
<physicoLogicalField index=’0’> 
  <name name=’type’/> 
  <javaType name=’…ObjectType’/> 
  <text>type of the target object 
    that defines the accessed field</text> 
</physicoLogicalField> 
 
<physicoLogicalField index=’1’> 
  <name name=’fieldName’/> 
  <javaType name=’java.lang.String’/> 
  <text>name of the accessed field</text>           
</physicoLogicalField> 
 
<physicoLogicalField index=’2’> 
  <name name=’fieldIsStatic’/> 
  <javaType name=’boolean’/> 
  <text>flag that indicates that if true, 
    the field is static</text> 
</physicoLogicalField> 
 
<physicoLogicalField index=’3’> 
  <name name=’fieldType’/> 
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  <javaType name=’…FieldDescriptor’/> 
  <text>accessed field type</text> 
</physicoLogicalField> 
 
<physicoLogicalField index=’4’> 
  <name name=’loadOrStore’/> 
  <javaType name=’boolean’/> 
  <text>flag that indicates that if true, the field 
    is loaded; otherwise it is stored</text> 
</physicoLogicalField> 
 
<validityTestExpression>{0}!=null</…> 
<validityTestExpression>{1}!=null</…> 
<validityTestExpression>{3}!=null</…> 
 
</entityType> 
Fig. 17. Model of the FieldAccessInstruction element type 

In the generated source code, the dependency relations are expressed as 
inheritance relations between the abstract component classes and the 
interfaces. For instance, the generated AbstractFieldTransformer abstract 
class inherits from the FieldFactory interface, but also from the 
FieldAccessInstructionFactory interface because of the declaration of a 
dependency relation between FieldAccessInstruction and Field. Such 
semantic dependencies are expressed using <depTargetEntityType> XML 
elements. 
It is possible to compose distinct transformation frameworks by 
implementing translators, i.e. components that offer all the server 
interfaces of the source framework, and all the client interfaces of the 
target framework. It initiates interactions that represent elements in the 
target framework, according to the elements represented in the source 
framework. For instance, we have developed a prototype of a Java 
bytecode to C compiler, that is designed as a translator component that 
relies on Jabyce as the source framework. 

10. Conclusion and Perspectives 

This article presents Jabyce, a software framework for the implementation 
and composition of transformers of compiled Java classes. Jabyce is 
mainly targeted at the implementation of transformers that weave code 
into programs, possibly at program load-time. Therefore, for the sake of 
transformation performance, we choose to represent programs as 
interaction sequences, which is an optimal representation that fits well 
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with such transformations. To allow an easy reuse and a flexible 
composition of transformer implementations, Jabyce is based on Fractal, a 
general component model. This allows users to compose transformers 
using user-specified component bindings, to express arbitrarily complex 
transformation strategies. Jabyce is compared with other systems that 
transform Java classes, by comparing characteristics such as their 
possible uses, the model that is used to represent programs, and the 
computational and architectural model they use to implement 
transformers. Jabyce appears as the most general and flexible of these 
systems. In addition, performance measurements show that the choice of 
an interaction sequence representation of programs offers good 
transformation performance, and that the use of a general component 
model such as Fractal does not add any overhead. The design process of 
transformation frameworks like Jabyce is reproducible, using the Jaidee 
tool, which we have developed, and that generates automatically the 
source code of most part of a transformation framework like Jabyce, given 
a formal conceptual model of the elements to transform. 
The Jabyce framework is operational and will be used to extract structural 
information from programs to produce skeletons of transparent object 
persistence mapping specifications. It is also used to weave transparent 
persistence code into Java programs, with respect to the Java Data 
Objects (JDO) standard. We will also use it to implement extensible and 
adaptable component containers, that provide services such as 
transparent security and transaction demarcation. 
Some transformations, such as optimizations or refactorings, are difficult 
to implement with an interaction sequence representation of programs, 
and would require manipulating graphs of objects. Therefore we plan to 
support object graph manipulating transformers in Jabyce. Such object 
graphs would be automatically "deserialized” out of interaction sequences 
that represent programs, and “serialized” into corresponding interaction 
sequences after the graphs have been transformed. 
We are investigating several architectures and formalisms for the 
specification and validation of contracts, at transformation time, to ensure 
the correctness of represented programs. We plan to extend the Jaidee 
transformation framework generator, to generate automatically such 
formal contract specifications for each generated framework. 
Currently, transformers are directly implemented as Java classes that 
specify components. It would be interesting to investigate the design of 
higher-level languages, such as declarative rewrite rule languages, that 
could be compiled into such transformer implementation Java classes. In 
particular, Domain Specific Languages could ease the specification of a 
transformation for a limited range of transformations. 
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