
UDC 65.01

Petri Nets on the Semantic Web
Guidelines and Infrastructure

Dragan Gašević

GOOD OLD AI research group, FON – School of Business Administration
University of Belgrade, Serbia and Montenegro

http://goodoldai.org.yu
Department of Computer Engineering and Informatics, Military Academy

Belgrade, Serbia and Montenegro
dgasevic@acm.org

Abstract. This paper gives the Petri net ontology as the most
important element in providing Petri net support for the Semantic
Web. Available Petri net formal descriptions are: metamodels, UML
profiles, ontologies and syntax. Metamodels are useful, but their
main purpose is for Petri net tools. Although the current Petri-net
community effort Petri Net Markup Language (PNML) is XML-
based, it lacks a precise definition of semantics. Existing Petri net
ontologies are partial solutions specialized for a specific problem. In
order to show current Petri net model sharing features we use P3
tool that uses PNML/XSLT-based approach for model sharing. This
paper suggests developing the Petri net ontology to represent
semantics appropriately. This Petri net ontology is described using
UML, Resource Description Framework (Schema) – RDF(S) and the
Web Ontology Language – OWL.

1 Introduction

The main idea of this paper is to provide suitable way for Petri nets [1] to
be used on the Semantic Web. That means, full semantic interoperability
of Petri net models. Currently, Petri net interoperability is assumed as a
syntax for model sharing. This is firstly introduced in the paper [2] where
the authors said that it would be very useful if Petri net researchers could
share their Petri net model descriptions. In this way more software
solutions could be used for observing the same model.

Accordingly, different software tools [3] implement different syntax for
model sharing. Previously, most of them implemented regular text-based
formats (e.g. DaNAMiCS). Recent Petri net tools implement XML-based
formats. In this way, they achieve interoperability on the Web, since the
XML is W3C’s recommendation. Especially important advantage of this
approach is that XML documents can be easily transformed using

Dragan Gašević

eXtensible Stylesheet Language Transformati ns (XSLT) into other
formats (that should not necessarily be XML-defined). For instance,
Renew Petri net tool was one of the first tools that used XML support.
Nowadays, within Petri net community there are efforts to formulate
universal Petri net transfer format using XML. This initiative is called
Petri N t Markup Language (PNML) and tends to be a part of future
ISO/IEC High-level Petri net standard [4].

o

e

t

However, all these attempts are syntactically oriented, i.e. they
introduce some constraints that enable validation of documents against
their definition (e.g. when we want to validate whether an arc connects
two nodes of different types, i.e. a place and a transition). In this paper, we
are aware of the fact that Petri net syntax is very important for Petri net
model distribution, but we need something else to define and validate the
semantics. Current solutions that give semantic Petri net descriptions are:
metamodels, UML profiles and ontologies. But, metamodel-based solutions
are mainly intended for developing Petri net tools and do not have support
for the Semantic Web languages. On the other hand, Petri net ontologies
only attempt to solve concrete issues using a specific Petri net dialect (i.e.
Time Petri nets). Therefore, we propose a Petri net ontology [5] as a
semantic description of the Petri net concepts and their relationships. In
this way, we put the Petri net usage in the context of the Semantic Web
and enable Petri nets to be described using Semantic Web languages [6].
Also, we can incorporate Petri net description into other non-Petri net
XML-based formats (e.g. Scalable Vec or Graphics - SVG) and in that way
we would be able to reconstruct Petri net model using metadata and
annotations according to the Petri net ontology.

The next section describes existing Petri net formal descriptions:
metamodels, UML profiles, ontologies and syntax. We give main focus on
Petri net syntax because most work has been done on this problem.
Especially, we discuss current Petri net syntax standard proposal – Petri
Net Markup Language. Section three depicts P3 – a Petri net tool that
uses PNML and contains collection of XSLTs for transforming the PNML
document into formats of DaNAMiCS, Renew, and Petri Net Kernel (uses
PNML as well). Then, section four enumerates advantages of the Petri net
ontology. Section five outlines a Petri net ontology development – its
initial realization in UML, Protégé (RDFS-based), and an UML profile
(OWL-based). In section six we show how P3 tool supports the proposed
Petri net ontology using RDF and mappings between RDF and PNML
based on XSLT. This work is a part of GOOD OLD AI
(http://goodoldai.org.yu) effort for developing AIR - a platform for
intelligent systems.

128 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

2 Previous work on Petri net sharing

This section discusses previous work in developing Petri net formal
description that can be used in different software solutions for Petri net:
model sharing, software implementation, model validation, etc. Therefore,
we analyze present Petri net: metamodels, UML profiles, ontologies and
syntax.

2.1 Petri net metamodels

Breton and Bézivin in their paper [7] define a Petri net metamodel in the
context of the OMG’s Model Driven Architecture (MDA)
(http://www.omg.org/mda) initiative since they use the Meta-Object
Facility (MOF) for metamodel definition. In this paper we assume that
metamodel concept is closely related to ontology concept. They start from
the definition that a metamodel defines a set of concepts and relations, i.e.
the terminology and a set of additional constraints, i.e. the assertions.
Also, they say that each model encompasses both a static part and a
dynamic part. Accordingly, they define Petri net metamodel consisting of
three parts:
1. Petri N ts Definition metamodel that defines the static part of Petri

nets (i.e. Petri net basic structure concepts: Petri net itself, Place,
Transition, Arc, and their mutual relations). Additionally, the Object
Constraint Language (OCL) is used here to define an arc’s source and
target nodes.

e

t

2. Petri Nets Situation metamodel that defines a particular situation of
Petri nets. In order to represent particular a Petri net situation they
introduce Marking and Token concepts in the Petri net metamodel

3. Petri nets Execution me amodel that defines a sequence of particular
situations. This metamodel contains Petri net concepts (i.e. Move)
needed for Petri net execution since Petri net execution consist of a
sequence of transition firings with regard to place marking.

Note that this proposal is very important for development Petri net tools.
Although this approach gives a useful classification of Petri net concepts
in three different parts it has few shortcomings because it does not:
consider existence of different Petri net dialects and Petri net structuring
mechanisms (e.g. pages); show how Petri nets can be used on the Semantic
Web with non-Petri net tool (i.e. annotation), and hence how Petri nets are
mapped into Semantic Web languages (e.g. RDF(S)); suggest which
general MOF-based tools can be used for validating models against their
metamodels.

Hansen proposes a Petri net UML Profile in the paper [8]. Defining a
Petri net UML Profile provides similar solution to the metamodel-based

ComSIS Vol. 1, No. 2, November 2004 129

Dragan Gašević

one as UML Profiles extend the UML metamodel by introducing
stereotypes, tagged values and constraints. The main intent of an UML
Profile is to provide the usage of standard UML tools for different
purposes. Thus, Hansen extends the UML metamodel with Coloured Petri
net concepts – stereotypes for Petri net nodes, places, transition, arcs, and
declarations. Additionally, this UML Profile has tagged values attached to
stereotypes for: places (i.e. initial marking, and colour set), transitions (i.e.
guard), and arcs (expression). Also, the OCL is used in order to define
more precisely semantics for the UML Profile. Finally, this solution has
software implementation as a practical support that extends an existing
UML tool (the Knight/Ideogramic UML tool) with artifacts from the Petri
net UML Profile. Although, this solution is metamodel-based it is fairly
awkward since it is based on the UML metamodel. That means all UML
concepts are introduced in the Petri net metamodel, but most of them are
needless for Petri net semantic. Also, this approach has the same
limitation as the previous one regarding support for: Petri net dialects,
Semantic Web use, and Petri net structuring mechanisms.

2.2 Petri net ontologies

Perleg and her colleagues propose modeling of biological processes using
workflows [9] since it has ability to represent process knowledge. On the
other hand, workflows can be mapped to Petri nets, which allows
verification of formal properties and qualitative simulation (i.e.
reachability analysis). We develop a Petri net ontology using Protégé tool
as a software support. They acquire a knowledge of a Petri net through
Graphical User Interface (GUI) that extends the standard GUI of the
Protégé’s tool [10]. Actually, this GUI provides graphical tools for all Petri
net concepts (Places, Transitions, and Arc). In addition, the Petri net
ontology is represented in RDFS, and concrete Petri net models are
represented in RDF. This solution gives a solid starting point for defining
the Petri net ontology. However, this solution has some limitation: it
considers only Time Petri nets regardless of other Petri nets, it does not
define Petri net structuring mechanisms, and it does not provide precise
constraints (e.g. types of an arc’s source and target nodes that can be done
using Protégé Axiom Language (PAL) constraints). Additionally, we want
to provide other ontology languages for Petri net ontology (e.g. DAML or
OWL).

2.3 Petri net syntax – tool specific formats

Abstract Pet i Net Notation (APNN) is presented in the paper [11]. It has
ability to describe different Petri net dialects. To increase the readability

r

130 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

of this notation, the key words are similar to LATEX commands. This
notation should satisfy the following requests:
− net descriptions should be easily exchanged in electronic form;
− extensibility – it should be used by different Petri net dialects. Simple

Petri net dialects could be extended in order to describe high-level
dialects;

− modularity and hierarchy – the Petri net description in the file should
be reusable

− readability – text notation should be easily transformable into a
human-readable format as well as suitable for printing.

This notation does not keep information on Petri net graphical elements
(place position, transition, place name, etc.). The abstract notation for each
Petri net class is defined in BNF. The convention used for writing
grammar productions includes the following: terminals are written in
lower-case and non-terminal in upper case. This paper contains a short
review of APNN, using an example of P/T nets that is shown in Figure 1.

Tool specific text-based format. The DaNAMiCS software solution can
be downloaded from http://www.cs.uct.ac.za/Research/DNA/DaNAMiCS
where it is available for free. It is implemented in Java and supports High-
level Petri nets and Stochastic Petri nets. The main advantage of this
software is a rich set of tools for analysis, such as place and transition
matrix invariants, structural analysis as well as a few both simple and
advanced performance analyses. For model recording DaNAMiCS uses a
file format with the bim extension. Format with the bim extension has
many internal marks whose documentation is not publicly. The second file
format, that DaNAMiCS uses, has the wam extension and these files are
used for model import (menu File, option Import net). However, it is a
textual format with a structure that evidently corresponds to certain Petri
net object. It has been analyzed and compared with the models obtained
by importing files of this format into the DaNAMiCS. The meaning of
every format element has been obtained as well. One example of a Petri
net description in the format with the wam extension is given in Figure 2a
whereas the graph of that net is given in Figure 2b.

ComSIS Vol. 1, No. 2, November 2004 131

Dragan Gašević

\beginnet, \endnet, {, }, \place, \transition, \like, \arc, \name, \init,
\from, \to, \capacity, \weight

a)

NET, ELEMENT, PLACE, TRANSITION, ARC, ID, NAME, INIT, WEIGHT, CAP,
STRING, INTEGER

b)

NET ::= \beginnet{ID} ELEMENT \endnet
ELEMENT ::= empty

| PLACE ELEMENT
| TRANSITION ELEMENT
| ARC ELEMENT

ID ::= STRING
PLACE ::= \place{ID}{ NAME INIT CAP }|\place{ID}{ \like{ID} }
NAME ::= empty | \name{ STRING }
INIT ::= empty | \init{ INTEGER }
CAP ::= empty | \capacity{ INTEGER }
TRANSITION ::= \transition{ID}{ NAME }
ARC ::= \arc{ID}{ \from{ID} \to{ID} WEIGHT }
WEIGHT ::= empty | \weight{ INTEGER }
Start-symbol: NET

c)
Fig. 1. Abstract Petri Net Notation: a) set of terminal symbols, b) set of non-
terminal symbols, c) set of grammar productions

Tool specific XML-based format. Renew Petri net software solution can
be downloaded from http://www.renew.de, it is available for free, and is
Java implemented. In order to overcome the problem of model exchange
with other Petri net software tools, Renew uses XML. It supports the
following Petri net dialects: object oriented Petri nets, High-level Petri
nets, P/T nets, and Time Petri nets. Advantages of Renew software
solution are: support of synchronized channels as an advanced
communication mechanism; support of the modeling object oriented
concepts; support of numerous arcs types; a rich graphical environment.
The XML document model description is defined using Document Type
Definition (DTD) [12] [13]. The assumptions, included in the formulation
of this DTD, are the same as the PNML assumptions since they use the
same elements for the description of: net (XML tag net), place (place),
transition (transition) and arc (arc). These elements in previously
mentioned two formats also have similar content model. Each element in
the Renew’s XML format can have graphical information and arbitrary
number of annotations.

132 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

PiPs [
]
TiPs [
]
Places [
1 'Place1' (82,104) 0 0 0 0
]
TimedTrans [
]
ImmedTrans [
3 'Transition1' (201,102) 0 0 0
]
Subnets [
]
Edges [
'Place1' to'Transition1' 1 [(139,78)
]
]

a) b)
Fig. 2. Format for Petri net description, which can be imported into DaNAMiCS: a)
example of a net described in this format, b) graphical presentation

2.4 Petri Net Markup Language

The Petri net community has already been working on development of the
Petri Net Markup Language for three years [14] [15] that might be a part
of the future High-level Petri nets ISO/IEC standard [4]. PNML is a
proposal that is based on XML. The design of PNML was governed by the
principles of [16]:
- flexibility - PNML should be able to represent any kind of Petri nets

with their specific extensions and features
- unambiguity - Ambiguity is removed from the format by ensuring that

the original Petri net and its particular type can be uniquely
determined from its PNML representation. Accordingly, PNML
supports the definition of different Petri net types through the use of
the Petri net type definition (PNTD), which determines legal labels for
a particular Petri net type

- compatibility - unlimited exchange of information between different
types of Petri nets should be provided. PNML comes with conventions
on how to define a label with a particular meaning. The Conventions
Document predefines for all kinds of extensions both their syntax and
intended meaning. When defining a new Petri net type, the labels can
be chosen from this Conventions Document.

The PNML specification is based on the PNML technology metamodel
that formulates a PNML document structure. Actually, this metamodel
defines basic Petri net concepts (places, transitions, arcs) as well as their
relations that can be presented in a PNML document. Currently, PNML is
in version 1.3, and it is defined using RELAX NG – an XML grammar
definition mechanism. One should notice that PNML can also be described

ComSIS Vol. 1, No. 2, November 2004 133

Dragan Gašević

using W3C’s XML Schema definition, and previous PNML versions were
define by this mechanism as well. The full PNML definition as well as a
few examples of PNTD can be found at the PNML home page:
http://www.informatik.hu-berlin.de/top/pnml/about.html. The next section
describes how the present Petri net tools support PNML, as well as how
one using XSLT can share models with tools that do not support PNML.

3 PNML – current tool support

PNML, being more matured, is currently supported (or will be supported)
by many Petri net software tools, for instance: Petri Net Kernel (PNK),
CPN Tools, Worflan, PIPE, PEP, VIPtool, P3 etc. There are also Petri net
tools that do not primarily use PNML syntax, but do use considerably
similar formats to the PNML (e.g. Renew). In this paper we emphasize
PNK – a tool that is closely related to the PNML technology. The PNK is
not just a Petri net tool, but also an infrastructure for building Petri net
tools [17]. It is not limited to one Petri net dialect; on the contrary it can
be used for each Petri net dialect, supporting specific features of each one.
Thus, it provides methods to manage Petri nets of different types. PNK
implements a data model for Petri nets that is similar to that of PNML.
Each place, transition, arc, or even net may contain several labels
according to the Petri net type.
Secondly, we make overview of P3 tool – a tool that has been developed for
Petri net teaching [18]. P3 contains collection of XSLTs from the PNML to
other Petri net formats. On the example of P3 tool we depict a possible
PNML/XSLT-based syntax schema for model sharing.

3.1 P3 – Petri net tool

Being based on the PNML concepts, P3 achieves compatibility with the
PNML. The P3 tool supports P/T nets, and Upgraded Petri nets. Main
parts of the P3’s architecture are following [19]:
- Petri net structure – The central part of the structure is a Petri net

that consists of the Petri net basic concepts: places, transitions, and
arcs [20]. Important part of the Petri nets that pertains their structure
is marking, and initial marking, although these concepts are not real
part of the Petri net structure

- Petri net graph – is closely related to the Petri net structure. It can be
said that Petri net graph is a graphical notation for Petri net
structure

- Petri net simulation – implements two different modes of simulation:
by parallel execution of all enabled transitions with a previous conflict
resolution; and by single execution of an enabled transition

134 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

- Petri net analysis tools - there are many well-known Petri net analysis
tools [1] (e.g. Reachability Tree, Matrix Equations), but also we
introduced new analysis tools appropriate for teaching purposes (e.g.
Fireability Tree, Firing graph)

- Petri net model sharing – P3’s sharing is format based on the PNML
as PNML is extensible.

The P3’s architecture is shown in Figure 3. The organization of Petri net
classes is shown on the left in the figure, whereas the supported formats
are on the right side.

Petri net classes Formats

PPPeeetttrrriii nnneeetttsss aaannnaaalllyyysssiiisss

PPPeeetttrrriii nnneeetttsss sssiiimmmuuulllaaatttiiiooonnn

XXXMMMLLL fffooorrrmmmaaatttsss ooofff aaannnaaalllyyysssiiisss
rrreeesssuuullltttsss

DDDOOOMMM DDDaaaNNNAAAMMMiiiCCCSSS

PPPNNNKKK PPPeeetttrrriii nnneeetttsss ssstttrrruuuccctttuuurrreee

UUU
PPPNNN

MMM
LLL

PPPNNN
MMM

LLL

XXXSSS
LLLTTT

sss
RRReeennneeewww

PPPeeetttrrriii nnneeetttsss gggrrraaappphhh SSSVVVGGG (((XXXSSSLLLTTT)))
Fig. 3. P3 architecture: class organization and supported XML formats

P3 uses a collection of XSLTs to convert PNML format into the formats
of Renew, DaNAMiCS, and PNK tools. These XSLTs are omitted here due
to their length, but are available at: http://www15.brinkster.com/p3net.
The transformation principle that was used is illustrated in Figure 4: a
P3-generated PNML-based model is the input to the XSLT processor, and
is converted using the XSLT corresponding to the target tool. Also, using
the same principle P3 supports transformation to the SVG – a W3C’s
format for 2D vector graphics.

DaNAMiCS is selected in order to analyze sharing a PNML-based
model developed in P3 with a tool that uses an ordinary text format.
Renew was suitable for analyzing the exchange of P3 models (PNML-
based) with a tool that uses another XML-based format, and PNK enabled
analysis of model exchange between two different PNML-based tools.

ComSIS Vol. 1, No. 2, November 2004 135

Dragan Gašević

Target
formats

PNML
document

P3

Renew
PNK
DaNAMiCS

Renew
PNK

DaNAMiCS
SVG

XSL T
processor

XSLT

Fig. 4. The principle of XSLT-based model conversion from P3 to another format

Model sharing between P3 and DaNAMiCS is possible, but impeded by
the lack of publicly available specification of DaNAMiCS format. It is not
possible to use XML/XSLT-based approach to convert the models
developed in DaNAMiCS, since such models are described in text-based
files. The major difficulty in sharing models between P3 and Renew is
Renew's syntax for identifiers, which is not defined in the XML
specification; it is only hard-coded in the Renew source code. Another
problem related to Renew’s XML format is DTD mechanism used to define
this format. This format has very little support for description of
semantics (e.g. inheritance). As it was expected, for the P3-PNK pair,
model sharing is the most convenient approach, since PNK uses PNML.
Still, some difficulties exist because P3 and PNK interpret PNML slightly
different, and hence usage of an XSLT was inevitable.

4 Do we need a Petri net ontology?

As we have seen so far, Petri net formats use different concepts for
defining its syntax. Some of these syntactic-based approaches actually
have problems with syntax validation. For instance, it is very difficult to
validate some text-based (i.e. DaNAMiCS) document if we do not develop
specialized software for checking this format. A slightly better solution is
to use DTD for XML definition as the Renew’s format uses. But, DTD has
well-known drawbacks: it does not support inheritance
(generalization/specialization), it does not have datatype checking (for the
primary semantics checking), it does not support defining specific formats,
and what is more a DTD document has non-XML structure.

W3C's XML Schema overcomes most of these problems, since it has: a
rich set of datatypes, constructs to define inheritance of complex as well as
simple types, and document structure that is in the form of a well-formed
XML document. But, XML Schema has not full support for describing
semantics [21]. In fact, XML Schema is only a way for defining syntax. For

136 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

example, it is emphasized that current PNML definition does not have an
ability to validate whether an arc connects a place and a transition, or two
transitions or two places. Also, directly using some standard XML
validators cannot validate whether a reference place has a reference to a
place or other reference place [16]. In order to perform this kind of
validation one must use some specific tools (e.g. for PNML is proposed
using Jing validator), but these tools are not widely known in the XML
community. Further, in the case we want to share Petri net models, not
only with Petri net specialized tools, we must have a formal way for
representing Petri net semantics since we can not expect that non-Petri
net tool perform semantic validation.

Accordingly, we believe that the concept of ontology can be used for
formal description of Petri net semantics. In this paper domain ontology is
understood as formal way for representing shared conceptualization in
some domain [5]. Ontology has formal mechanisms to represent concepts,
concept properties, and relations between concepts in the domain of
discourse. Having a Petri net ontology we would be able to overcome
validation problems that we have so far noticed. However, a Petri net
ontology does not exclude current Petri net formats (especially PNML).
Ontology is closely related to syntax in the meaning that syntax should
enable ontological knowledge sharing [22]. When we have a Petri net
ontology, we could use ontological tools for validation of Petri nets models
(e.g. Protégé – a tool for ontological development). Also, having a Petri net
ontology, one can use Semantic Web languages for representing Petri net
models (RDF, RDF Schema – RDF, DAML+OIL, OWL, etc) [6].
Accordingly, we show how PNML can be used as a guideline for the Petri
net ontology.

5 Petri net ontology – initial realization

There are many different ways to develop an ontology and for ontological
engineering one can use different tools. For development of the Petri net
ontology, we firstly decided to use UML [23]. The use of the UML is
suitable because it is generally accepted and standardized approach for
analysis and modeling in software engineering. We can also employ
existing UML-based Petri net descriptions that are made within PNML
definition [16]. However, neither UML tools nor UML itself are intended
to be used for ontology development. Thus, in order to achieve more
precise Petri net definition than an UML model provides, it is necessary to
use some ontology development tools. We decided to use Protégé 2000 [10]
since it is the leading tool for ontology development. Protégé 2000 is also
suitable because it is able to import UML models. This is enabled by
Protégé’s UML backend – that imports UML models (in UML's XML

ComSIS Vol. 1, No. 2, November 2004 137

Dragan Gašević

Metadata nterchange – XMI – format) into Protégé ontology. Next, this
section describes design details of the Petri net ontology. In order to have
a precise UML-based ontology definition, we use Ontology (OWL-based)
UML profile that we transformed into OWL using a converter developed in
XSLT [30].

I

o

r

5.1 Starting solution – UML model

Hierarchy of core concepts of the Petri net ontology is shown in Figure 5.
In design of the Petri net ontology, we have one root element, and we call
it – ModelElement. This element is parent for all elements of Petri net
structure. The name of this class is M delElement because the UML’s
metamodel uses the same name for its root class [24]. A Petri net (Net
class) can contain many different ModelElements. ModelElement and Net
have ID attribute (unique identifier) of String type, and Net has also an
attribute that describes a type of Petri net. It is in accordance with PNML.
Basically, there are three main Petri net concepts are: place, transition,
and arc. These concepts constitute a Petri net structure, and they are
shown in Figure 5 with classes that have the same names (i.e. Place,
Transition, and A c). Places and transitions are kind of nodes (class Node),
and an arc connects two nodes of different kind. This constraint can be
represented using Object Constraint Language (OCL), with the following
statements:

context Arc
 inv: self.to.oclIsTypeOf(Transition) and self.from.oclIsTypeOf(Place) or

self.to.oclIsTypeOf(Place) and self.from.oclIsTypeOf(Transition)

138 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

self.reference.oclIsTypeOf(Transition)
self.reference.oclIsTypeOf(TransitionReference)

TransitionPlace

PageModuleInstance

PlaceReference TransitionReference

Module
<<metaclass>>

StructuralElement

ModelElement
ID : St ring1..*

1

+elements

1..*
1

1..*

1

1..*

1

Net
ID : String
type : String1..* 1

+elements

1..* 1

<<instanceOf>>

NodeReference

Arc Node

1

*

+reference

1

*

0..*
1

0..* +from
1

0..* 10..* +to 1

self.reference.oclIsTypeOf(Place) or
self.reference.oclIsTypeOf(PlaceReference)

Fig. 5. Petri net ontology – Hierarchy of core Petri net concepts

Class Node is introduced into the ontology in order to have a common
way to reference both places and transitions. In order to make easily
maintainable Petri net models, different concepts for structuring can be
used. In the Petri net ontology, we have the class StructuralElement. This
class is inherited from ModelElement, and we inherit from this class all
classes that represent structuring mechanisms. We have decided to
support two common mechanisms: pages (class Page), and modules (class
Module). A Page may consist of other Petri net ModelElements – it may
even consist of other pages. A NodeReferen e, which can be either a
TransitionReference or a PlaceReference, represents an appearance of a
node. Decorator design pattern [25] was used to represent referencing of a
NodeReferen e. Here, there are also constraints: a TransitionReference
can refer to either a Transition or other TransitionReference, while a
PlaceReference can refer to either a Place or other PlaceRefe ence. We
show all these constraints using OCL in Figure 5. These constraints also
affect the OCL constraint for arcs, we have already described, but we do
not show their interaction due to the limited size of this paper. The second
structuring mechanisms are modules. A Module consists of
M delElements, and it can be instantiated (similarly as an object is
instantiated from a class in object oriented paradigm). Accordingly,
Module is a metaclass (stereotype in Figure 5), and ModuleInstance
depends on Module (that shows a stereotyped instanceOf dependency from
Modul Instance to Module).

c

c

r

o

e
In Petri nets an additional property (or feature) can be attached to

almost every core Petri net element (e.g. name, multiplicity, etc.). Thus,

ComSIS Vol. 1, No. 2, November 2004 139

Dragan Gašević

we have included a description of features in the Petri net ontology and in
Figure 6 we shortly depict how these features have been added. The root
class for all features is Feature, which is also similar to the UML
metamodel [24]. The Petri net ontology follows the PNML’s classification
of features: those that contain graphical information (annotation), and
those that do not have them (attribute). In the Petri net ontology every
feature directly inherited from Fea u e class is an attribute (e.g. ArcType),
whereas GraphicalFea ure class represents annotations.
GraphicalFeature has a graphical information that can consist of, for
instance, position (class Position and its children Absolute Position, and
Relativ Position). Examples of graphical features are: Multiplicity, Name,
InitialMarking, and Marking. It is interesting to notice that marking, and
initial marking consist of tokens (class Token). In order to support token
colors, the Token class is abstract. In Figure 6 we show a case when we
have no colors attached to tokens, instead we just take into account
number of tokens (IntegerToken).

t r
t

e

IntegerToken
value : Integer

NameMultiplicity

ArcType
normal
inhibitor
read
reset

<<enumeration>>

Feature

InitialMarking

Token

0..*
+tokens

0..*

Marking

0..*

+tokens

0..*
Relative
Position

Absolute
Position

GraphicalFeature

Position
x : Integer
y : Integer

GraphicalInformation
11

+gaphicalInformation

11
+position

Fig. 6. Property hierarchy of the Petri net ontology

Attaching a new feature to a Petri net class requires just adding an
association between a class and a feature. Figure 7 shows how Name and
Position features are attached to the Node class. Using the same
procedure one can attach features to other Petri net classes.

Name+nameNode+positionPosition
x : Integer
y : Integer

140 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

Fig. 7. An example of how features cab be attached to a class in the proposed Petri
net ontology: a Petri net node has position and name

A UML description is a convenient way for representing Petri net
semantics. Also, this Petri net model can be used as a Petri net metamodel
in order to provide the future Petri net implementation that should take
benefits from MDA and repository-based software development [26].
However, it does not enable us to semantically validate Petri net models.
For example, we cannot use OCL statements to perform this task.
Additionally, the standard UML has some semantics differences in regard
of ontology properties. Unlike UML’s attributes, ontology properties are
first-class concepts that can exist independent of any ontology class [27].
In order to further refine the Petri net ontology, we have two directions.
The fist one recommends using an UML profile [28] for ontology
development. The second way is to use standard ontology development
tools. Therefore we have decided to use: 1. Protégé 2000 since it provides
all necessary ontology development features (constraints, and ontology
languages), but it also has ability to import/export UML models we have
previously shown; 2. The Ontology UML Profile [29] that is based on OWL
– a W3C recommendation for Web ontology language [31].

5.2 Petri net ontology in Protégé 2000

We can precisely define Petri net ontology by Protégé tool, for example: we
can make difference between a class and a metaclass (e.g. Module – a
metaclass, ModuleInstance – a class), we can use different Semantic Web
languages to represent Petri net ontology provided through Protégé’s
backends (RDF(S), OWL, DAML+OIL), we can define constraints that we
specified in the UML model using OCL (e.g. PAL – Protégé Axiom
Language). Afterwards, we can validate all ontology instances using these
constraints, and detect if there an instance that does not conform to some
of constraints.

Having created the initial design of the Petri net ontology, it was
imported into the Protégé using Protégé’s UML backend
(http://protege.standford.edu/plugin/uml). This plugin has ability to read
an XML format (i.e. UML XMI) for representing UML models. The main
shortcoming of this UML backend is that it is unable to map UML class
associations. Thus, we had to manually add all slots that are described in
UML as association ends. A snapshot of the Petri net ontology after we
imported it and inserted all slots (i.e. association ends) in Protégé is shown
in Figure 8.

Of course, Protégé does not have an ability to transform OCL
constraints into PAL constraints. Thus, we have also manually
reconstructed all the OCL-defined constraints from the UML model of the

ComSIS Vol. 1, No. 2, November 2004 141

Dragan Gašević

Petri net ontology into corresponding PAL constraints. For instance, a
constraint that is attached to TransitionReference that can refer only to a
Transition or other TransitionReference looks like this:
 (forall ?transitionRef
 (or (instance-of (reference ?transitionRef) Transition)
 (instance-of (reference ?transitionRef) TransitionReference)
))

This constraint can be applied to instances of the Petri net ontology,
and Protégé shows all those instances of TransitionReference that do not
conform it. Applying the same principle we made constraints for
PlaceReference, and Arc.

Fig. 8. Look on the Petri net ontology in Protégé 2000

Using Protégé we generated RDFS that describes the Petri net ontology.
In this way, one can use it for reasoning about a document that contains a
Petri net model. Figure 9 shows an excerpt of this RDFS. This figure
depicts how RDFS defines classes for: ModelElement, Node, Transition,
Place, Arc, and ArcType. Also, this figure shows how RDFS defines
Feature, as well as how name feature is defined and attached to classes
that should have this property.

Since Protégé supports more concepts for ontology definition than RDFS
does, one can notice some extensions of RDFS in Figure 9. These Protégé
extensions are manifested by namespace a, and for example, they are used

142 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

to define cardinality (a:maxCardinality, a:minCardinality), or to refer to a
PAL constraint (a:slot_constraints), etc. Of course, it is neither limitation of
the Petri net ontology nor Protégé tool, but it is limitation of RDFS itself,
and most of them are overcome in the Web Ontology Language (OWL)
[31], but this discussion is out of the scope of this paper.

<rdf:RDF xmlns:rdf="&rdf;" xmlns:a="&a;"
 xmlns:PN_Ontology="&PN_Ontology;" xmlns:rdfs="&rdfs;">

 <!-- … -->

 <rdfs:Class rdf:about="&PN_Ontology;ModelElement" a:role="abstract"
 rdfs:label="ModelElement">
 <rdfs:subClassOf rdf:resource="&rdfs;Resource"/>
 </rdfs:Class>
 <rdfs:Class rdf:about="&PN_Ontology;Node" a:role="abstract" rdfs:label="Node">
 <rdfs:subClassOf rdf:resource="&PN_Ontology;ModelElement"/>
 </rdfs:Class>
 <rdfs:Class rdf:about="&PN_Ontology;Place" rdfs:label="Place">
 <rdfs:subClassOf rdf:resource="&PN_Ontology;Node"/>
 </rdfs:Class>
 <rdfs:Class rdf:about="&PN_Ontology;Transition" rdfs:label="Transition">
 <rdfs:subClassOf rdf:resource="&PN_Ontology;Node"/>
 </rdfs:Class>
 <rdfs:Class rdf:about="&PN_Ontology;Arc" rdfs:label="Arc">
 <rdfs:subClassOf rdf:resource="&PN_Ontology;ModelElement"/>
 <a:_slot_constraints rdf:resource="&PN_Ontology;PN Ontology_00043"/>
 </rdfs:Class>
 <rdfs:Class rdf:about="&PN_Ontology;ArcType" rdfs:label="ArcType">
 <rdfs:subClassOf rdf:resource="&PN_Ontology;Feature"/>
 </rdfs:Class>
 <rdfs:Class rdf:about="&PN_Ontology;Feature" rdfs:label="Feature">
 <rdfs:subClassOf rdf:resource="&rdfs;Resource"/>
 </rdfs:Class>

 <!-- … -->

 <rdf:Property rdf:about="&PN_Ontology;name" a:maxCardinality="1"
 a:minCardinality="1" rdfs:label="name">
 <rdfs:domain rdf:resource="&PN_Ontology;ImmediateTransition"/>
 <rdfs:range rdf:resource="&PN_Ontology;Name"/>
 <rdfs:domain rdf:resource="&PN_Ontology;Node"/>
 <rdfs:domain rdf:resource="&PN_Ontology;Place"/>
 <rdfs:domain rdf:resource="&PN_Ontology;PlaceReference"/>
 <rdfs:domain rdf:resource="&PN_Ontology;TimedTransition"/>
 <rdfs:domain rdf:resource="&PN_Ontology;Transition"/>
 <rdfs:domain rdf:resource="&PN_Ontology;TransitionFunction"/>
 <rdfs:domain rdf:resource="&PN_Ontology;TransitionReference"/>
 </rdf:Property>

 <!-- … -->

Fig. 9. A part of the RDF Schema of Petri net ontology

5.3 OWL-based Petri net ontology

We use the Ontology UML Profile (OUP) (see [29] for details of OUP) for
ontology development that is based on the forthcoming ontology language

ComSIS Vol. 1, No. 2, November 2004 143

Dragan Gašević

OWL. OUP provides stereotypes and tagged values for full ontology
development. OUP models can be (automatically) mapped into OWL
ontologies (e.g. using XSLT). The core Petri net hierarchy shown in Figure
5 is the same for the Petri net ontology represented in OUP. Actually,
there is a difference regard of both associations and attributes in the
model from Figure 5 since ontology development understands property as
a fist-class concept. Thus, we should transform all association between
classes as well as all class attributes into OUP's property stereotypes
(<<DataTypeProperty>> and <<ObjectProperty>>). An example of this
transformation is shown in Figure 10. In this figure we define the
<<ObjectProperty>> element that is attached (through the <<domain>>
association) to the following classes: S ructuralElement, Net, and Module.
That means each of these classes has a collection of elements (one or
more). The element can take values from the ModelElement class. In the
similar way, we define the other Petri net properties (e.g. name, reference,
id, etc.). In addition, one can note that in OUP we use <<OntClass>>
stereotype for representation of ontology classes.

t

Fig. 10. Collection of Petri net model elements: the OUP element Property

Note that in the OUP Petri net ontology we do not need the Feature
class since property is the first class in the ontology development.
Accordingly, we have <<ObjectProperty>> and <<DatatypeProperty>> to
represent the properties in the Petri net ontology. On the other hand, we
want to provide support for graphical features. Figure 11 gives an example
of the <<ObjectProperty>> name that has already been declared as a
graphical feature. In this case, the node property has as its range (through
association <<range>>) the NodeDescrip or <<OntClass>>. But, this class
is inherited from the GraphicalFeature. This class is introduced in the
Petri net ontology to be the root class for all the classes that are range for
graphical feature. Similarly, we define other graphical features (e.g.

t

144 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

marking). In addition, the name property has domain (<<domain>>
association): Net, and Node.

Fig. 11. An example of graphical feature defined in the Ontology UML Profile:

name object property

Figure 12 shows how we make a restriction on a Petri net arc using
Ontology UML Profile. Using this UML Profile we are able to restrict that
a Petri net arc (<<OntClass>> Arc) only connects a Place and a Transition.
This statement is expressed as a union (<<Union>>) of two intersections
(<<Intersection>>). Our <<OntClass>> Arc is an equivalent class
(<<equivalentClass>>) with this union. Since these two intersections are
defined in symmetric way, we only explain the left one in Figure 12. This
(the left) intersection says that an Arc takes all values from
(<<allValuesFrom>> association between anonymous both <<OntClass>>
and <<Restriction>>): Place (<<allValueFrom>> dependency between
anonymous <<Restriction>> and <<OntClass>> Place) for the fromNode
property (<<onProperty>> dependency between the anonymous
<<Restriction>> and the <<ObjectProperty>> fromNode) and Transition
for the toNode property. The second (right) intersection has the opposite
statement: Arc’s toNode property takes all values from Place, and Arc’s
fromNode property has all values from Transition.

It should be noted that having Arc restriction expressed in this way we
are able to automatically map the UML model to an ontology language
(e.g. OWL). On the contrary, this is very difficult if having these
constraints given in OCL or PAL. In Figure 13 we give an excerpt of the
Petri net ontology in OWL that we generated using an XSLT for
transformation from the OUP (i.e. XMI) to the OWL ontology [30]. This
figure illustrates a part of OWL Arc class definition that is equivalent
with the OUP Arc restriction. It is important to note that in the OWL
ontology we have logical expressions in the XML form (e.g. the Arc
restriction) unlike the Protégé PAL constraints that are written in a Lisp-
like form. It is more convenient to parse an ontology statement when it is

ComSIS Vol. 1, No. 2, November 2004 145

in an XML format that can be parsed using a standard XML parser as
well as transformed using the XSLT mechanism.

Fig. 12. Restriction that an arc only connects a transition and a place

6 P3 extensions for the Petri net ontology

So far, we have explained ontology design and definition details, but in
order to have a practical use of the Petri net ontology we need software
tools that would support and employ this ontology. Once more we focus on
P3 tool. P3 tool is extended in accordance to the Petri net ontology. Firstly,
it is implemented a procedure that saves a Petri net model into an RDF
description. We implemented this feature using XSLT, and just invoke an
XSLT from P3 tool. This RDF description has agreement with the Petri
net ontology. Also, P3 is now able to import models described using the
Petri net ontology compliant RDF documents. As P3 has features for
importing PNML models, we also implemented an XSLT that transforms
the Petri net RDF format into the PNML. In this way, we do not need to
implement a special support for parsing RDF documents. Instead, when
P3 imports an RDF document it only has to call an XSLT processor. It
produces a PNML document, which can be parsed by P3 using the PNML
parsing mechanism. Figure 14 illustrates the way P3 supports the Petri
net ontology using RDF, PNML, and XSLT.

146 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
 <owl:Class rdf:ID="ModelElement"/>
 <owl:Class rdf:ID="Arc">
 <rdfs:subClassOf rdf:resource="#ModelElement"/>
 <!--OWL subClass statements -->
 <!--. . . -->
 <owl:equivalentClass>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#fromNode"/>
 <owl:allValuesFrom rdf:resource="#Place"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#toNode"/>
 <owl:allValuesFrom rdf:resource="#Transition"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#fromNode"/>
 <owl:allValuesFrom rdf:resource="#Transition"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#toNode"/>
 <owl:allValuesFrom rdf:resource="#Place"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>
 <!--OWL subClass statements -->
 <!--. . . -->
 </owl:Class>
 <!--OWL Class, ObjectProperty, and DataTypeProperty statements -->
 <!--. . . -->
</rdf:RDF>

Fig. 13. A part Petri net ontology in OWL: Arc class restriction form Figure 12

Although, P3 uses RDF, it does not mean that we have abandoned
PNML. On the contrary, since we implemented an XSLT (from RDF to
PNML), we have continued to use PNML. Actually, we can say that we
brought a new power to PNML because one can use P3 to convert PNML
models into RDF, and after that a Petri net model can be validated against
the Petri net ontology. In that way, we achieved a semantic validation of
Petri net models. Of course, PNML is very useful as it contains well-
defined concepts for interchanging Petri net models and now it is a
growing proposal that is being used by many Petri net tools. Further, since
we have the XSLTs from PNML to Petri net formats of other Petri net

ComSIS Vol. 1, No. 2, November 2004 147

tools we are additionally able to employ their Petri net analysis
capabilities.

PNML

XSLT

XSLT
processor

RDFtoPNML

RDF
document

PNMLtoRDF

RDF

Fig. 14. P3 tool and its support of Petri net ontology using RDF

7 Conclusions

The main idea of this paper to provide the full semantic validation of Petri
net model by defining a formal specification of Petri net concepts. We
proposed a Petri net ontology as a solution for this issue. The Petri net
ontology can detect semantic inconsistencies in a Petri net model, even
though the model is syntactically correct (e.g. a transition reference can
refer either a transition or other transition reference). Firstly, we designed
the ontology using UML and OCL. Then, we used Protégé 2000 to achieve
the full support for ontology development. For constraints we used PAL
and as a result we have generated RDF Schema describing the ontology.
Additionally, we represented the Petri net ontology in the Ontology UML
Profile that is based on the OWL. From this UML profile description we
generated the OWL ontology. With this solution as a base, we extended P3
tool to use Petri net models described by RDF and developed XSLT from
RDF Petri net description to PNML format. The definitions of the Petri
net ontology in RDFS and OWL languages and corresponding XSLTs are
available at: http://afrodita.rcub.bg.ac.yu/~gasevic/ projects/PNO/.

This paper shows that semantics and syntax in some domain do not
exclude one another. On the contrary, on the example of Petri net ontology
we show their complementaries. This paper can help in efforts to obtain
better formal description of Petri nets and improve their interoperability.
Constraints we included in the Petri net ontology can be a direction for the
future semantic validation of Petri net models.

The Petri net ontology is going to be extended with an intention to make
it possible for different Petri net dialects to use core concepts from the
Petri net ontology. Currently, P3 generates SVG documents of Petri net
graph, and uses RDF to annotate graphical primitive, so one can restore

148 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

original Petri net model from this graphical format. The OWL ontology
annotation will be supported in the new P3’s version. Further, this
annotation principle will be used to develop a Petri net Web-based
learning environment as well as to create Learning Object Metadata
(LOM) repositories of Petri net models.

References

1. Peterson, J.: Petri net theory and the modeling of systems. Prentice Hall,
Englewood Cliffs, New Jersey, USA. (1981)

2. Berthelot, G., et al: A syntax for the description of Petri Nets. Petri Net
Newsletter. No. 29, 4-15. (1988)

3. Petri Nets Tools Database, [Online]. Available:
http://www.daimi.au.dk/PetriNets/tools/db.html

4. ISO/IEC/JTC1/SC7 WG19: New proposal for a standard on Petri net
techniques, ISO/IEC/JTC1/SC7 N2658 (2002)

5. Gruber, T.: A translation approach to portable ontology specifications.
Knowledge Acquisition, Vol. 5, No.2, 199-220. (1993)

6. Gómez-Pérez, A., Corcho, O.: Ontology Languages for the Semantic Web. IEEE
Intelligent Systems, Vol. 17, No. 1, 54-60. (2002)

7. Breton, E., Bézivin, J.: Towards an Understanding of Model Executability. In
Proceedings of the International Conference on Formal Ontology in
Information Systems, Ogunquit, Maine, USA, 70-80. (2001)

8. Hansen, K.M.: Towards a Coloured Petri Net Profile for the Unified Modeling
Language – Issues, Definition, and Implementation. Internal Center for
Object Technology Report COT/2-52, University of Aarhus, Aarhus, Denmark
(2001) [Online]. Available: http://www.daimi.au.dk/~marius/writings/cpn.pdf
(current Nov. 2003)

9. Peleg, M., Yeh, I., Altman, R.: Modeling Biological Processes using Workflow
and Petri Net Models. Bioinformatics, Vol. 18, No. 6, 825-837. (2002)

10. Noy, N. F., et al: Creating Semantic Web Contents with Protégé-2000. IEEE
Intelligent Systems, Vol. 16, No. 2, 60-71. (2001)

11. Bause, F., et al: Abstract Petri Net Notation. Petri Net Newsletter, No. 49, 9-
27. (1995)

12. Kummer, O., Wienberg, F.: The XML File Format of Renew. In Meeting report
from 21st International Conference on Application and Theory of Petri Nets,
Århus, Denmark (2000), [Online]. Available: http://www.daimi.au.dk/pn2000/
Interchange/-papers/det_04.ps.gz (current Nov. 2003)

13. Kummer, O., et al: Renew - XML Format Guide. [Online]. Available:
http://www.renew.de (current Nov. 2003)

14. Jüngel, M., et al: The Petri Net Markup Language. In Proceedings of the 7th
Workshop Algorithms and Tools for Petri, Universität Koblenz-Landau,
Germany, 47-52. (2000)

15. Weber, M., Kindler, E.: The Petri Net Markup Language. Petri Net
Technology for Communication Based Systems, LNCS Vol. 2472, Springer-
Verlag, Berlin Heidelberg New York (2003) forthcoming

ComSIS Vol. 1, No. 2, November 2004 149

http://www.renew.de/

16. Billington, J., et al: The Petri Net Markup Language: Concepts, Technology,
and Tools. In Proceedings of the 24th International Conference on
Applications and Theory of Petri Nets, LNCS Vol. 2679. Springer-Verlag,
Eindhoven, The Netherlands, 483-505. (2003)

17. Kindler, E., Weber, M.: The Petri Net Kernel - An Infrastructure for Building
Petri Net Tools. Software Tools for Technology Transfer (STTT), Vol.3, No.4,
Springer-Verlag, Berlin-Heidelberg-New York, 486-497. (2001)

18. Gašević, D., Devedžić, V.: Teaching Petri nets using P3. IEEE Educational
Technology & Society. (2004) (forthcoming)

19. Gašević, D, Devedžić, V., Veselinović, N.: P3 - Petri Net Educational Software
Tool for Teaching Hardware. Petri Net Newsletter, No. 66, 3-13. (2003)

20. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, Vol. 77, No. 4, 541-580. (1989)

21. Klein, M., et al.: The Relation between Ontologies and Schema-Languages:
Translating OIL Specifications to XML Schema. In Proceedings of the
Workshop on Applications of Ontologies and Problem-Solving Methods, 14th
European Conference on Artificial Intelligence ECAI'00, Berlin, Germany
(2000)

22. Chandrasekaran, B., et al: What Are Ontologies, and Why Do We Need
Them?. IEEE Intelligent Systems, Vol. 14, No. 1, 20-26. (1999)

23. Cranefield, S.: Networked Knowledge Representation and Exchange using
UML and RDF. Journal of Digital information, Vol. 1, No. 8 (2001). [Online].
Available: http://jodi.ecs.soton.ac.uk

24. OMG Unified Modeling Language Specification v1.5, OMG document
formal/03-03-01 (2003). [Online]. Available: http://www.omg.org/cgi-
bin/apps/doc?formal/03-03-01.zip

25. Gamma, E., et al: Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley. (1995)

26. Bock, C.: UML without Pictures. IEEE Software, Vol. 20, No. 5, 33-35. (2003)
27. Baclawski, K., et al: Extending the Unified Modeling Language for ontology

development. International Journal Software and Systems Modeling (SoSyM),
Vol. 1, No. 2, 142-156. (2002)

28. Kogut, P., et al: UML for Ontology Development, The Knowledge Engineering
Review, Vol. 17, No. 1, 61-64. (2002)

29. Djurić, D., Gašević, D., Devedžić, V.: Ontology Modeling and MDA. Journal on
Object Technology, Vol. 4, No. 1. (2005) (forthcoming)

30. Gašević, D., Djurić, D, Devedžić, V., Damjanović, V.: From UML to Read-To-
Use OWL Ontologies. In Proceedings of the 2nd IEEE International Conference
on Intelligent Systems, Vol. II, Vrana, Bulgaria, 485-490. (2004)

31. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.
Patel-Schneider, P.F. and Stein, L.A.: OWL Web Ontology Language
Reference. W3C Recommendation (2004). [Online]. Available:
http://www.w3.org/TR/2004/REC-owl-ref-20040210

Dragan Gašević is a lecturer of computer science at the Department of

Computer Engineering and Informatics, the Military Academy, Belgrade,
Serbia and Montenegro where he teaches expert systems, object oriented

150 ComSIS Vol. 1, No. 2, November 2004

Petri Nets on the Semantic Web – Guidelines and Infrastructure

ComSIS Vol. 1, No. 2, November 2004 151

programming and modeling, and computer architecture. He is also a
researcher at the GOOD OLD AI research group, Department of
Information Systems and Technologies, FON – School of Business
Administration, University of Belgrade where he is actively included in
several international (ProLearn NoE, ARIADNE) and national projects.
He has received his BSc, MSc, and PhD degrees from the University of
Belgrade in 2000, 2002, and 2004, respectively. His research interests
include Semantic Web, knowledge representation, Petri nets, intelligent
systems, XML-based knowledge sharing, learning technologies, and
software methodologies (MDA). So far, he has authored/co-authored more
than 70 research papers published in international and national journals
and conferences. He is a student member of the ACM.

