
UDC 681.3.06

Effectiveness of the User Interface Driven System
Design Using UML

Stevan Mrdalj1, Joseph Scazzero1, Vladan Jovanovic2

1 Eastern Michigan University
Department of Computer Information Systems

412 Owen, Ypsilanti, MI 48197, USA
(stevan.mrdalj, joseph.scazzero)@emich.edu

2 Georgia Southern University
Department of Computer Sciences

MPP ADD 3326, Statesboro, GA 30460, USA
vladan@georgiasouthern.edu

Abstract. The majority of research regarding the effectiveness of
object-oriented analysis and design (OOAD) is focused on a
comparison of object-oriented to traditional approaches that
highlights their relative strengths and weaknesses. There has been
less focus on improving OOAD on its own. The standardization of the
Unified Modeling Language (UML) creates an opportunity to focus
on improving the methods of developing UML diagrams. Design
quality can be a litmus test for overall system quality. Practice has
shown that designing user interfaces before domain modeling can be
used on a systematic basis to derive other UML diagrams for a large
class of interactive information systems. This empirical study
analyzed 43 OOAD projects to determine the effectiveness of the user
interface driven system design (UIDD) by calculating defect densities
for four UML diagrams. The study was performed on three levels:
individual type of defect, type of diagram and entire project.
Empirical results show that the UIDD consistently produced very
low defect densities on all three levels for projects that varied widely
with respect to application area, information system type, team
experience, and size.

1. Introduction

An important area in information systems research is the evaluation of
the effectiveness of object-oriented analysis and design (OOAD)
methodologies. If an information system has a flawed design, it is likely to
have other quality problems. Conversely, an effective design is likely to
enhance the quality of the system's other parts. To date, the majority of
the research is focused on a comparison of object-oriented to traditional

mailto:vladan@gasou.edu

Stevan Mrdalj, Joseph Scazzero, Vladan Jovanovic

methodologies that highlights their relative strengths and weaknesses.
The standardization of the Unified Modeling Language (UML) eliminates
disputes over using different variations of diagrams for the same purpose.
It also creates an opportunity to evaluate the effectiveness of the different
approaches used to create a certain type of UML diagram.

Most of the object-oriented design approaches/methodologies [10, 12, 16]
emphasize system decomposition into objects in the early analysis phase.
The noun phrase [2], conceptual class category list [13] and analysis
patterns [9] are commonly used techniques in the process of domain
modeling. All three techniques are used to make a list of candidate classes.
Larman [13] states, “It is better to over specify a domain model … than to
under specify it” as the usual guidelines in identifying conceptual classes.
Approaches like this require considerable effort to identify all the possible
classes during the early elaboration phase of the project and to verify if
they are all needed or if all needed classes are identified. Consequently, all
developed diagrams need to be refined using candidate classes which are
modified or eliminated. This verification concludes at the design phase
using detailed user interface (UI) design.

In order to eliminate the considerable refinement caused by candidate
classes, a user interface driven design (UIDD) approach [12] suggests
performing a detailed UI design before domain modeling and to use it as a
basis to identify classes and to develop all other diagrams. The user
interface driven design is certainly not new. Indeed, savvy developers [8,
10, 11, 14, 17] analyze the UI and convert it into data and code. This way,
the initial domain model will contain only the necessary classes and
interactions among them. Consequently, this approach is well suited for a
large class of interactive information systems that can be alternatively
categorized as systems with substantial externally visible behavior. An
initial domain model can be further refined to reflect various
nonfunctional requirements such as performance, expandability, and
maintainability. UIDD uses UML diagrams [2] since they are the de facto
industry-standard modeling notation for object-oriented development.

The objective of this paper is to empirically evaluate the effectiveness of
the UIDD approach in helping analysts convert user requirements into an
object-oriented specification of those requirements and to serve as a
foundation for improving OOAD using UML. We wanted to evaluate the
effectiveness of this approach by determining how correctly and how
consistently it produces UML diagrams. We also wanted to evaluate how
invariant the results are with respect to the application area, information
system type, team experience and size of a project. To answer these
questions, we conducted an in-depth evaluation of diagrams produced
using the UIDD. The study analyzed projects developed by senior-level
graduate students taking a required systems analysis and design class
over a period of seven semesters.

154 ComSIS Vol. 1, No. 2, November 2004

Effectiveness of the User Interface Driven System Design Using UML

Since there has been no systematic research on how to measure the
effectiveness of creating UML diagrams, we established a set of formally
defined defects for each type of diagram that could violate a well-specified
system design [3, 6, 18] and we used defect density [7] as a measurement
tool. Defect density, which measures the correctness of derived diagrams,
is an indicator of the effectiveness of the UIDD. Statistical tests of
hypotheses were performed on defect densities for the entire project, each
type of diagram and each type of defect within a diagram. We recognize
that the correctness of derived diagrams can only provide a partial answer
for effective OOAD. However, our objective is to test the benefit of the
UIDD approach in developing correct UML diagrams.

This paper is organized as follows. Section 2 reviews a UIDD approach
and its steps used in this study. Section 3 presents an approach for
measuring diagram derivation effectiveness. Section 4 describes our
empirical evaluation methodology. Section 5 contains the data analysis
and findings of our research. Section 6, addresses some of the potential
limitations of this study that are related to the research methodology.
Finally, the paper concludes with a discussion of the results.

2. User Interface Driven System Design Steps

The goal of UIDD is to minimize the possibility of overlooking UI
requirements by developing them early in the design process and by using
them as a basis for developing all other components of the system model.

Use Case Model

Interaction Model

User Interface
Model

State Model Class Model

Collaboration
Model

Fig. 1. System Model Dependencies

As Figure 1 shows, a UIDD process can be performed in different ways
by following the dependencies among packages. For the purpose of this

ComSIS Vol. 1, No. 2, November 2004 155

Stevan Mrdalj, Joseph Scazzero, Vladan Jovanovic

evaluation, we will assume that the Use Case Model and User Interface
Model are given as an initial user requirement from which we need to
develop a design model. The principles and the process of developing use
case diagrams, UI design as well as a detailed description of the UIDD can
be found, for example, in [15]. The design process described in this paper
uses the following steps.

2.1. Deriving Class Diagrams from User Interfaces

The subjects were instructed to use the following rules in deriving class
diagrams from the UI. The existence of a field on a dialog/Web page/report
meant that the data must either be an attribute of some object, the result
of some operation on an object or series of objects, or be calculated from
the attributes of an object(s). Existence of the data about different objects
on the same user interface means that those objects are related to each
other and results in an association between classes in the class diagram.
Initial multiplicities for such associations might be detected by the
occurrences of the related data (objects). The use of UI forms and reports
to capture requirements for database design are also demonstrated in [11].

2.2. Deriving Sequence Diagrams from the User Interface

The subjects were instructed to use sequence diagrams to formally
describe UI navigation by applying the following rules. Each form of
interaction with a use case requires an appropriate representation in the
sequence diagram. In other words, each interface prototype is associated
with a central view class and each window/dialog corresponds to a view
class. At the same time, the existence of each form means that there must
be a view class in the view class model. We use the view class/model name
to avoid confusion with interface classes from UML. Menu options or
buttons on screens typically trigger events sent either to a subsequent
screen/dialog or to the application. Omission of any of these classes can
cause omission of a large number of required operations for these classes.

The screen/dialog flows can lead to the definition of the interactions in
the sequence diagram. For each screen/dialog, all events generated
through its buttons and menus need to be captured by the appropriate
messages/events in a sequence diagram.

If a sequence diagram covers the interaction among business classes,
then each business class in a sequence diagram has to exist in the class
diagram. The fact that the object of one class sends a message to the object
of another class means that there needs to be an association between these
classes. The exception to this rule is the procedural relationship for
collaboration diagrams as described in the next section.

156 ComSIS Vol. 1, No. 2, November 2004

Effectiveness of the User Interface Driven System Design Using UML

2.3. Deriving Collaboration Diagrams from the User Interface

Since a collaboration diagram emphasizes the organization of the objects
that participate in an interaction, the subjects were instructed to use the
following rules in deriving collaboration diagrams from the UI. Each
<<business>> object from a collaboration diagram has a corresponding
class in a class diagram. Each link between two objects, that is not
otherwise stereotyped, has to correspond to an existing association in a
class diagram. The role names for those links and associations need to be
the same. A possible exception to this rule is the case of “procedural
relationships” in which there will be no explicit association between these
classes.

2.4. Deriving Statechart Diagrams from the User Interface

A statechart diagram can be attached to a class, a use case or even an
entire system to model their dynamic aspects. For the most part, it is used
for modeling the behavior of reactive objects whose behavior is best
characterized by their response to events dispatched from outside their
context. Therefore, such business objects and almost all view objects may
have associated statechart diagrams. In their projects, subjects were
instructed to use statecharts to formally represent user interaction with
each form in the given UI. They were also instructed to use statechart
diagrams for the most representative UI. In deriving statechart diagrams
from the UI, each independent event like data entry or button click needs
to be appropriately modeled as a transition in a statechart. The subjects
where encouraged to use composite states to model non-sequential
transitions. All operations that are listed as part of a transition
specification must also exist in the class diagram for the appropriate class.
The same principle applies for all operations listed as actions or activities
for the states. At the same time, role names used in a state chart must
correspond to the appropriate role names in a class diagram.

3. Measuring Diagram Derivation Effectiveness

3.1. Defect Density

A de facto standard measure of software quality is defect density.
Similarly, the effectiveness or ineffectiveness of UIDD can be determined
by the number of defects made in deriving the diagrams. Thus, defect

ComSIS Vol. 1, No. 2, November 2004 157

Stevan Mrdalj, Joseph Scazzero, Vladan Jovanovic

density (DD) will be used as a measure of diagram derivation quality
where:

casesuseofnumber
defectsknownofnumberDD =

(1)

Since we are evaluating the effectiveness of an object-oriented approach,
in our study we used the number of use cases as a relative measure of the
project size instead of a traditionally used measure such as KLOC [7]. We
computed three types of defect densities: 1) the defect density made within
the entire project (DDP); 2) the defect density made in deriving a
particular type of diagram (DDD) for all projects; and 3) the defect density
for a certain type of defect within a diagram (DDC) for all projects.

3.2. Types of Defects

We used empirically found defects to determine the correctness of each
type of diagram. Table 1 lists the types of defects found by type of
diagram.

Table 1. Types of Defects for Different Types of Diagrams

Type of Diagram
Class Sequence Collaboration Statechart

Missing a class Missing an object Missing an object Missing a state
Missing an
attribute

Missing an
operation

Missing a link Missing a
transition

Missing an
association

Missing a control
structure

Missing a message Missing a
start/end

Needless class Needless object Needless object Needless state
Needless
attribute

Incorrect object
name

Incorrect object
name

Needless
start/end state

Incorrect
multiplicities

Incorrect type of
the control
structure

Wrong order of
messages

Wrong
superstate name

Wrong class
name

Incorrect order of
the control
structure

Needless link Wrong state

Wrong
association name

Needless
message

Incorrect
message

Incorrect
superstate

Needless
associations

Wrong message Needless
transition

Ty
pe

 o
f D

ef
ec

t

Incorrect
aggregation

 Wrong
transition name

158 ComSIS Vol. 1, No. 2, November 2004

Effectiveness of the User Interface Driven System Design Using UML

Incorrect
inheritance

 Missing
superstate

Incorrect
attribute name

Missing
inheritance

Missing
aggregation

A diagram is correct when the above defects are not found for that type

of diagram. It is important to note that an analyst can develop multiple
diagrams of equal correctness. The correct design model does not assume
that there is one best way to model the system. In this paper, we are not
interested in comparing “equivalent” models but rather the effectiveness of
deriving diagrams using UIDD.

4. Evaluation Methodology

4.1. Evaluation Participants

The study analyzed 43 projects developed by a total of 211 senior-level
graduate students enrolled in a Master's of Science in Information
Systems program. The 43 projects were collected over a period of seven
semesters. Participants self-divided into teams that had an average size
of 4.9 students. Each team had to find a local business for which they had
to design an information system. There were no multiple projects for the
same company. No particular order was used to assign subjects to teams
and teams randomly selected their project application area. The duration
of the project was the entire semester. All teams used the same CASE tool
with minor differences due to different versions. While participants were
familiar with UML and the system domain, they could not be considered
experts in either area.

4.2. Evaluation Procedure

During project development, all diagrams were cross-checked at each
delivery point of the model. Students were allowed to revise their
diagrams until their final project submission at the end of the semester.
At the end of each semester, each project was evaluated by an instructor,
who has extensive experience in OOAD and UML and has numerous
publications in this area. To increase validity, a second evaluator who is

ComSIS Vol. 1, No. 2, November 2004 159

Stevan Mrdalj, Joseph Scazzero, Vladan Jovanovic

well trained in UML independently scored defects of all projects. This
evaluation consisted of counting the number of participating concepts in a
given diagram and the number of defects. Seven projects were used in a
pilot evaluation. Minor changes were made to the evaluation instrument
based on the feedback from the pilot study.

To determine if any UML diagram had a defect, an external view of the
UI was used as a reference point to evaluate the diagrams. The emphasis
was given to the ability to “evaluate by scenario” [4]. Each defect was
appropriately marked and reviewed by both evaluators. Any differences
between evaluators with respect to a defect, which occurred infrequently,
were discussed until a consensus was reached. It should be noted that the
first evaluations were conducted without knowledge that this study would
be conducted later.

4.3. Evaluation Instruments

In order to tabulate defects, scoring tables were developed for each of the
diagrams. Figure 2 shows the layout of the scoring table for class
diagrams. The scoring tables for other diagrams have a similar format
with columns named for the concepts associated with that type of diagram.
These tables were used by second evaluator.

Class Attribute

A
ss

oc
i

at
io

n

M
ul

tip
lic

ity

In
he

ri
ta

nc
e

A
gg

re
ga

tio
n/

C

om
po

s
iti

on

N
um

be
r

W
ro

ng
 n

am
e

M
is

si
ng

N

ee
dl

es
s

N
um

be
r

W
ro

ng
 n

am
e

M
is

si
ng

N

ee
dl

es
s

N
um

be
r

W
ro

ng
 n

am
e

M
is

si
ng

N

ee
dl

es
s

N
um

be
r

In
co

rr
ec

t
N

um
be

r
M

is
si

ng

In
co

rr
ec

t
N

um
be

r
M

is
si

ng

In
co

rr
ec

t

2 3 1 2 4 1
4 1 8 11 22 1
4 9 10 20 1 1 1
2 7 1 1 2

Fig. 2. Scoring Table for Class Diagram

160 ComSIS Vol. 1, No. 2, November 2004

Effectiveness of the User Interface Driven System Design Using UML

5. Data Analysis and Findings

As mentioned earlier, the students that participated in this case study
handed in a total of 43 final projects. Descriptive statistics were obtained
for these 43 projects on their characteristics and their defect densities. The
projects averaged 11.5 use cases, 6.0 actors, 16.3 interactions, 1.3 includes,
1.1 extends, and 0.4 inheritances. The number of use cases per project
showed an almost uniform distribution, ranging from 6 to 19 use cases per
project.

The projects had a total of 557 class diagrams, resulting in an average
of 13.0 diagrams per project. The class diagrams had an average of 8.8
classes and 13.6 associations. There were a total of 483 sequence
diagrams, averaging 11.2 diagrams per project. Each sequence diagram
had on average 4.1 objects and 17.3 operations/messages. We examined a
total of 108 collaboration diagrams, an average of 2.5 diagrams per project.
The smaller number of collaboration diagrams relative to the number of
sequence diagrams is a result of the subjects’ selection preference among
comparable tools. The collaboration diagrams averaged 4.7 objects, 4.8
links, and 7.0 operations/messages. Subjects developed a total of 68
statechart diagrams, an average of 1.6 diagrams per project, where each
statechart diagram averaged 7.1 states and 11.2 transitions/events.

The most important indication of the effectiveness of the UIDD is how
correct the produced diagrams are. The correctness of the diagrams is
demonstrated by the low defect density for each type of diagram (DDD) as
shown by the boxplots in Figure 3. Boxplots are used to show the
distributional characteristics of DDD. The line in the box is drawn at the
median while the bottom of the box is at the first quartile (25th percentile)
and the top of the box is at the third quartile (75th percentile). Points
outside the lines from the box are considered outliers and are indicated by
asterisks.

ComSIS Vol. 1, No. 2, November 2004 161

Stevan Mrdalj, Joseph Scazzero, Vladan Jovanovic

Fig. 3. Boxplots of Defect Density Values by Type of Diagram

It is extremely difficult to asses the goodness of the obtained results
since the authors are not aware of any similar study and therefore are
unable to perform real comparisons. For illustration purposes, we used the
quantitative targets for managing US defense projects1 [5], according to
which an effective design method should produce a defect density that is
less than 4, whereas an ineffective method produces a defect density that
is greater than 7. As seen in this figure, all diagrams are well within the
effective level even though class diagram had one outlier project that was
outside the effective range but still below the ineffective level.

Another indication of the effectiveness of the UIDD is the low defect
densities for the individual types of defects (DDC) within each diagram.
The average DDC found in class diagrams, sequence diagrams,
collaboration diagrams, and statechart diagrams are given in the Tables 2
through 5 below. The types of defects are ordered in the decreasing order
of their average defect densities. It should be noted that these low defect
densities were achieved for projects that varied widely with respect to
application area, system types, and size.

Table 2. Average Defect Density by Type of Defect in Class Diagrams

Type of Defect Average DDC
Incorrect multiplicities 0.528
Needless associations 0.122
Missing an association 0.114
Wrong class name 0.078

1 It is important to point out that US defense department projects differ considerably in

nature from the projects used in this study and that they tend to be extremely complex.

162 ComSIS Vol. 1, No. 2, November 2004

Effectiveness of the User Interface Driven System Design Using UML

Wrong association name 0.066
Needless class 0.060
Missing a class 0.056
Needless attribute 0.037
Missing an attribute 0.021
Incorrect inheritance 0.021
Incorrect aggregation 0.014
Incorrect attribute name 0.003
Missing aggregation 0.003
Missing inheritance 0.002

ComSIS Vol. 1, No. 2, November 2004 163

Stevan Mrdalj, Joseph Scazzero, Vladan Jovanovic

Table 3. Average Defect Density by Type of Defect in Sequence Diagrams

Type of Defect Average DDC
Wrong message 0.209
Needless message 0.116
Missing an operation 0.090
Needless object 0.035
Missing an object 0.020
Incorrect order of the control structure 0.019
Incorrect object name 0.018
Missing a control structure 0.010
Incorrect type of the control structure 0.003

Table 4. Average Defect Density by Type of Defect in Collaboration Diagrams

Type of Defect Average DDC
Incorrect message 0.045
Wrong order of messages 0.040
Missing a link 0.034
Missing an object 0.028
Missing a message 0.027
Needless object 0.015
Incorrect object name 0.010
Needless link 0.005

Table 5. Average Defect Density by Type of Defect in Statechart Diagrams

Type of Defect Average DDC
Wrong transition name 0.019
Needless transition 0.014
Incorrect superstate 0.012
Missing a transition 0.010
Wrong state 0.010
Needless state 0.007
Missing a state 0.004
Needless start/end state 0.003
Missing superstate 0.002
Missing a start/end 0.000
Wrong superstate name 0.000

164 ComSIS Vol. 1, No. 2, November 2004

Effectiveness of the User Interface Driven System Design Using UML

Such very low average defect densities for all types of defects in the
class diagrams seem to support the effectiveness of the UIDD approach.
These defect densities certainly compare favorably to the average grades,
ranging from 1.7 to 2.2 on the scale of 0 (lowest) to 4 (highest), obtained
through reverse engineering for 42 case studies involving database design
and modeling [1].

5.1. Consistency of the UIDD with Respect to the Application Area and
System Type

As we mentioned before, we wanted to determine if the UIDD consistently
produced the low defect densities shown above regardless of application
area, information system type or implementation environment. UIDD can
be considered consistent for a diagram or defect if the average defect
density for that diagram or defect was the same over time, i.e., across the
seven semesters of the study. Thus, in order to determine if the UIDD is
consistent for class diagrams, the following hypothesis was tested:

H10: The average defect density for class diagrams is the same across

semesters.

H11: H10 not true.

We used one-way analysis of variance (ANOVA) for testing H10.

Specifically, ANOVA tests for the equality of the population average defect
density for class diagrams across semesters. Based on the ANOVA results
for class diagrams shown in Table 6, we do not reject H10 for α = 0.01 and
conclude that the UIDD produces consistent results for class diagrams.
Similarly, we also conclude that the UIDD produces consistent results for
sequence, collaboration, and statechart diagrams.

Table 6. ANOVA Results for Testing the Eqality of the Average DDD Across
Semesters

Diagram F(6,36) p-value
Class Diagram 1.04 0.419
Sequence Diagram 1.43 0.230
Collaboration Diagram 2.83 0.023
Statechart Diagram 2.89 0.021

Another way to asses the effectiveness of the UIDD is to consider

confidence intervals for the average defect density (DDD) for each type of
diagram. The 95% confidence interval for the average DDD for class

ComSIS Vol. 1, No. 2, November 2004 165

Stevan Mrdalj, Joseph Scazzero, Vladan Jovanovic

diagrams is between 0.84 and 1.43, for sequence diagrams between 0.30
and 0.70, for collaboration diagrams between 0.12 and 0.29, and for
statechart diagrams between 0.04 and 0.13. Thus, we can conclude that
the UIDD consistently produces very low average defect densities for all
four types of diagrams regardless of application area, information system
type or implementation environment.

Next, we wanted to determine if the UIDD is consistent with respect to
the types of defects associated with each type of diagram presented in
Tables 2 through 5. Table 7 shows the ANOVA results for testing the
equality of the average DDC across semesters by type of defect in class
diagrams shown in Table 2. For example, for the first type of defect in
Table 7, the hypothesis is:

H20: The average defect density of missing classes in class diagrams is

the same across semesters.

H21: H20 not true.

Table 7. ANOVA Results for Testing the Eqality of the Average DDC Across
Semesters by Type of Defect in Class Diagrams

Type of Defect F(6, 36) p-value

Missing a class 0.69 0.657
Missing an attribute 2.30 0.056
Missing an association 0.29 0.939
Needless class 0.92 0.492
Needless attribute 1.84 0.118
Incorrect multiplicities 2.91 0.020
Wrong class name 1.46 0.219
Wrong association name 0.67 0.677
Needless associations 1.49 0.211
Incorrect aggregation 0.60 0.729
Incorrect inheritance 0.77 0.601
Incorrect attribute name 0.39 0.880
Missing inheritance 0.59 0.734
Missing aggregation 1.03 0.420

Based on F = 0.69 with a p-value of 0.657, H20 would not be rejected for

α = 0.01. Thus, we conclude that the UIDD consistently produces low
average defect density with respect to missing classes in class diagrams.
Similarly, consistency was found to exist for the other types of defects in
class diagrams listed in Table 7. This implies that the UIDD produces
consistent average DDC for all types of defects in class diagrams. However,

166 ComSIS Vol. 1, No. 2, November 2004

Effectiveness of the User Interface Driven System Design Using UML

an in-depth examination of the data showed that for α = 0.05, there is a
significant difference across semesters for the incorrect derivation of
multiplicities. This indicates that a more comprehensive study is needed
to improve directions (procedures) for deriving multiplicities in the UIDD.

The equality of the average DDC across semesters was also tested for all
types of defects in sequence diagrams. Table 8 shows the ANOVA results
for these tests.

Table 8. ANOVA Results for Testing the Eqality of the Average DDC Across
Semesters by Type of Defect in Sequence Diagrams

Type of Defect F (6, 36) p-value
Missing an object 1.21 0.325
Missing an operation 2.57 0.036
Missing a control structure 1.21 0.322
Needless object 1.92 0.105
Incorrect object name 0.97 0.461
Incorrect type of the control
structure

2.79 0.025

Incorrect order of the control
structure

2.23 0.038

Needless message 4.58 0.001*
Wrong message 1.27 0.294
*Significant at α = 0.01

For α = 0.01, we can conclude that consistency exists for each type of

defect in sequence diagrams except for the deriving of needless messages.
The significant difference between averages for this defect was primarily
due to a higher average of "needless messages" in the first two semesters.
This was corrected by improved derivation procedure in subsequent
semesters. Thus, except for this one type of defect, the average number of
defects does not change across semesters for sequence diagrams.
Similarly, for α = 0.01, the UIDD was also consistent for each type of
defect in collaboration and statechart diagrams.

5.2. Invariance of the UIDD with respect to the size of the project

The size of projects in this study ranged from 6 to 19 use cases per project.
We also wanted to determine if the UIDD is invariant with respect to
project size. The UIDD can be considered invariant for a diagram or defect
if no relationship exists between defect densities for that diagram or defect
and size of project where size is measured by the number of use cases in
the project. In other words, invariance implies that the defect density for a

ComSIS Vol. 1, No. 2, November 2004 167

Stevan Mrdalj, Joseph Scazzero, Vladan Jovanovic

diagram or defect does not change as the size of the project increases. In
order to determine if the UIDD is invariant for class diagrams, the
following hypothesis was tested:

H30: No linear relationship exists between defect density for class

diagrams and number of use cases

H31: A linear relationship exists between defect density for class

diagrams and number of use cases

The sample Pearson product moment correlation coefficient r, which

measures the strength of the linear relationship between two variables,
was used to test the above hypothesis. It should be noted that only tests
for linear relationships were necessary since an examination of the scatter
plots showed that only linear relationships were present between the
defect density for a particular diagram (DDD) and the number of use cases.
Based on the class diagram p-value in Table 9, we would not reject H30 for
α = 0.01 and conclude that the UIDD is invariant for class diagrams or
that the defect density for class diagrams does not change as the size of
the project increases. Similarly, we also found that the defect density for
sequence, collaboration, and statechart diagrams does not change as the
size of the project increases.

Table 9. ANOVA Results for Testing the Relationship Between DDD and Numbr of
Use Cases

Type of Diagram r p-value
Class Diagram -0.36 0.018
Sequence Diagram 0.17 0.275
Collaboration Diagram 0.23 0.140
Statechart Diagram 0.054 0.732

Similar tests of hypothesis showed that the UIDD was invariant for

each type of defect found in these diagrams, i.e., no linear relationship was
found between the defect density for each type of defect, DDC, and the
number of use cases. Thus, we can conclude that the derivation of all type
of diagrams using the UIDD is invariant with respect to project size.

5.3. Overall Project Level Effectiveness

A measure of overall project level effectiveness is the defect density for the
entire project, DDP, which can be defined as the total number of defects
found in all diagrams divided by the number of use cases in the project.

168 ComSIS Vol. 1, No. 2, November 2004

Effectiveness of the User Interface Driven System Design Using UML

Equivalently, the project defect density is equal to the sum of the
individual densities discussed earlier, i.e., the sum of defect densities for
the class diagram, sequence diagram, collaboration diagram, and
statechart diagram.

The overall effectiveness of the derivation of all diagrams using UIDD
within a project is illustrated by the boxplot in Figure 4.

Fig. 4. Boxplot of DDP values

The average project defect density was the same across all semesters
(F(6,36) = 1.19, p-value = 0.334) so the UIDD was consistent for all
projects with respect to application area, information system type, and
implementation environment. The 95% confidence interval for the average
project defect density is between 1.56 and 2.29. The project defect density
did not change as the size of the project increased (r = -0.13, p-value =
0.400) so the UIDD is also invariant with respect to the DDP and project
size.

6. Limitations

The main purpose of this study is to evaluate the effectiveness of the
UIDD. This study would be incomplete without an examination of the
limitations of its research method.

In calculating defect densities, we used the defects found in the design
phase of the SDLC versus the defects found in an operational system.
Since the absence of defects in the system design does not guarantee
correct system operation, the operational defect densities might differ from
our results.

ComSIS Vol. 1, No. 2, November 2004 169

Stevan Mrdalj, Joseph Scazzero, Vladan Jovanovic

The scope of this study may limit the generalization of results with
respect to the complexity of the systems. The limitation of the presented
results may come from the fact that use cases vary widely in their
complexity, which we did not explicitly address in this study. One possible
indication of the use case complexity is the complexity of the associated
sequence diagram. Nevertheless, the results suggest that there is no
significant difference in the defect density for the use cases whose
associated sequence diagrams had from 1 to 22 classes, from 2 to 101
messages and from 1 to 48 control structures. Despite these results, which
suggest UIDD’s scalability, further investigation is necessary to validate
these results for much larger systems that have varying degrees of
complexity for their use cases.

This study did not measure inter-rater reliability, since there were very
few disagreements with respect to defects during the pilot evaluation. One
area of disagreement was in the categorization of the defects, which was
resolved during the pilot evaluation process. Thus, because of the
extremely low rate of disagreements between evaluators, we decided not to
perform an inter-rater reliability study for the full project.

The use of students in a research study may limit the potential
applicability of its results. In our opinion, considering the nature of the
UIDD process, it can be expected that professionals with experience in
OOAD and UML should produce even fewer defects and therefore, that
would not undermine the conclusions of this study.

7. Conclusions

The system design quality is undeniably a good indicator of application
quality. The purpose of this paper is to examine the effectiveness of the
user interface driven design (UIDD) as a basis for developing class,
sequence, collaboration and state diagrams. This paper used defect density
(number of known defects per use case) to measure the effectiveness of the
UIDD in diagram derivation. We analyzed empirical project data in this
paper on three levels: individual type of defect, type of diagram and entire
project. The very low defect densities for individual defects, individual
diagrams and entire projects indicate that the UIDD produces a good
quality design.

Based on ANOVA tests, the UIDD consistently produces low defect
densities on all levels (project, diagram and individual defect) regardless
of the application area, information system type and implementation
environment. Lastly, based on correlation tests, we also conclude that the
UIDD is invariant with respect to the tested project sizes for all three
levels of study.

170 ComSIS Vol. 1, No. 2, November 2004

Effectiveness of the User Interface Driven System Design Using UML

We believe that our results have strong implications for
educators/practitioners involved in selecting a system development
process. We consider the main benefits of the UIDD to be its wide
applicability to various types of businesses (no major differences among
types of projects) and its wide applicability to a variety of UML diagrams
(no major differences in correctness among types of diagrams).

The limitations of this study point to directions in which the research
presented here can be extended by future investigations. First, similar
studies can be conducted for other object-oriented design approaches. The
effectiveness of these approaches can then be compared with the UIDD.
Second, further investigation is necessary to consider the complexity of a
project's use cases. Third, performing a similar study with practitioners
would be extremely valuable since their effectiveness with UIDD may
differ from that found in an academic environment.

References

1. Blaha, M.: A Copper Bullet for Software Quality Improvement. IEEE

Computer, Vol. 37, No. 2, 21-25. (2004)
2. Booch, G. Rumbaugh, J. and Jacobson, I. The Unified Modeling Language

User Guide, Addison-Wesley, Reading, MA, USA (1998)
3. Chidamber, S.R., and Kemerer, C.F.: A Metrics Suite for Object-Oriented

Design. IEEE Transaction on Software Engineering Vol.20, No.6, 476-493.
(1994)

4. Code, P. and Yourdon, E.: Object-oriented analysis, 2nd ed. Yourdon Press,
Englewood Cliffs, NJ, USA (1991)

5. Department of the Navy (US): Software Program Managers Network.
NetFocus, No. 207, January. (1995)

6. Dromney, R.G.: Cornering the Chimera. IEEE Software Vol.13, No.1, 33-43.
(1996)

7. Fenton, N.F. and Pfleeger, S.L.: Software Metrics: A Rigorous & Practical
Approach, 2nd ed. PSW, London, UK. (1996)

8. Fertuck, L.: System Analysis and Design: With Modern Methods. Wm. C.
Brown Comm., Dubuque, Iowa, USA. (1995)

9. Fowler, M.: Analysis Patterns: Reusable Object models. Addison-Wesley,
Reading, MA, USA. (1997)

10. Gossain, S.: Tracking Requirements in Object Development: Part II. Report on
Object Analysis and Design, Vol.2, No.3, 18-19,55. (1995)

11. Jovanovic, V. and Mrdalj, S.” Three-Layered Approach to the Analysis of
Forms and Transactions. In Proceedings of the IAMM Conference, Dallas, TX,
USA, 141-148. (1990)

12. Kruchten, P.: Rational Unified Process, 2nd ed., Addison-Wesley, Reading, MA,
USA. (2000)

13. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design, Prentice Hall, Upper Saddle River, NJ, USA. (1988)

14. Lee, H., Yoo, C.: A Form Driven Object-Oriented Reverse Engineering
Methodology. Information Systems, Vol. 25, No. 3, 235-259. (2000)

ComSIS Vol. 1, No. 2, November 2004 171

Stevan Mrdalj, Joseph Scazzero, Vladan Jovanovic

172 ComSIS Vol. 1, No. 2, November 2004

15. Mrdalj, S. and Jovanovic, V.: User Interface Driven System Design. Issues in
Information Systems Vol.3, No.1, 441-774. (2002)

16. Rosenberg D.: Use Case Driven Object Modeling with UML. Addison-Wesley,
Reading, MA, USA. (1999)

17. Van Hartman M., editor: Object Modeling and User Interface Design, Addison-
Wesley, Reading, MA, USA. (2001)

18. Wand, Y. and Weber, R.: A Model of Systems Decomposition. In Proceedings of
the Tenth International Conference on Information Systems, Boston, MA,
USA, 42-51. (1989)

Stevan Mrdalj is a Full Professor of Computer Information Systems at
Eastern Michigan University, USA. He received his Ph.D. in
information systems from the University of Belgrade, Serbia and
Montenegro. He is a member of ACM, AIS and IEEE. His research
interests are in the areas of framework based enterprise architecture,
user interface driven system development and design patterns. He has
written numerous articles in the area of object-oriented system
development.

Joseph A. Scazzero is an Associate Professor of Decision Sciences in
the Department of Commuter Information Systems at Eastern
Michigan University, USA. His research interests include experimental
design, quality control, and software engineering. His publications have
appeared in Communications in Statistics, Information & Management,
Journal of Statistical Planning and Inference, International Journal of
Quality and Reliability Management, Total Quality Management, and
Information Systems Management Journal. He has also has worked in
private industry and the federal government as a statistician. Professor
Scazzero received a Ph.D. (Applied Statistics) and M.A. (Statistics) from
The Pennsylvania State University, M.S. (Computer Science) from
Johns Hopkins University, and A.B. (Mathematics) from Rutgers
College.

Vladan Jovanovic is currently a Professor of Computer Sciences at the
Georgia Southern University, USA. He obtained a Ph.D. from the
University of Belgrade, Serbia and Montenegro in 1982. Dr. Jovanovic
is a member of the IEEE, ACM, AIS, and NY Academy of Sciences. He
is (co-)author of six books and 28 journal articles. His research interests
focus on the information and software systems design and management.
His major contributions are in the areas of design methodology and
curriculum development in all fields of information technology. He is
actively involved in writing IEEE Software Engineering Standards and
the establishment of ASQ Software Quality Engineering Certification.

	Introduction
	User Interface Driven System Design Steps
	Deriving Class Diagrams from User Interfaces
	Deriving Sequence Diagrams from the User Interface
	Deriving Collaboration Diagrams from the User Interface
	Deriving Statechart Diagrams from the User Interface

	Measuring Diagram Derivation Effectiveness
	Defect Density
	Types of Defects

	Evaluation Methodology
	Evaluation Participants
	Evaluation Procedure
	Evaluation Instruments

	Data Analysis and Findings
	Consistency of the UIDD with Respect to the Application Area and System Type
	Invariance of the UIDD with respect to the size of the project
	Overall Project Level Effectiveness

	Limitations
	Conclusions

