
UDC 004.4’4

A Structure Editor for the Program Composing
Assistant

Zorica Suvajdžin, Miroslav Hajduković

Faculty of Technical Sciences, Computing and Control Department,
Trg D. Obradovića 6, 21000 Novi Sad, Serbia and Montenegro

tweety@uns.ns.ac.yu, hajduk@uns.ns.ac.yu

Abstract. The Program Composing Assistant is an interactive generic
development environment dedicated to programming languages. It
provides a structure editor with graphical user interface as a main
feature. The structure editor is based on an intuitive approach, and aims
to integrate important practical aspects of structure editing.

1. Introduction

There is a long history of research on ways to enhance the quality of software
development and increase the productivity of developers [30], [10], [11]. One
result of this research is a variety of different software development
environments with (language-based) structure editors as a component.
Despite all this research, there is no structure editor in widespread, every day
use. Therefore, there is a need for more effort in this direction. The
PROGRAM COMPOSING ASSISTANT (PROCOMPASS) is a programming
environment originating from one such effort. A central component of this
environment is a structure editor. The PRO-COMPASS editor is described in
this paper.

The PROCOMPASS editor offers a unified user interface aimed at supporting
structured but still flexible syntax-oriented editing of program text with equal
treatment of all programming language elements (e.g. expressions and
statements). The consequences of using the editor are (1) no need of a full
command of the programming language syntax, (2) the opportunity for serious
reduction of syntactic (and semantic) errors and (3) an increase in the
programmer's productivity. The first two points are probably more important
for beginner and non-professional programmers; the third one is important for
professional programmers.

Section 2 of the paper introduces structure editors, and discusses related
work. Then, section 3 shows examples of the usage of the PROCOMPASS
editor. Section 4 gives features of the PROCOMPASS editor. Its internal
representation, implementation and specification of the input follow next. The
conclusion discusses distinguishing characteristics of the PROCOMPASS editor.

Zorica Suvajdžin, Miroslav Hajduković

66 ComSIS Vol. 3, No. 1, June 2006

2. Overview and Related Work

From the standpoint of syntax-oriented editing of program code, there are
three kinds of editors depending on the way a user interacts with them. If a
user changes the text, which is then parsed by an external tool to derive the
corresponding syntax tree, the editor is said to be a text editor. If a user
changes the tree, which is then pretty-printed to derive the corresponding text,
the editor is a structure editor. If the user is allowed to change either the text
or the tree, the editor is said to be a hybrid editor [4], [19].

Structure-oriented program editing environments support the concept of
direct structure manipulation. The user interacts directly with program
constructs and avoids the tedium of remembering the details of the syntax.
While program text is displayed on the screen, the user directly modifies the
underlying structure.

A structure editor provides editing operations only on structural elements
and does not permit the user to construct syntactically incorrect programs. A
problem with several structure-based editors is that they force a top-down
approach to entering text, corresponding to a pre-order traversal of the
abstract syntax tree. This inhibits a natural mode of entering text and can
make certain changes difficult. For example, from the earliest days of
structure editors, users have complained about awkwardness of entering
expressions with infix operators. To illustrate this, consider the expression
(example taken from [26])
a * b + c * d

It takes just 7 insertions actions, each invoked by a single keystroke, to
enter this expression in an ordinary text editor. In a simple-minded structure
editor, these elementary insertions are interspersed with tree navigation
commands. The keystroke sequence might look something like this:

+ ↓ * ↓ A → B ↑ → * ↓ C → D

(where ↓, → and ↑ respectively navigate downwards to the first child,
rightwards to the next sibling, and upwards to the parent).

The usual solution to the awkwardness of making modifications while
respecting the structure of the abstract syntax tree is a hybrid approach, in
which the editor supports both structure-based and unstructured operations.
The user enters program fragments as text and asks the environment to
complete the processing as far as possible. Using incremental parsing
techniques, the environment converts the text fragment into a program
structure. In most hybrid systems, the user can switch between two edit
modes: structured and unstructured. These two modes are radically different,
and in the unstructured mode all advantages of the structured approach are
lost. Another approach is to let the choice between the two modes be
determined automatically by the grammatical type of the portion of text; below
a certain level the tree nodes consist of unstructured text. The hybrid
approach, in both forms, violates the requirement of modelessness.

A Structure Editor for the Program Composing Assistant

ComSIS Vol. 3, No. 1, June 2006 67

A structure editor is an inevitable component, and usually the main feature,
of program editing environments that are automatically generated from formal
language specifications. Most such systems use abstract syntax trees as the
internal storage format for programs. The way programs can be entered
depends on the kind of editor [31].

The Mentor and Centaur [5] systems generate environments with a
structure editor. The user is also allowed to edit textually, by selecting a
subtree in the structure editor and invoking a "text-edit" command. After
editing the text, the user has to invoke a "parse" command which parses the
changed text and replaces the selected subtree.

The successor of the Cornell Program Synthesizer, the Synthesizer
Generator [28], is probably the most widespread system for generating
programming environments. Generated environments include hybrid editors,
in which, switching from text editing to structure editing or vice versa is
implicit. More than one textual selection within the same editor is allowed.
Which language constructs can be edited in what mode (i.e., textually,
structurally, or both) is defined by editing rules.

Another system aiming at the generation of programming environments is
PSG (Programming System Generator) [3]. PSG generated editors are of the
hybrid kind. Switching from structure mode to text mode is implicit, but the
reverse is explicit. There can be more than one textual selection within the
same editor.

What differentiates the ASF + SDF Meta-environment (Algebraic
Specification Formalism plus Syntax Definition Formalism) [6], [7] from other
systems is the fact that the same editor is used both for editing language
definitions and for editing programs. Its editors are of the hybrid kind.
Pan [4] is an editing and browsing system. Pan tried to find the middle ground
in the lexical representation between a simple user model that supports pure
textual editing and a rich structural representation that supports structure
editing. It permits unrestricted text editing, performs full incremental language
analysis on demand and provides feedback.

SmartTools [2], [23] is a semantic framework generator. Given extended
abstract syntax (AST) definitions of a language, SmartTools can automatically
generate a structured editor specific to the language. SmartTools can build
and display one or more views of the program.

There are many other systems and editors, like Gem-Mex [1], GSE
(Generic Syntax-directed Editor) [18], ASE (Agora Structure Editor) [14] and
the ABC structure editor [22]. The concept of structure editing is applicable to
both program editors and graphic editors [25], [29].

Although the work reviewed above show that structure editors are a subject
of interest, there is no structure editor at the moment that is widely spread and
applied practically. There are some text-based programming environments in
contemporary use (for example, Eclipse [32]) that offer some sort of structure-
like editing, but only to a small extent.

We have evaluated several structure-oriented editors [5], [18], [28], [14],
[23], [22]. The evaluation was not an easy task, for two reasons. First,
implementations of these editors are not made public and are not executable

Zorica Suvajdžin, Miroslav Hajduković

68 ComSIS Vol. 3, No. 1, June 2006

on every platform. Second, many documents describe the editor design, but
fail to describe the user interface (how the editor looks and feels on the
outside). The evaluation has been based on several reports for each editor.
From the evaluation it is clear that the design of present structure-oriented
editors leaves room for improvements; our major objective was to tackle the
problems suffered by existing structure-oriented editors.

Therefore, the PROCOMPASS structure editor follows an intuitive approach.
It aims to include the features from traditional structure editors that are of
clear benefit to the programmer. It is designed to be purely structural, which
means it does not have separate structural and textual editing modes: textual
editing is used only for entering lexical structures, and is smoothly integrated
into structure editing. Editing of each structure follows the same principle. This
means that expressions can be edited as easily as any other program
structure. PROCOMPASS is designed to offer a readily accessible everyday tool
for the ordinary user and, at least at the beginning, is targeted at novice and
non-professional programmers.

3. PROCOMPASS Editing

The PROCOMPASS editor enables a user to form a complex structure by putting
together simpler components. Composing the complex structure from simpler
components is basically done by combining some of the following possible
actions:

1. moving through the structure to mark an existing component,
2. inserting a new component (before or after the marked one),
3. modifying the marked component,
4. removing the marked component, or
5. structural transformation (refactoring) of the marked component.
The composition process is a recursive one, as each individual component

can be a complex structure, composed of simpler components.
For example, a C variable definition statement consists of the variable type,

the variable name and a possible variable initial value in the form of
expression:
int a = 0;

Such statements may be represented as a template. The C variable definition
template contains fields for the variable type, the variable name and the
variable initial value. The first two template fields are mandatory and the third
is optional. A template is empty if all of its fields are empty (containing
question marks). Filling the fields of a template is done by substituting
question marks with the suitable content. A template is filled when all of its
fields are filled. A template is half-full when at least one of its fields is empty
(contains a question mark).

The composition process is restricted by the syntactic and semantic rules
of the language. The PROCOMPASS editor helps in applying these rules by

A Structure Editor for the Program Composing Assistant

ComSIS Vol. 3, No. 1, June 2006 69

offering a subset of possible operations at each step of a composition process
and by accepting only operations from the offered subset. The subset of
permitted operations is context dependent. For example, insertion after a
marked component is allowed only when that will not affect the correctness of
the entire structure. The same applies to removing the marked component.
Modifying the marked component is dependent both on the context and on the
component itself — different components allow different kinds of
modifications. The composition process rules depend on the structure being
formed.

The following text contains a few simple examples with the intention of
emphasizing the way of interaction between the user and the editor (more
complex example(s) would probably blur the idea to some extent).

Operations applicable to a template are insertion, modification, deletion and
structural transformation. In the following text, the first three operations are
shown through examples.

Suppose that a variable definition template is filled with the variable type
int and the variable name a, and that the optional field denoting the
variable’s initial value is not present. If the field denoting the variable name is
selected, pressing the insert key starts the insertion operation that adds the
optional terminal field of the variable’s initial value (Fig. 1).

int a ;

int a = ? ;

before insertion after insertion

Fig. 1. Insertion example

At this point we can demonstrate the modification operation in the content
of the terminal field of the variable’s initial value (Fig. 2). This operation is
invoked when the user presses the enter key. The modification operation
starts by showing the lexical dialog, intended to accept text from the user. The
text must match the regular expression attached to this field. If the matching is
successful, the entered text becomes the new content of this field.

int a = ? ;

int a = ? 1 int a = 1 ;

before modification during the modification after modification

Fig. 2. Modification example

To delete the variable’s initial value field, the user presses the delete key (Fig.
3).

int a = 1 ;

int a ;

before deletion after deletion

Fig. 3. The first deletion example

Applying the deletion operation on the variable name component will not
have the same effect as on the variable initial value component (Fig. 4)

Zorica Suvajdžin, Miroslav Hajduković

70 ComSIS Vol. 3, No. 1, June 2006

because the deletion operation is context dependent, and has different
meanings when applied to an optional field and to a mandatory field. The
variable initial value field was completely removed because it was optional,
but the variable name field is mandatory and the deletion operation will
remove only its content.

int a ;

int ? ;

before deletion after deletion

Fig. 4. The second deletion example

The continuing example shows that expression editing is as easy as editing
of any other program structure. The example assumes that the grammar
defines an initial value as an expression that can contain one of the four most
commonly used binary operators (+, -, * and /).

The insertion operation on a marked terminal field of the variable’s initial
value adds two fields: the first one for an operator and the second one for the
second operand (Fig. 5). After insertion the cursor automatically moves to the
next field to be edited, that is, the operator field.

int a = 1 ;

int a = 1 ? ? ;

before insertion after insertion

Fig. 5. The expression editing example

The modification operation at this point (Fig. 6) shows the semantic dialog
(which hides the second operand field). The dialog has two parts: the lower
part contains all the possible options (all applicable operators, in this example)
that the marked field can contain, and the upper part accepts text from a user
in order to choose one of the options showed in the lower part. The selected
alternative becomes the new content of this field. After modification, the
cursor automatically moves to the next field to be edited, that is, the second
operand field. Then, the content of this field is modified.

int a = 1 ?
+
-
*
/

int a = 1 + ? ;

int a = 1 + 2 ;

during modification
of the operator field

before modification of
the second operand field

after the
modification

Fig. 6. The expression editing example (continued)

A structural transformation is a relation between two structural templates.
One is a source template that specifies what program fragment the
transformation is applicable to; the other is a destination template that

A Structure Editor for the Program Composing Assistant

ComSIS Vol. 3, No. 1, June 2006 71

specifies what the source looks like after transformation. Transformation is
done by replacing the marked source template by the destination template in
a way that contents of some fields of the source template are used as
contents of the fields of the destination template. For example, an if
statement (source template) can be transformed into a while statement
(destination template). It is done by replacing the if statement with a fresh
while template that contains a condition field and body statements from the
if statement.

Structural transformation is user-defined. A simple (meta) language is
provided to describe structural transformation. This language contains rules.
One such rule contains information about source and destination structure,
and the relationship between their substructures.

4. PROCOMPASS Guiding Design Principles

The main goal of the PROCOMPASS structure editor was to increase users’
productivity without giving up the user friendly interface. To achieve this,
editor needs to offer a wide set of editing services, high quality visualization,
and customizability [12].

The PROCOMPASS structure editor implemented all of the proven interaction
paradigms that are used in traditional structure editors, such as:

1. avoiding editing errors (syntax and static semantic),
2. guiding a user, so a user does not need to be fully familiar with the

syntax of the programming language,
3. enabling navigation (positioning and selection) by mouse as well as by

keyboard; selection is implicit and position sensitive,
4. providing automatic indentation, and syntax highlighting,
5. supporting comments,
6. allowing semantically sensitive variable renaming.
Analysis of the traditional structure editors has enriched the PROCOMPASS

structure editor features. A necessary characteristic of the structure editor is
smooth integration of text and structure editing, without having to switch
between two radically different modes. Another very important characteristic
of the PROCOMPASS editor is complete language-independency. This starting
idea enabled the implementation of a uniform and consistent user interface,
so that, the way of handling each program structure follows the same
principles. From the perspective of the user, the most important characteristic
of the editor is that it is easy to learn with an intuitive user interface [21]. The
majority of programmers have their own editing habits and they are often not
willing to change them. They will only accept a tool that offers more advanced
editing services for comfortable use, that is intuitive enough without special
training. The PROCOMPASS editor tries to strike a balance between user and
tool.

In PROCOMPASS the editor allows components to be filled from left to right;
in the way the text is expected on the screen (not top-down, as some

Zorica Suvajdžin, Miroslav Hajduković

72 ComSIS Vol. 3, No. 1, June 2006

structure editors request). Expression handling is easy, with automatic bracket
matching. Editing time is significantly reduced as the result of the following:
names are assigned only once, and then selected; keywords are
automatically inserted into the program text; program text marking is
automatic and the results of the program text modifications are automatically
propagated down the rest of the program text.

The high quality visual design has a major role in user's comprehension of
programs (documents). Textual display, generated by a pretty-printer [8], [9],
[17], is enriched with additional information using typographical styles, which
are specified by font and color characteristics.

Finally, an effective structure editor must be customizable in order to
accommodate the variations among individual users. The PROCOMPASS editor
is easily configured for different languages and tasks (fonts, colors, shortcuts
to common editing operations, etc.).

An important aspect of any program editor is support for code
maintenance. For this purpose, the PROCOMPASS editor offers structural
transformation. This operation converts one component into another
component. For example, it can convert if statement into while statement,
convert an expression of one type into an expression of another type (cast),
encapsulate a set of statements into a function body, split a function into
several statement blocks, etc. The structural transformation is context
dependent, so it offers a list of all refactoring alternatives available at the
selected point of a program text. The list of refactoring alternatives is
stipulated in the input specification of the editor.

Code maintenance operations also include copy and paste operations. The
Copy operation copies a selected structure into a clipboard, and the paste
operation pastes a component from the clipboard at the selected point of the
program text. This operation is context dependent, so it shows only a part of
the clipboard that is allowed to be pasted at the selected point of a program
text – and the user will choose what is to be pasted (for example, this includes
pasting all statements, or statements selected from all statements).

5. Discussion of Implementation and Specification

The internal representation of program text components in PROCOMPASS has
a hierarchical structure. Terminal components (corresponding to template
fields which contain the text of identifiers, numbers, etc) are at the bottom of
the hierarchical structure. Higher levels contain nonterminal components,
composed of other nonterminal or terminal components. The hierarchical
structure means that the internal representation (implementation) of the
structure is a graph in which each node corresponds to a component. An
example of a graph for a C variable definition statement is shown in Fig. 7.

A Structure Editor for the Program Composing Assistant

ComSIS Vol. 3, No. 1, June 2006 73

int

variable definition node

variable type
node

variable name
node

variable initial
value node

a 0

Fig. 7. Example of the graph for a C variable definition statement int a = 0;

Operations for program text template manipulation are associated with the
graph and enable graph manipulation. For example, an insertion operation
adds a new component after the marked one. That is, a new node with its
subgraph is added after the marked node on the same level of the graph
hierarchy. Some operations associated with individual nodes are specific to
the kind of node used. For example, if a delete operation is applied to a
mandatory terminal component, the node will remain, and only the content of
the node will be deleted, but if it is applied to an optional terminal component,
the node and content (or its subgraph) will be removed.

The specialization of the PROCOMPASS editor to a programming language is
done by a formal language specification that can either be written in XML or in
a format similar to the Lex [20] and Yacc [16] language specification. It
contains both syntactic and semantic definitions of the programming
language, including definitions of regular expressions, keywords, other lexical
definitions (including the form of comments), data types, operators, name
accessibility, the start symbol of the grammar, and grammar rules
(productions). In addition, it includes pretty-printing information (colors,
indentation, etc.) and rules describing structural transformations.

Each grammar symbol and each grammar rule may have associated
semantic information [13]. The semantic information is described using
attributes. Attributes are logical names (flags) that are attached to a symbol. A
symbol can have default attributes, and can also obtain attributes from a
context.

As mentioned earlier, the internal representation of the editing structure is a
graph. Each (grammar) symbol corresponds to a node, described by the Node
class. This class contains attributes intended to describe the specialities of a
corresponding component, and common methods for manipulating the graph.
The specialities of each component are extracted from the formal language
specification, together with information about the symbol’s semantics and
component forming.

The production rules of the grammar are presented internally by instances
of themselves. Therefore, the editor interprets the production rules during
editing operations. As a consequence, one can plug-in an arbitrary grammar

Zorica Suvajdžin, Miroslav Hajduković

74 ComSIS Vol. 3, No. 1, June 2006

in order to utilize the editor for writing programs in the corresponding
language. Due to this, it can be said that the editor is generic.

Two prototypes of the concept described in this paper exist. The first
prototype is the Structure Text programming language editor [27] (IEC 1131-3
[15]). The implemented prototype is not generic, but is for the ST language
only. It provides the structure-oriented operations presented in previous
sections, except for structural transformations and the copy and paste
operations. The second prototype is generic, and supports all structure-
oriented operations except any structural transformation that is currently
ongoing. For testing purposes, the C programming language and a subset of
the Java programming language are used.

6. Conclusion

The major objective of this research was to tackle the problems that existing
structure-oriented editors suffer from. The result of the research is the
PROCOMPASS structure editor. It includes the features of traditional structure
editors that have proven productive and advantageous, and extended this set
with features maintaining a user-friendly interface.

The PROCOMPASS editor is a generic (designed to be target language
independent), pure structure-oriented (modeless) and a user-friendly (intuitive
interface) program editor. It provides structural transformation as very
powerful editing operation and code maintenance support.

Future work to be carried out includes multiple structure selection, more
powerful structural transformation, more powerful search operations, and
graphic editors.

Acknowledgement

We are grateful to a reviewer for helpful comments on earlier drafts of this
paper and for constructive suggestions.

7. References

1. Matthias Anlauff, Philipp W. Kutter, Alfonso Pierantonio, Lothar Thiele, Generating
an Action Notation Environment from Montages Descriptions, Proceedings of the
2nd International Workshop on Action Semantics (AS'99), BRICS Notes Series,
Number NS-99-3, pp. 1-42. (March 1999)

2. Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, Didier Parigot,
and Claude Pasquier, SmartTools: a Generator of Interactive Environment Tools,
Electronic Notes in Theoretical Computer Science, Vol. 44 (2) (2001). Available:
Available: http://www1.elsevier.com/gej-ng/31/29/23/73/27/48/44_2_015.pdf

A Structure Editor for the Program Composing Assistant

ComSIS Vol. 3, No. 1, June 2006 75

3. R. Bahlke and G. Snelting, The PSG system: From formal language definitions to
interactive programming environments, ACM Transactions on Programming
Languages and Systems, Vol. 8, No. 4, pages 547-576. (1986)

4. Robert A. Ballance, Susan L. Graham, Michael L. Van De Vanter, The Pan
Language-Based Editing System, ACM Transactions on Software Engineering and
Methodology. (1991)

5. P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V.
Pascual, Centaur: the system, ACM SIGPLAN Notices, 24(2):14-24, Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments. (1989)

6. M.G.J. van den Brand, T. Kuipers, L. Moonen and P. Olivier, Implementation of a
prototype for the new ASF+SDF Meta-Environment, Electronic Workshops in
Computing, 2nd International Workshop on the Theory and Practice of Algebraic
Specifications, Amsterdam. (1997)

7. M.G.J. van den Brand and P. Klint, ASF+SDF Meta-Environment User Manual,
Revision 1:134, September. (2003) Available:
http://www.cwi.nl/projects/MetaEnv/meta/doc/asfsdfmanual/user-manual_0.html

8. M.G.J. van den Brand, M. de Jonge , Pretty-Printing within the ASF+SDF Meta-
Environment: a generic approach , Technical report SEN-R9904, CWI,
Department of Software Engineering. (March 1999)

9. M.G.J. van den Brand, E. Visser, Generation of Formatters for Context-free
Languages, Programming Research Group, University of Amsterdam. (1995)

10. Susan A. Dart, Robert J. Ellison, Peter H. Feiler, and A. Nico Habermann (edited
by Peter Fritzson), Overview of Software Development Environments, (1992)
Available: http://www.ida.liu.se/~petfr/princprog/envpaper.pdf

11. Alan Dearle, Michael Oudshoorn, Karen Wyrwas, An Integrated Approach to the
Generation of Environments from Formal Specifications, Australian Computer
Science Communications, Volume 16, Number 1, pp 217-228. (February 1994)

12. Miroslav Hajduković, Zorica Suvajdžin, Žarko Živanov, Character oriented
program editing - habit or necessity, Novi Sad Journal of Mathematics, Volume 33,
Number 1. (2003)

13. Jan Heering, Paul Klint, Semantics of Programming Languages:A Tool-Oriented
Approach, ACM Sigplan Notices, 35(3):39-48. (Mart 2000)

14. Koen De Hondt, Proceedings of the 1994 Groningen Student Conference on
Computer Science, number CS-N9401 in Computing Science Notes, pages 27-35,
(1994)

15. International Standard IEC 1131-3, Programmable Controllers – Part 3:
Programming Languages, IEC. (1993)

16. S.C. Johnson, YACC: yet another compiler-compiler, Bell Laboratories, unix
programmer’s suplementary documents, volume 1. (1986)

17. M. de Jonge, A pretty-printer for every occasion, Technical report SEN-R0115,
CWI, Department of Software Engineering. (May 2001)

18. J.W.C. Koorn, GSE: a generic text and structure editor, In J.L.G. Dietz, editor,
Conference Proceedings of Computing Science in the Netherlands, CSN'92,
pages 168-177. SION. (1992). Appeared as Report P9202, University of
Amsterdam. Available by ftp from ftp.cwi.nl:/pub/gipe as Koo92b.ps.Z

19. J.W.C. Koorn, H.C.N. Bakker, Building an editor from existing components: an
exercise in software re-use, In J.L.G. Dietz, editor, Conference Proceedings of
Computing Science in the Netherlands, CSN'92, pages 168-177. SION. (1992).
Appeared as Report P9202, University of Amsterdam. Available by ftp from
ftp.cwi.nl:/pub/gipe as Koo92b.ps.Z

Zorica Suvajdžin, Miroslav Hajduković

76 ComSIS Vol. 3, No. 1, June 2006

20. M.E. Lesk and E. Schmidt, LEX – A lexical analyzer generator, Bell Laboratories,
unix programmer’s suplementary documents, volume 1 (ps1) edition. (1986)

21. Linda McIver, Evaluating Languages and Environments for Novice Programmers,
In J. Kuljis, L. Baldwin & R. Scoble (Eds). Proc. PPIG 14, Brunel University. (2002)

22. Lambert Meertens, Steven Pemberton and Guido van Rossum, The ABC
Structure Editor: Structure-based editing for the ABC programming environment,
Tech. Report CS-R9256. (1992)

23. Didier Parigot, Carine Courbis, Pascal Degenne, Alexandre Fau, Claude Pasquier,
Joel Fillon, Christophe Held, Isabelle Attali, Aspect and XML-oriented Semantic
Framework Generator: SmartTools, In Second Workshop on Language
Descriptions, Tools and Applications, LDTA'02. ETAPS'2002, Electronic Notes in
Theoretical Computer Science 65 No. 3. (2002). Available:
http://www.elsevier.nl/locate/entcs/volume65.html

24. Vincent Quint and Irene Vatton, Making Structured Documents Active, Electronic
Publishing - Origination, Dissemination and Design, Vol. 7(2), 55 -74. (June 1994)

25. J. Rekers, On the use of Graph Grammars for defining the Syntax of Graphical
Languages, Technical Report tr94-11, Leiden University, Dep. of Computer
Science. (1994)

26. Bernard Sufrin and Oege de Moor, Modeless Structure Editing, In: J. Davies, A. W.
Roscoe and J.C.P. Woodcock (editors), Proceedings of the OxfordMicrosoft
symposium in Celebration of the work of Tony Hoare, September 13-15, 1999.

27. Zorica Suvajdžin, Structured syntax driven editor for ST programming language,
master thesis, Faculty of Engineering, Department of Computer Science,
University of Novi Sad. (2000)

28. Tim Teitelbaum and Thomas Reps, The Cornell program synthesizer: a syntax-
directed programming environment, Communications of the ACM, Volume 24,
Issue 9, pages: 563 – 573. (September 1981)

29. S.M. Uskudarli, T.B. Dinesh, The VAS Formalism in VASE, Technical Report
University of Amsterdam. (1996)

30. Michael L. Van De Vanter, Practical Language-Based Editing For Software
Engineers, volume 896 of Lecture Notes in Computer Science, pages 251-267.
Springer-Verlag. (1995)

31. Michael L. Van De Vanter and Marat Boshernitsan, Displaying and Editing Source
Code in Software Engineering Environments, Second International Symposium on
Constructing Software Engineering Tools (CoSET’2000). (2000)

32. www.eclipse.org

Zorica Suvajdžin has graduated at the Faculty of Technical Sciences,
Computing and Control Department, University of Novi Sad, in 1998. She got
Master Degree in 2000 from the Faculty of Technical Sciences, Computing
and Control Department, University of Novi Sad. She is currently a teaching
assistant in Computer Science courses at the Faculty of Technical Sciences,
University of Novi Sad.

Miroslav Hajduković has graduated at the Faculty of Electrical Engineering,
University of Sarajevo, in 1977. He got Master Degree in 1980 and his Ph. D.
in 1984 from the Faculty of Electrical Engineering, University of Sarajevo. In
1985 he was on post-doctoral studies in Computer Laboratory at the
Cambridge University in Great Britain. He is currently a Professor of
Computer Science at the Faculty of Technical Sciences, Computing and
Control Department, University of Novi Sad.

