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Abstract. Higher-level programming such as metaprogramming 
introduces a layer of abstraction above the domain language programs. 
Metaprogramming allows describing generic components and managing 
variability in a domain. It is especially useful for developing program 
generators for domains, where a great deal of commonalties exists.  It 
allows increasing the level of abstraction and hiding details that are 
unnecessary to the designer. Information abstraction and hiding reduces 
the amount of “user-visible” information. In this paper, we estimate the 
increase of abstraction by evaluating the information content at the lower 
(domain) and higher (meta) layers of abstraction. The estimation method 
is based on the Kolmogorov complexity and uses a common 
compression algorithm. The method is evaluated experimentally on 
families of DSP components. 

1. Introduction 

The abstraction level is the level of detail of a software system (model, 
component, program, etc.). In this sense, abstraction is a primary concept in 
software engineering and is, in fact, a basic property for understanding the 
reality and managing the complexity of software systems [1].  

The simplest interpretation of abstraction is hiding of irrelevant details, 
though there are many different views what “irrelevant” is [2]. Abstraction is a 
gradual increase in the level of representation of a software system, when 
existing detailed information is replaced with information that emphasizes 
certain aspects important to the developer while other aspects are hidden. 

Abstraction is primarily responsible for the evolution of programming 
languages by stimulating adoption of higher-level mechanisms and constructs 
for programming. More abstract programming language mechanisms allow to 
replace complex and repeating low-level operations. Better abstraction allows 
to address complex problems with less code and less programming errors. 

Though different layers of abstraction represent a qualitative leap in the 
level of abstraction that allows achieving higher productivity and faster 
development times, an interesting problem would be to evaluate the level of 
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abstraction in a software system quantitatively. The problem is not a trivial 
one, because the level of abstraction is related the concepts of software 
complexity [3] and information content [4].  

Indeed, a representation of a software system at a higher layer of 
abstraction contains less detail and usually has less source code lines than a 
corresponding representation at a lower layer of abstraction. Though, Lines of 
Code (LOC) is often used as a measure of software size, it is often criticized 
as ambiguous and even meaningless. An effort to measure the abstraction 
level using the LOC metric fails, because shorter code does not mean less 
software complexity or less information content. Furthermore, a program may 
contain redundant code, which is not taken by the LOC metric into account.   

In this paper, we use Kolmogorov complexity [5] based metric to estimate 
the increase in the level of abstraction in metaprograms quantitatively. 
Metaprograms are generic programs (or program generators) that 
encapsulate families of similar software components. We evaluate the level of 
abstraction in metaprograms as compared to families of domain programs by 
estimating and comparing the information content at the metalevel and 
domain level of abstraction using a common compression algorithm. 

The rest of the paper is organized as follows. Section 2 overviews the 
related works. Section 3 describes the layers of abstraction in software 
systems and describes the principles of metaprogramming. Section 4 
describes the problem of estimating information complexity, quantity and 
content in software. Section 5 presents the experimental results of estimating 
information content and level of abstraction in component families and 
metaprograms. Section 6 presents conclusions and future work. 

2. Related works 

Other authors also use this Kolmogorov complexity in related research. For 
example, Li and Vitanyi [6] propose a metric for measuring the amount of 
shared information between two computer programs, thus allowing plagiarism 
detection. This metric is approximated by a heuristic compression algorithm.  

Evans et al. [7] apply the Kolmogorov complexity-based metric to the 
problem of Information Assurance. The metric allows to detect abnormal 
system behavior and perform analysis of data and process vulnerability. 

Bush and Hughes [8] use Kolmogorov complexity to identify different data 
types (semantic types) by estimates of their complexity. This allows to 
discover, e.g., executable data embedded within passive data types in 
network data flows. 

Gács et al [9] use Kolmogorov complexity as a measure for the relation 
between an individual data sample and an individual model summarizing the 
information in the data and develop the algorithmic theory of statistic. 

Taha et al. [4] propose a view motivated by Kolmogorov’s notion of string 
complexity. A program generator captures the essential complexity of the 
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programs it produces, since it contains all the information needed to 
reconstruct the full code base.  

Keogh et al. [10] use the compression-based dissimilarity metric for 
detecting and clustering datasets. The idea is that similar datasets have 
similar content and complexity, which can be detected by compressing 
datasets and comparing their compressed size. 

Campani et al. [11] apply Kolmogorov complexity to the characterization of 
systems and processes by calculating the amount of information, and the 
evaluation of computational models based on the idea of data compression 
(understood as a measurement of the amount of information). 

Veldhuizen [12] uses Kolmogorov complexity to develop a theoretical 
model of reuse libraries and estimate the amount of reuse in software 
systems, the size of reuse library components, and the bounds of reuse. 

The related works can be summarized as follows: Kolmogorov complexity 
already has been used to derive several software metrics in order to estimate 
software complexity, similarity, anomaly, vulnerability or reuse. The novelty of 
this paper is the application of the Kolmogorov information complexity theory 
to the problem of quantitative measuring of software abstraction. 

3. Layers of abstraction in software 

3.1. Classification of programming languages 

Modern software systems often have many layers of abstraction such as 
assembly-level, object-level, scripting-level, web-level, meta-level, etc. Here, 
we can distinguish we following layers of software abstraction (see Fig. 1): 
− Register layer – assembly languages that describe operations on a 

processor (register) level. The level of abstraction is very low and quantity 
of information available for a developer is very high and detailed.  

− Algorithm layer – common procedural or (semi-)formal languages such as 
C, Pascal or LISP that hide the low-level details of handling data and rather 
focus on the description of software algorithms that manipulate with data. 
The developer is no longer dealing with data in individual registers. Much of 
the information content is abstracted away in the libraries.  

− Entity layer – high-level programming languages such as C++, Java, or 
VHDL that focus on the description of domain entities. Domain entities are 
represented using components, aspects [13] or objects, which encapsulate 
code fragments (methods, concerns) on the same abstraction level. 
Modeling languages such as UML are also used on this layer, though these 
represent the domain entities graphically. 

− Composition layer – compositional, glue and scripting [14] languages such 
as Python or TCL that assume a collection of existing components and 
focus on wiring of existing software artifacts into larger systems. The 
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primary concern is not data or algorithms, but software components. Thus, 
the level of abstraction is raised even higher, complexity of programming 
language is reduced, and repeating code is abstracted away leading to the 
decrease of information quantity available to the developer. 

− Meta layer – metalogic, metaprogramming and metamodeling languages 
that are used for describing generic components, developing code 
generators, and capturing domain commonalties in software product lines 
[19]. Meta layer languages are based on higher-level programming 
methodologies, such as metaprogramming [15] or Generative 
Programming [16]. The examples are macro languages, preprocessing 
languages, MetaAspectJ, Open PROMOL [17], etc. 
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Fig. 1. Layers of abstraction in software programming languages 

 
The presented classification of programming languages is by no means 

comprehensive. It omits many other classes of languages, such as domain-
specific languages, architecture description languages, markup languages, 
etc. Rather it demonstrates the typical software abstraction layers the 
programming languages pertain to. 

The abstraction level is generally increasing from the lower layers of 
abstraction to the higher layers, though it may differ at the same layer 
depending upon syntax and semantics of a particular programming language. 
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Thus, the level of abstraction in software engineering grows from data to 
algorithms, to objects, to software components and beyond.  

Recently, the MDA (Model-Driven Architecture) approach was introduced, 
which allows to raise the level of abstraction above programming languages 
by defining implementation-independent models and metamodels that 
describe fundamental relationships between design concerns [18]. However, 
MDA requires metaprogramming as well for implementing code generation 
between high-level models and low-level system implementation. 

3.2. Overview of metaprogramming 

Now we look more closely at the principles of metaprogramming. Often, 
there is a great deal of similar components in a domain, e.g., there are 71 
similar Java Buffer classes in JDK 1.5.01 source library. Such large number 
of components is difficult to maintain and reuse, changes are difficult to 
implement, etc. Higher-level programming, such as metaprogramming, raises 
the level of abstraction by introducing an additional level of generic 
parameters for managing variability of domain source code. This higher-level 
hides a common part of the component family at a lower (domain) layer of 
abstraction. The result of metaprogramming is a metaprogram. According to 
Batory [19], a meta-program is “a program that generates the source of the 
application ... by composing pre-written code fragments”. In other words, a 
metaprogram is a set of instructions, descriptions, and means of control 
(possibly generation) of sets of domain programs. Metaprograms may be 
written using the same programming principles and constructs (if, case, for 
loop) as domain programs, however, they manipulate on program 
representations, not on data.  

Metaprogram describes generic parameters and domain code 
modifications required to generate a particular customized component 
instance. The layers of abstraction are clearly separated. At a lower layer of 
abstraction, there is domain language code that describes common parts of 
component family. At a higher layer of abstraction, there is metalanguage 
code that describes variable parts of component family. 

To achieve the prescribed aims, metaprogramming uses separation of 
concerns, parameterization, and parameter dependency knowledge. The 
principle of separation of concerns separates each domain problem into a 
distinct generic component or sets of components used to generate target 
program. Parameterization increases reusability by providing parameterized 
components, which can be instantiated for different choices of parameters. 
Parameter dependency knowledge allows capturing specific information 
about the parameter dependencies, default settings and illegal combinations.  

A high-level language is the main abstraction for expressing the domain 
content and coding software components and generators. Some languages 
(e.g., Ada, VHDL, C++) do provide a meta-programming mechanism, called 
generics (or templates, in case of C++), for writing parameterized 
components. However, here we deal only with metaprogramming using a 
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separate metalanguage (heterogeneous metaprogramming), which allows us 
achieving higher parameterization flexibility, better separation of concerns 
and layers of abstraction and generation of specific component instances. 

In next section, we consider the problem of evaluating quantity (content) of 
information at a higher level of abstraction, in general. 

4. Evaluation of information quantity and abstraction 

4.1. Kolmogorov complexity 

The problem considered in this paper is how to evaluate the raise of 
abstraction introduced by a higher-level language quantitatively. We argue 
that it can be evaluated relatively by comparing information content at both 
layers of abstraction. Since some of information is abstracted away at a 
higher layer of abstraction, we expect that information quantity directly 
represented at a higher level of abstraction generally should decrease, 
because much of it is hidden in the underlying tools (preprocessors, 
compilers, translators, etc.) and software libraries used. However, the entire 
content of information required to solve a certain problem should remain the 
same, as stipulated by the Law of Conservation of Information, which states 
that information in a closed system of natural causes remains constant or 
decreases [20]. Therefore, a relationship between the content of information 
at a higher and lower levels of abstraction is a metric of abstraction. 

Therefore, we can estimate the increase/decrease of abstraction in 
software by measuring the content of information as different layers of 
abstraction. There are several methods to evaluate information content/ 
complexity such as computational complexity, Shannon entropy and 
topological complexity [21]. We use the Algorithmic information content metric 
also known as Kolmogorov Complexity [5]. Kolmogorov complexity is a 
measure of randomness of strings based on their information content. It was 
proposed by A.N. Kolmogorov in 1965 to quantify the randomness of strings 
and other objects in an objective and absolute manner.  

The main idea of Kolmogorov complexity is to measure the ‘complexity’ of 
an object by the length of the smallest program that generates it. In general 
case, we have a domain object x and a description system (e.g., 
programming language) φ that maps from a description w (i.e., a program) to 
this object. Kolmogorov complexity K(x) of an object x in the description 
system φ, is the length of the shortest program in the description system φ 
capable of producing x on a universal computer such as a Turing machine:  

( ) }:{min xwxK ww
== ϕϕ                  (1) 

Different programming languages will give rise to distinct values of K(x), but 
one can prove that the differences are only up to a fixed additive constant. 
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Intuitively, K(x) is the minimal quantity of information required to generate x by 
an algorithm.  

Kolmogorov complexity is the ultimate lower bound among all measures of 
information content. Unfortunately, it cannot be computed in the general case 
[4, 5]. Consequently, one must approximate it. 

Some authors criticize the usage of Kolmogorov complexity and 
compression algorithms for evaluating information content (e.g., [22]). The 
objections are mostly focused on the concept of randomness. For example, a 
random string generated by a computer program would have much higher 
information content than the program itself.  

In our view, the critics miss three important points as follows:  
(1) Kolmogorov complexity measures the content of information only at 

the same level of abstraction.  
(2) Random strings may not be meaningless and also can carry 

information, if they are considered as labels [23]. We can not 
consider a program as a closed system with bounded amount of 
information, because programs do not exist on their own, but in the 
context of other programs and data.  

(3) Information complexity is not the same as content. Higher complexity, 
in fact, may mean lower content and vice versa.  

4.2. Compression-based metric of abstraction increase 

In this paper, Kolmogorov complexity is used to estimate the abstraction 
increase. Usually, the universal compression algorithms are used to give an 
upper bound to Kolmogorov complexity. Suppose that we have a 
compression algorithm Ci. Then, a shortest compression of w in the 
description system φ will give the upper bound to information content in x: 

( ) )}({min wii
CxK ϕϕ ≤                    (2) 

As abstraction hides the complexity, abstraction of an object x in a 
description system φ can be defined as an inverse of complexity of x 
estimated in terms of Kolmogorov complexity: 

( ) ( )xK
xA

ϕ
ϕ

1
=                       (3) 

The increase of abstraction level between a program φw that is a 
representation of x in a description system φ, and a program ψw, that is a 
representation of x in a description system ψ at a higher level of abstraction 
can be defined as follows: 

( ) ( )
)(

|
xK
xK

A
ψ

ϕϕψ =                      (4) 

Having in mind Eq. 2 and that a metaprogram MP is a concise 
representation of a component family λ, which is a union of all its members Pj, 
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we estimate the increase of abstraction level A in a metaprogram as 
compared to a domain program as follows: 

( ) ( )λ
λ

λλ

MPC

PC
PMPA

ii

j
jii

min

min
|

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
U

               (5) 

where Ci is a compression algorithm. 
 
In the next Section, we demonstrate how compression algorithm based on 

Kolmogorov complexity metric can be used to evaluate information content 
and, consequently, the raise of abstraction introduced by the application of 
metaprogramming techniques in hardware and embedded systems design 
domain. 

5. Empirical evaluation of abstraction increase in 
metaprogramming 

In hardware and embedded systems design domain, a great number of 
similar domain entities exist. For example, the most-widely used hardware 
library components are gates (see Fig. 2), which implement a particular 
logical function. The hardware designer requires many different gate 
components implementing different functions and having a different number of 
inputs. All these components are very similar to each other both syntactically 
and semantically, thus their constitute a component family.  

 entity gate is 
   port ( X1, X2 : in bit; Y : out bit ); 
end gate; 
 
architecture behave_gate of gate is 
  begin 
  Y <= X1 and X2; 
end behave_gate; 

entity gate is 
  port ( X1, X2, X3 : in bit; Y : out bit ); 

end gate; 
 
architecture behave_gate of gate is 
  begin 
  Y <= X1 or X2 or X3; 
end behave_gate; 

 
Fig. 2. Instances of gate component family (in VHDL): a) 2-input AND gate, and b) 3-
input OR gate 

The content of information in component families can be estimated using 
the compression-based information content metric. We have selected the 
BWT (Burrows-Wheeler Transform) compression algorithm, because 
currently it allows to achieve best compression results for text-based 
information [24] and thus better approximate information content. The lowest 
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size of the compressed components will put the upper limit on the estimated 
information quantity in the analyzed component family. 

Next, we develop a metaprogram, which describes a component family at a 
higher level of abstraction. For example, the identified generic parameters 
and their values for the gate component family are as follows:  

 
Gate_function = { AND, OR, XOR, NAND, NOR, XNOR } 
Gate_inputs    = { integer numbers from 2 to 16 } 
 
A metaprogram (see Fig. 3) was developed using Open PROMOL [17] 

metalanguage. This metaprogram describes a generic gate and covers a 
family of 90 different component instances, which can be generated from it. 

 
 

$ 
"Enter gate function: "  {and, or, xor, nor, nand, xnor} f := and; 
"Enter number of inputs:" {2..16}         num := 2; 
$ 
entity gate is 
   port ( @gen[num,{, }] : in bit; Y : out bit );  
end gate; 
 
architecture behave_gate of gate is 
  begin 
  Y <= @gen[num, { @sub[f] }]; 
end behave_gate; 

 
Fig. 3. Generic gate described using Open PROMOL metalanguage 

Then, we evaluate the content of information at a higher level (metalevel) of 
abstraction. We again compress the developed metaprogram using a 
selected compression algorithm, which in our case is BWT. The lowest size of 
the compressed metaprogram will put the upper limit on the estimated 
information content at the metalevel.  

The increase of abstraction between metalevel and domain level shall be 
the ratio of estimated information content at the metalevel and domain level, 
as stipulated in Eq. 5. For example, the size of the metaprogram given in Fig. 
3 is 291B. The size of the metaprogram compressed using the BWT algorithm 
is 245B, which is the estimated quantity of information at metalevel. Next, we 
generate all instances of this metaprogram for all possible values of the 
generic parameters f and num. We obtain 90 different component instances 
(2 of them are given in Fig. 2, a & b). The total size of these instances is 
21,426B when uncompressed and 726B after compression. Next, we apply 
Eq. 4 to obtain the estimated abstraction increase for the gate component 
family: 
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===
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Thus, we estimate that the introduction of metaprogramming for describing 
generic gate components using VHDL as a domain language and Open 
PROMOL as a metalanguage allowed to increase abstraction by ~ 3 times.  

We have performed the experiments with the following VHDL component 
families and metaprograms: gate, RSA coding processor, serial multiplier, 
register, shift register, multiplexer, and majority function for voting in fault-
tolerant systems. We also have performed the experiments with the DSP 
algorithms implemented as embedded software in C as follows: DCT, FFT, 
Romberg integration, Chebyshev approximation and Taylor series expansion 
of popular mathematical functions. The results are summarized in Table 1. 

The statistical evaluation of the obtained results for abstraction increase 
(mean = 2.9; std. deviation = 0.992; std. error = 0.286) was performed using 
one-sample Student’s t-test. The mean is within 95% confidence interval. 

Table 1. Summary of experiments 

Compo-
nent  

family 

No. of 
instan-

ces 

No. of 
generic 
para-

meters 

Total 
source 

code size, 
B 

Est. 
information 
quantity at 

domain 
level, B 

Meta-
program 
size, B 

Est. 
information 
quantity at 
metalevel, 

B 

Abs-
traction 

inc-
rease 

Gate 90 2 21,426 726 291 245 2.96 
RSA 32 2 1,517,027 72,701 254,049 27,295 2.66 
Serial 
multiplier 

10 1 96,849 3,497 7,198 1,827 1.91 

Register 1024 6 2,380,336 1,803 1,384 827 2.18 
Shift 
register 

72 5 38,800 1,178 2,896 786 1.50 

Mux 54 4 48,636 3,107 1,848 1,625 1.91 
Majority 192 2 240,345 1,940 1,017 529 3.67 
DCT 14 2 5242 655 941 469 1.40 
FFT 6 1 32,956 2,112 1989 394 5.36 
Romberg 
integration 

5 1 34,905 1,713 457 313 5.47 

Taylor 
series 

240 3 43,552 2,017 869 679 2.97 

Chebyshev 
approx. 

8 1 7,905 912 464 331 2.76 

 
The content (or quantity) of information has decreased by 2.9 times on 

average in metaprograms as compared with domain program families. This 
number varies depending upon the type and size of components, the number 
of component instances in a component family, the number of generic 
parameters in a metaprogram, similarity of components within a component 
family, and syntactic characteristics of domain language and metalanguage.  

In general, we estimate that the level of abstraction in metaprograms is 
about 3 times higher than the level of abstraction in domain programs.  
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6. Conclusions and Future work 

In this paper, we have analyzed information content in higher-level 
programs (metaprograms) and compared it with information content in lower-
level (domain) program families. We have proposed to estimate the 
abstraction level of a program as an inverse of its complexity as defined by 
Kolmogorov Complexity metric measured using a standard text compression 
algorithm. Based on the performed experiments, we estimate that 
metaprogramming decreases information content and thus increases the level 
of abstraction in analyzed domains by approx. 3 times.  

Future work will focus on the estimation of component similarity using 
information content metrics. The more similar are software components, the 
more easily they can be generalized when developing generic components 
and thus the level of abstraction and reuse can be raised.  
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