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Abstract. Representations support learning and instruction in many 
ways. Two key aspects of representations are discussed in this paper. 
First we briefly review the research literature about cognition and 
processing internal mental models. The emphasis is on the role that 
mental models play in critical reasoning and problem solving. We then 
present a theoretically-grounded rationale for taking internal mental 
representations into account when designing and implementing support 
for learning. The emphasis is on interaction with meaningful problems. 
Lastly, we present research that has led to a conceptual framework for 
integrating models into learning environments that includes technologies 
for formative assessment and motivation. 
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1. Introduction1 

Cognition is both complex and multifaceted. Remembering and 
misremembering past events, recognizing family and friends, planning 
vacations, shopping for gifts, and solving puzzles are cognitive processes that 
are generally taken for granted yet surprisingly complex. It is when we 
become aware of an error that we are inclined to reflect on the relevant 
cognitive processes involved. “Why did I mistake that person for someone 
else? How can I avoid repeating that mistake?” Such thoughts about our 

                                                   
1 Much of the work represented herein has been inspired by the work of David H. 

Jonassen. Several of his publications in this area are cited, but his influence extends 
far beyond his published work cited in this paper. See also the Spector & Park 
chapter in The Role of Criticism in Understanding Problem Solving by Fee & Belland 
(2012). 
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cognitive processes are not so uncommon and fall into the domain of 
metacognition – thinking about thinking, so to speak. 

Most persons have a natural desire to be correct (most of the time, 
anyway). Those with a desire to understand such errors might investigate how 
knowledge is developed. Epistemologists have investigated such questions 
for centuries [99]. Psychologists have also investigated the nature of 
cognition, including critical reasoning and problem solving skill development. 
Many people engage in metacognitive activities and think about their own 
reasoning processes from time to time. Such self-reflection should be 
encouraged and scaffolded during learning. The focus here is on the role that 
externally created representations or models can play in support of formative 
assessment and motivation. The approach is naturalistic [98, 99] as we 
examine how individuals think and develop reasoning skills and expertise. A 
naturalistic approach takes into consideration both cognitive and non-
cognitive aspects that occur in actual cases, including beliefs about the 
domain being investigated as well as beliefs about one’s own ability to 
successfully solve problems. It is generally agreed that different kinds of 
problems require different kinds of reasoning and, as a consequence, different 
kinds of support for learning [45, 46, 47, 48, 106]. A deep understanding of 
reasoning and problem solving can provide the basis for personalized and 
meaningful feedback on specific problem solving activities, including support 
for motivational aspects that might affect performance [54].  

2. Mental Models and Reasoning 

To motivate the discussion let us consider a representative problem-solving 
situation that many have experienced – shopping for a gift. Here is a 
representative scenario: 

 
Eli and Naomi recently received news from college friends, Sam and Lisa, 

whom they have not seen for several years, but who happens to be coming to 
town on their honeymoon.  Upon hearing about the upcoming visit, Naomi 
says to Eli, “well, after more than five years together they finally got married!” 
and she suggests that they need to find a wedding gift. Eli and Naomi look at 
their bank account to see what they can afford, and then they start discussing 
what they might find within their price constraints. This discussion involves 
recalling many Sam and Lisa stories from their past and those stories begin to 
lead to gift possibilities.  

 
The point of this scenario is to suggest that (a) there are both cognitive 

(e.g., planning) and non-cognitive (e.g., emotional) aspects to many problems 
and decisions, (b) many aspects of the situation are related and likely to  be 
mutually influential (e.g., college memories and gift possibilities), (c) previous 
experience with similar problems is relevant (e.g., gifts they received when 
they got married and wedding gifts they have given to others), and, (d) 
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alternative gift possibilities obviously exist.. These four kinds of considerations 
exist in many different problem solving situations and are likely to influence 
one’s reasoning about a solution. Addressing such considerations often 
requires reflection on the nature of the problem and some deliberation about 
alternative means to resolve the situation. 

2.1. The nature of reasoning 

What is the nature of reasoning? Reasoning is a deliberative, goal-driven 
activity. A traditional definition of reasoning [25] includes such things as:  

 Having an identifiable goal or purpose that one wants to attain; and, 

 Being able to identify alternative means of achieving the goal and then 
analyzing which means might be more feasible or optimal in attaining the 
goal according to one or more criteria. 

 
The second characteristic is often more challenging than the first. Goals 

arise frequently in every aspect of life. Some are short-term – “I want fish for 
dinner”– and some are longer-term – “When I grow up I want to be an 
educational researcher.” Sometimes we decide on the means of attaining the 
goal without considering alternatives. Analyzing alternatives involves (a) 
identifying alternative ways of attaining a goal, (b) determining desirable and 
undesirable aspects among the alternatives, (c) prioritiziong alternatives, and 
(d) selecting the most desirable alternative using relevant criteria [97]. 
Reasoning typically involves deliberative thinking, including the consideration 
and evaluation of reasonable alternatives to reach the goal. Reasoning, being 
rational and becoming skilled in solving problems requires an ability to 
confront and embrace complexity, including the assumptions we make when 
conceptualizing the problem situation and the implicaitons we might associate 
with alternative solutions. The requirement to embrace complexity runs 
counter to a natural human tendency to simplify and avoid challenging 
problem-solving tasks [97]. 

One might characterize deliberation about assumptions and implications as 
a reflective process – reflecting on the quality of one’s reasoning [18]. 
Deliberation and reflection are desirable aspects in solving complex problems, 
but they require time and effort. Devoting time and effort to an activity is an 
issue that also involves motivation (a desire to succeed) and volition (following 
through to achieve one’s goal) [54, 55, 56]. Suppose that one decides to 
examine the consequences and implications of one way to reach a particular 
goal. For example, suppose that one really wants to become an educational 
researcher (goal), and, further, that understanding advanced statistical 
methodologies (means) is required to be successful. The volitional aspect 
involves active follow-through; the implication of accepting the goal is that one 
must take graduate courses in advanced statistical methodologies that require 
some mathematical abilility. One may believe that one is weak in mathematics 
and feel internal resistance to the goal of becoming a serious educational 
researcher. How might one overcome such internal resistance and succeed? 
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How might educational support be provided to help one overcome such 
internal feelings? 

For now we simply want to suggest that the process of deliberation might 
be extended to include reflections about one’s underlying assumptions as well 
as the consequences and implications of pursuing one course of action over 
another, including how one feels about those consequences and implications. 
We ought to recognize that emotions, habits and preferences established over 
a period of many years influence the processes of examining goals, 
assumptions, alternative solutions and consequences [59]. Perhaps we are 
only intermittently rational. Non-cognitive aspects of being who we are play a 
greater role in reasoning and problem solving than we may be inclined to 
believe. We proceed on the assumption that non-cognitive aspects influence 
decision making, problem solving and reasoning in general [54, 55, 56, 58]. 
Rather than consider these non-cognitive aspects of reasoning as limitations, 
a naturalistic approach accepts the influence of non-cognitive factors and 
attempts to take them into account when supporting learning. A virtual change 
agent to support motivation and volition is one means of implementing this 
naturalistic approach [55]. 

Reasoning has been analyzed in a number of ways by both philosophers 
and psychologists [6, 18, 38, 40, 85, 87, 91]. There are several traditional 
distinctions to consider. One is between formal and informal reasoning. A 
second is between deductive and inductive (non-deductive) reasoning, which 
is associated with logic. In order to create an instructional framework to 
improve critical reasoning skills, it is necessary to understand general 
reasoning processes, and argumentation is central to the reasoning process. 

An argument can be defined as a collection of statements some of which 
are offered in support of another. The supporting statements are called 
premises and the statement being supported is called the conclusion. The 
landscape of logic is comprised of arguments, each of which consists of 
statements offered in support of another statement. Logic involves 
determining which kinds of arguments are good and in identifying deficiencies 
in specific arguments, which is needed in order to help improve reasoning 
skills [18, 23, 24, 25]. 

Like other enterprises involving quality determinations, standards or criteria 
are needed. In order to develop appropriate standards, one needs to consider 
the different kinds of arguments that one wishes to sort. If one were sorting 
apples, for example, it would be relevant to know if both red delicious and 
golden delicious apples were in the batch to be sorted – knowing this allows 
appropriate color and other criteria to be used. 

Since the nature of an argument is to offer statements intended to support 
another, one place to start is to determine the kinds of support that might be 
offered. Two kinds come to mind immediately: conclusive support and non-
conclusive (suggestive) support. The nice thing about this distinction is that it 
is all inclusive and the two categories are mutually exclusive. Moreover, such 
a distinction allows for correction of the type of support offered – that is to say 
that the person presenting the argument may believe that he or she is offering 
conclusive support when only suggestive support has been provided. Before 
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evaluating the adequacy of the support actually offered, one ought to be sure 
the argument is located in the proper category since the evaluation standards 
are different. An example of this problem can be found at the end of a 
correlation study in which the researcher claims that the study proves a 
certain point. Proof is a strong notion that is best reserved for the strongest 
types of argument, which are generally considered to be of the conclusive 
variety (deductive arguments). Correlation studies may suggest or show 
something, but they do not establish conclusions with certainty. Even rigorous 
controlled experimental studies aimed at establishing causality do not 
establish conclusions with certainty, although they may establish conclusions 
with very high degrees of probability.  

 

 

Fig. 1. The logical form of arguments. 

Mathematical proofs are familiar examples of the deductive variety. 
Statistical studies are familiar examples of the inductive or non-deductive 
variety. What is worth carrying forward is that, when reflecting on one’s 
reasoning, understanding the kind of argumentation involved (deductive or 
inductive) is important. Moreover, when deliberating on the quality of an 
argument, a critical factor is in determining whether or not adequate evidence 
has been developed to support the conclusion or decision to be taken.  

Finally, we should not forget that non-cognitive aspects influence our 
reasoning, decision making and problem solving. In a model-based discussion 
of reasoning, there is a place to include these non-cognitive aspects of 
reasoning, and they can be given prominence in a formal deductive or 
inductive argument as well. For example, in a deductive argument, one can 
provide a statement representing an affective aspect of a problem, such as “If 
we want to celebrate when Sam and Lisa first met at that Bob Dylan concert, 
then we should find a gift related to that first date.” Likewise, one can 
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introduce perceptions and preferences and affective factors into an inductive 
argument based on survey and interview results, as frequently happens in 
educational research. This by no means is a claim that all aspects of non-
cognitive factors can be given an appropriate representation in language; in 
fact, the process of representing affective aspects may well alter the 
underlying emotions and feelings and is a deviation from a completely 
naturalistic approach. However, some affective factors can and should be 
represented in language as they often have relevance for assessing how 
learners think about a problem; they may also be useful in  providing learners 
with feedback to improve problem solving performance, enhance motivation, 
promote meaningful follow-through, or perhaps change epistemic beliefs 
relevant to learning progress. 

There is another distinction to introduce – namely, the distinction between 
formal and informal reasoning. Both formal deductive and inductive logics 
have informal counterparts. Language influences thought. Language 
facilitates thinking. We make use of language to express and represent our 
deliberations, reflections and to explain our actions. While there are several 
kinds of deductive logic – multi-valued logic, first-order predicate calculus, 
modal logic, and so on – the simplicity of a two-valued propositional logic can 
also facilitate thinking and serve to improve the quality of deliberations and 
reflections. The purpose here is to clarify the relationships between reasoning 
and mental models, so we next turn to internal representations that are 
involved in our reasoning. These internal representations can be grouped 
together using the term ‘mental models’. 

2.2. Mental models and schemas 

Our interest in mental models is driven by a concern to contribute to the 
improvement of human reasoning. It is clear that people do not generally 
reason in terms of formal logic [23, 24, 26, 27, 28]. We have also said that we 
believe that people are intermittently rational. We occasionally engage in 
deliberative and reflective processes – cognitive processes – in order to 
achieve a goal or fulfill a purpose. Those internal cognitive processes are 
hidden; they are not viewed directly and immediately by anyone; mental 
models are hypothetical entities. We make inferences about these hidden 
models based on external representations and observable entities and 
events, such as things that people say or write, diagrams that people create, 
actions that people take, and solutions to problems that people solve. It is 
generally believed that the quality of one’s internal mental models influences 
the quality of one’s ability to solve problems and reason critically. In the 
Tracatus Logico-Philosophicus, Wittgenstein said that we picture facts to 
ourselves (Remark 2.1) [110]. We naturally construct mental representations 
of the things we experience. When the things we experience are new or 
bewildering, we seem to struggle with those internal representations – we 
may begin to externalize them in our efforts to make sense of what is not 
immediately clear or easily understood. We often use language for this 
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purpose – the ability to create internal representations of things we 
experience is truly amazing. Equally amazing is the ability to externalize those 
representations and talk about what we are thinking, occasionally even 
sensibly (see Wittgenstein’s discussion of language games in Philosophical 
Investigations) [111]. 

We create internal representations and we interpret those internal 
representations by talking (or writing or drawing diagrams), creating new re-
representations [16, 17, 20, 32, 36, 37, 42, 61, 63, 64, 65, 66, 68, 69, 72, 80]. 
Claims about internal mental processes and entities are inherently inferential 
– we do not observe any internal mental objects directly, not even our own. 
Conclusions about mental models and associated cognitive processes are, as 
a consequence, at best more or less probable. As a consequence, we ought 
to be modest in what we claim to know about mental models and cognitive 
processes (recall the discussion of inductive reasoning). 

This word of caution does not mean that mental model research is not 
worthwhile or that one cannot investigate mental processes in a rigorous 
scientific manner. There can be and is a science of mental models, just as 
there can be and is a science called psychology. Indeed, one might argue that 
mental models are at the core of modern cognitive psychology. Just because 
that which is being investigated is a hypothetical entity or hypothetical process 
does not mean that those objects cannot be investigated. Indeed, mental 
models and cognitive processes are of interest precisely because of their 
potential to explain a great many human phenomena and behavior patterns of 
interest to psychologists, educators, instructional designers, parents, and 
people in general. We want to understand who we are, why we think and act 
the way we do, why we make the mistakes the way we do, why we are 
intermittently rational, and how we might become better decision makers and 
problem solvers. 

Cognitive psychologists are in general agreement that people have the 
ability to process a variety of different information and act appropriately in 
many different situations. These abilities were mentioned earlier and include 
perception, pattern recognition, storing and retrieving different kinds of 
information, and acting on previously gained experience [2, 81, 85, 86, 87, 88, 
89, 91, 92, 108, 109, 112]. Pattern matching is an ability at which humans 
excel [89]. Humans quickly and effortlessly recognize objects, as shown by 
the ability of most people to recognize a familiar face in a group of people. 
Pattern recognition is a critical cognitive process that involves perceiving, 
remembering, and interpreting, which are all essential in many decision-
making and problem-solving situations [8, 11, 19, 29, 30, 34, 35, 36, 41, 52, 
68, 76, 77, 78, 79, 82, 83, 85, 86]. 

Pattern matching and recognition are generally believed to be based on 
schema, which are well-established cognitive artifacts stored in long-term 
memory based on past experience [4, 88, 89]. Moreover, it is not simply 
patterns of familiar objects that people can recognize and match with prior 
experience to help select appropriate actions. People also recognize general 
situations that call for particular kinds of responses, such as the way that a 
restaurant is organized with a host who seats customers, with a different 
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person taking orders, and possibly with others bringing drinks and clearing the 
table. Because such a situation has been experienced many times, one 
generally knows what to do in a restaurant even though it may be the first visit 
to that particular restaurant. Schank and Abelson [90] and others [1, 2, 3] refer 
to the ability to recognize such general situations and respond appropriately 
as involving scripts (a specific kind of internal mental strucrure). In what 
follows, the more general term ‘schema’ will be used to refer to specific cases 
involving previous experience in that situation as well as general cases 
involving unfamiliar objects set in a familiar kind of situation. Schemas involve 
somewhat complex but well-established internal representations that enable a 
person to respond imemdiately in a particular situation [1, 2, 3, 4, 5, 6, 7, 8, 
11, 14]. It is often the case that a person may have difficulty in explaining why 
he or she acted automatically in a particular situation, which is evidence that 
the internal representation is so well established and so automated that little 
or no conscious thought is devoted to retrieving and activating the schema [9, 
10]. With regard to reflecting on one’s assumptions in a deliberative reasoning 
process, when schemas are involved it is sometimes a challenge to bring all 
relevant assumptions into consideration. It should be obvious that a schema 
necessarily involves a simplification of the actual situation in which it is 
invoked [13, 14, 16, 17]. Only a few key aspects of the situation are needed to 
activate a schema, such as a host or hostess at the front of the restaurant for 
seating or a receipt left inside a holder on a tray for payment. 

Many problems do not lend themselves to resolution based solely on 
schema and well-established prior experience. According to cognitive 
psychologists [33, 43, 44], humans have another way to resolve unfamiliar 
and puzzling problems – namely by creating internal models of the situation 
and using those internal representations to think through to a solution. These 
models are created just when needed and are typically called mental models 
[43, 44, 94]. Mental models are generated to represent the perceived 
structure of a puzzling or new phenomenon. These mental models are not 
and could not be replicas of the world. Like schema, a mental model is 
necessarily a simplification. Such simplifications are useful in helping a person 
understand an unfamiliar situation or puzzling phenomenon. Recognizing 
relevant aspects of the problematic situation are critical for the development of 
useful mental models; this will be taken up again in a subsequent section 
involving the implications of internal representations for the design of effective 
learning and problem-solving support.  

Mental models and schemas are internal constructions that enable a 
person to confront a problem or situation and act in a reasonably appropriate 
manner [3, 93, 94, 95]. Neither mental models nor schema are directly 
observed. However, one can elicit a representation of a mental model, and 
with perhaps more effort, a representation of a schema. These re-
representations are often useful in diagnosing miscues and 
misunderstandings and can be useful in helping a person develop expertise. 
Such re-representations form the basis for formative feedback and 
motivational/volitional support in a framework we call model-faclitated learning 
[75]. 
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To conclude this section on mental models and schemas, it is worth noting 
that these two categories of internal representations are related and interact in 
many problem solving situations. A person confronts a problem or situation 
and creates one or more internal representations to respond to the situation. 
Domain-specific prior knowledge, established schemas and newly created 
mental models may all be brought to bear in this process of understanding the 
problem at hand. The main purpose of this process is to create a causal 
explanation of the puzzling problem or phenomenon. As Kant [51] noted in 
The Critique of Pure Reason, it is natural and unavoidable for people to think 
in terms of cause and effect, just as space and time are added to our 
experience of the world. The reasoning process of invoking schemas and 
integrating newly constructed mental models fits well with Piaget’s [83] 
epistemology. When a schema is invoked and a newly constructed mental 
model can be fit easily within that schema, one might say that assimilation has 
occurred. When no existing schema is found to help resolve the situation, a 
newly constructed mental model might be said to lead to a process of 
accommodation, which involves a refinement of an existing schema. One 
might also introduce the notion of an internal cognitive structure which is akin 
to a repository of schemas. Humans are generally very good at modeling their 
experiences. We can anticipate new states of affairs and predict likely 
outcomes of existing states of affairs with relative ease, thanks to our ability to 
create and manipulate internal representations (mental models and schemas). 
Figure 2 is a representation of how mental models and schemas might 
interact over time as a person builds competence and expertise. 

 

Fig. 2. Mental models, schemas, and expertise development 
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Figure 2 suggests that over time, mental models are constructed and 
become associated with other mental models and eventually with schemas, 
which may be modified in order to take into account what has been learned 
from activation of the mental models and schemas. Based on this view of  
human reasoning processes it is possible to discuss implicaitons for learning 
and instruction as the basis for a general model-based framework to integrate 
external models into learning, performance support, formative feedback, 
motivational support, and instruction. The general strategy is to elicit 
representations of internal models and then provide appropriate support, 
based in part on a comparison with models elicted from highly experienced 
problem solvers [84]. 

It is possible to distinguish two different kinds of mental models: perceptual 
models and thought models [102]. Glaser, Lesgold, and Lajoie [31] and 
Johnson-Laird [43] consider perceptual models to be appearance or structural 
models that are used to represent an external reality. This kind of model 
serves to mediate between internal visual images and external 
representations in the form of statements, whereas thought models also 
include qualitative processes and inductions which support the construction of 
artifacts to represent complexity and causal relationships. In any case, the 
point here is that there is an interaction between the construction of internal 
models and external representations of those models; that interaction will be 
taken up in the framework to be presented subsequently [29, 30, 33, 74, 75]. 

3. Implications for Learning and Instruction 

Researchers are typically familiar with and concerned about ecological 
validity, which is the degree to which an experimental situation reflects a 
naturally occurring real-world situation. Instructional designers have a related 
principle that suggests that primary instruction and practice should involve 
problems and situations that closely resemble problems and situations that 
are likely to be encountered subsequent to instruction. Instruction itself as well 
as research designs should have a high degree of ecological validity. With 
regard to instruction, understanding how people process information and 
reason about problems is a critical aspect of instructional ecological validity. 
Instruction that ignores how people process information and reason about 
problems is less likely to be effective [2, 31, 48, 74]. Many examples can be 
cited to support this basic instructional design principle. The limitations of 
working memory are well established. When an instructional system or 
learning environment violates those limitations by presenting too much 
information all at once with too little learning support, cognitive overload 
results, learning outcomes become suboptimal, and many learners become 
frustrated [104] The major implication from the previous discussion for 
learning and instruction, therefore, is that mental models and schemas should 
be taken into account when designing instruction and implementing support 
for learning and performance.  
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While this implication for designing learning support may seem obvious to 
many, there is the subsequent challenge to be more specific about all that is 
implied in such a principle. How can learning designs take into account the 
hidden processes of constructing mental models, activating schemas, and 
developing ever more useful and productive internal representations? If one is 
only concerned about performance and learning outcomes, then perhaps 
such questions are not a pressing concern. However, if one believes that the 
development of robust and flexible internal representations is critical for the 
development of competence and expertise, then such questions become a 
foundation concern for instructional design, which is what is being proposed in 
this paper. 

When learners are in an instructional situation, they will naturally be 
engaged in activating schemas and constructing mental models. Another way 
to think about the implications for the design of effective instruction is through 
the lens of cognitive efficiency, which can be defined as the optimal effort 
required to solve a problem correctly or perform a task in a satisfactory 
manner [39]. The notion of cognitive efficiency involves a tradeoff between 
time, resources and desired outcomes. There are three primary measures of 
cognitive efficiency: instructional efficiency, processing efficiency, and 
outcomes efficiency [39]. The first and third are already familiar to most 
instructional designers who are concerned that learners achieve acceptable 
performance in a reasonable amount of time. Processign efficiency is most 
directly related to the reasoning processes discussed previously and clearly 
influences both instructional and outcomes efficiency. Measures of cognitive 
efficiency and the means to enhance it are well known to instructional 
designers. There are two factors that have yet to be fully explored in the 
research literature on cognitive efficiency and instructional design research: 
(1) individual differences that impact internal cognitive processes, and (2) how 
cognitive efficiency improvements and other instructional design principles 
can be effectively applied to situations involving complex and ill-structured 
problem-solving tasks. These considerations are likely to be imporant 
challenges for future research (see the last section of this paper).  

While there is much that is unknown and difficult to determine with regard 
to how individuals process information, solve problems, and develop 
competence in reasoning about challenging situations, some initial steps have 
been taken. First, instruction should be centered around meaningful and 
realistic problems [48, 67, 74]. Second, the analysis of problems and tasks 
reveal that there are different kinds, which require different kinds of learning 
support [45, 46, 47, 48]. Third, representations of internal mental models and 
schemas can be used explicitly to support learning [84, 98]. Fourth, when 
learners are struggling, there are often wrong-head beliefs (e.g., “I did not 
inherit the math gene”), motivational issues (e.g., “this lesson is terribly 
boring”), and volitional challenges (e.g., “while I would like to stay and 
understand this material, I would also like to take a break and go see a movie” 
[57]. Models play a central role in representing all of these aspects involved in 
a learning situation. 
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Before presenting a general framework to support model-based reasoning, 
a discussion of the different kinds of models that might be used in alignment 
with internal models is relevant. Just as there are different kinds of internal 
representations, there are a variety of different kinds of external 
representations or models. External models come in many forms. Some are 
mathematical in nature, such as a regression model. Some are graphical, 
such as a schematic drawing. Some are in the form of arguments with 
premises and a conclusion. Some models involve video or animation 
depicting how a device works. Some involve a combination of different forms 
of representation. Which are effective when, for whom, and why?  

One temptation is to think at the level of learning styles and preferences 
based on a belief that those individual differences are key factors in learning 
effectiveness. Certainly learning styles and preferences are often relevant, but 
they do not reach a level that aligns easily with how a person processes 
information. Some learners may say that they are visual learners, for 
example. They may even have some evidence for such a claim. However, this 
does not resolve the issue of which visual models will be easily aligned with a 
particular learner’s internal representations and, as a consequence, be likely 
to help that learner with particular content to be learned. On the other hand, 
visual learners are likely to respond well to visually oriented motivational and 
volitional messages [55].  

An established approach to support learning in complex domains is to have 
a general sense of common problems encountered for different tasks. A 
cognitive task analysis can be a start along these lines, and cognitive task 
analysis has proven useful for the design of instruction. Those who have 
implemented intelligent tutoring systems have developed libraries of 
commonly encountered mistakes and misunderstandings that can be used to 
inform an instructional decision such as selecting an appropriate learning 
activity or providing targeted feedback [84, 100]. Dörner [21, 22] reports that 
those confronting complex and ill-structured problems experience a number of 
challenges: (a) a failure to grasp the full breadth of a problem situation with a 
tendency to focus on just one component or familiar aspect of the problem, (b) 
the inability to reason effectively about non-linear relationships among 
different aspects of the problem, and (c) difficulty in understanding and 
predicting delayed effects and the accumulation of effects over time. 

In addition, one can elicit a learner’s representation or conceptualization of 
the problem space (a re-representation of mental models and schemas) and 
use that to assess of progress of learning (e.g., indicate how well it matches 
an expert’s representation), provide formative feedback (e.g., suggest missing 
factors or relationships among problem components), and support motivation 
and volition (e.g., display successful application in a situation likely to be 
meaningful to the learner) [57,75, 84, 100].  

The question of whether and how designers and instructors can influence 
model-building activities in learners is a core educational concern [52]. 
According to Johnson-Laird [44] and other authors there are several sources 
of mental models: (1) the learner’s ability to construct models in an inductive 
manner; (2) everyday observations of the outside world combined with the 
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adaptation of familiar and generally recognized models; and (3) the 
explanations, representations and examples provided by others. All of these 
sources are relevant for model-based instruction. In the framework we 
propose, the learner should be encouraged to construct an initial model and 
reflect on that model based on his/her prior experience and with feedback 
from peers (#1). In addition, a reference model should be constructed based 
on an instructor’s or an expert’s knowledge and, along with models of other 
students, the reference model can be used to encourage targeted reflective 
analysis (#2 and #3). 

According to Carlson [12], it is possible to design instruction to involve the 
learner in a process of inquiry in which facts are gathered from data sources, 
similarities and differences among facts are noted, and concepts developed. 
In this process, the instructional program serves as a facilitator of learning for 
students who are working to develop their own answers to questions. On the 
other hand, instructional programs can present clearly defined concepts 
followed by clear examples, including a generalized reference model. A 
designed conceptual model may be presented ahead of the learning tasks in 
order to direct the learner’s comprehension of the learning material. More 
generally, we can distinguish between different paradigms of model-oriented 
instruction depending on whether they aim at (a) self-organized discovery and 
exploratory learning, (b) guided discovery learning, or (c) learning oriented 
toward the imitation of an expert’s behavior or the adaptation of teachers’ 
explanations. 

In the next section, a framework that integrates aspects of all three of these 
approaches into a general framework will be presented. This framework 
should be considered provisional. Research to explore this and other 
possibilities will conclude the discussion. 

4. A Framework for Integrating Models in Learning and 
Instruction 

A well-established instructional design framework that has wide applicability is 
cognitive apprenticeship [15]. The cognitive apprenticeship model involves six 
different methods and the notion that learners new to a domain require more 
support than more experienced learners. The six methods are: (a) modeling 
(e.g., show how an experience person solves the problem), (b) coaching (e.g., 
observe performance and provide timely and constructive feedback), (c) 
scaffolding (e.g., implementing explicit support to facilitate learners’ problem 
solving), (d) articulation (e.g., getting learners to talk about how they are 
thinking about solving a problem), (e) reflection (e.g., encouraging learners to 
compare their solution with that of others), and (f) exploration (e.g., allowing 
learners to investigate new problems and problem approaches on their own 
with little or no guidance).  

The cognitive apprenticeship model is consistent with Gagné’s nine events 
of instruction (a claim with which some will disagree) as well as with Merrill’s 
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[74] first principles of instruction, just as the relatively new notion of cognitive 
efficiency is consistent with a great deal of traditional instructional design. 
Essentially, cognitive apprenticehship can be characterized as a significant 
and explicit cognitive extensive of earlier instructional design models. What is 
really new and only recently emerging is the recognition that it is important to 
take into account how individuals think and feel about complex problems and 
process information in the course of solving problems. In any case, there is a 
great deal of evidence that cognitive apprenticeship is a useful instructional 
design model [15]. The next step is to refine that model to explicitly account 
for internal reasoning processes. 

Model-facilitated learning (MFL) is an instructional design approach aimed 
explicitly at promoting model-based reasoning. MFL builds on cognitive 
apprenticeship [15] and Merrill’s [74] first principles. MFL is centered around 
and facilitated by models in the form of expert and student representations of 
a problem or problem space, a solution approach, and/or a solution. The 
models may or may not be created by learners, but learner interaction with 
models is generally an integral aspect of learning activities. 

The particular area for which model facilitated learning was designed 
involves complex and challenging learning tasks and problem-solving 
situations. Complex learning tasks tend to have many interacting components, 
some of which may be incompletely defined, and with some non-linear 
relationships and delayed interactions among the various components [21, 22, 
103]. Such problems occur in economic forecasting, engineering design, 
environmental planning, management decision making and in many other 
every day problem-solving situations. Using models of complex phenomena to 
help learners gain a holistic and meaningful sense of the problem is one 
aspect of model facilitated learning. Having learners engage in modeling 
activities to gain insight into the complexity of a problem situation is a second 
aspect of MFL. MFL assumes three stages of learning development and has 
associated instructional guidelines for each stage [75]. The first stage is 
problem orientation in which problems or related sets of problems are 
presented to learners and learners are asked to solve relatively simple 
versions. The second stage of learner development involves inquiry 
exploration in which learners are challenged to explore a complex task 
domain and asked to identify and elaborate the relationships among the 
various components of the problem. The third stage of learner development 
involves policy development in which learners are asked to reason in a more 
global and holistic with regard to rules and heuristics to guide decision making 
with regard to various problem situations that may arise in that task domain. 
Principles to guide the elaboration of learning activities and instructional 
sequences within these stages include such notions as (a) situating the 
learning experience in the context of meaningful and realistic problems [74], 
(b) presenting problems of increasing complexity, involving learners in a 
sequence of related tasks involving the initial problem scenario [106], (c) 
involving learning in an increasingly set of complex inquiries and explorations 
with regard to the problem situation, and (d) challenging learners to develop 
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rules and guidelines to guide decision making in anticipated problematic 
situations.  

The foundations for model facilitated learning are derived from system 
dynamics [103], educational and learning psychology [67, 101], and from 
instructional design [74]. In addition, MFL adopts the principle of graduated 
complexity [75] in the form of guidance for the elaboration of instructional 
sequences. Graduated complexity in MFL is implemented consistent with 
cognitive apprenticeship methods [15]. According to the principle of graduated 
complexity, instructional sequences should progressively challenge learners 
to: 
1. Characterize the representative behavior of a complex system, indicating how it 

behaves over time – guided discovery learning. 
2. Identify a desired outcome and key variables and points of leverage with respect 

attaining that outcome – exploratory learning. 
3. Identify and explain alternative causes for observed phenomena – deliberation in 

the context of problem solving. 
4. Reflect on how the system and associated variables seem to change over time and 

through interventions; this challenge requires perceptual processing but the critical 
aspect is the ability to focus on key problem components and how they change over 
time and with intervention; this is also consistent with the reflection method in 
cognitive apprenticeship – reflective reasoning. 

5. Develop a rationale to explain complex phenomena in terms of an underlying 
system stucture, including decision-making and policy formulation guidelines; this 
challenge is aligned with both articulation and reflection in the cognitive 
apprenticeship model – a high level of reflective reasoning.  

6. Broaden understanding through diverse and new problem situations; this challenge 
addresses near and far transfer of learning, is consistent with Gagné’s (1985) ninth 
event of instruction as well as with the exploration method in cognitive 
apprenticeship – more experiential learning. 

 

In addition to making use of elicited representations of problems to support 
graduated complexity with an MFL context, models are also useful in 
designing and implementing virtual change agents [57]. Specifically, elicited 
models, combined with an analysis of the problem as perceived by 
experienced and successfuol problem solvers, can indicate particular 
meanings and causes introduced into the problem situation by the learner that 
may not be productive in finding a solution and that may well lead a learner to 
lose interest or quit working on the problem. For example, an elicited student’s 
model may reveal a feeling of confusion due to having encountered a problem 
far beyond that student’s perceived capacity (e.g., “I am embarrased to say 
that do not see how to perform the steps to reach the goal”), or a student may 
reveal in the course of creating an external model frustration or other 
distractors (e.g., “I wish the system would just tell me what to do next”), or 
perhaps a student’s model may include emotional descriptors for some factors 
revealing feelings that could impede progress (e.g., “the stupid bureaucracy 
makes it difficult to see how to get from point A to point B in this problem”). In 
summary, the ability to identify relevant motivational and volitional factors is 
just as important as identifying problem missteps and miscues in the course of 
providing timely, informative, and meaningful feedback to students.  
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5. Further Research 

The ability to solve complex problems depends in large part on the ability of 
individuals to overcome motivational and emotional resistance to explore a 
challenging problem situation and then construct productive mental models 
and activate relevant schemas. Mental models are useful in identifying 
individual resistance to problems and explaining puzzling phenomena and 
complex systems, especially in terms of cause and effect [35, 93]. Those who 
are confronting challenging problems are likely to avoid the problem (which 
can be detected and addressed through the use of external representations) 
or else construct mental models in order to provide explanations for the new 
or unusual phenomena. Greeno [33] suggested that productive mental models 
should be encouraged along with the significant properties of external 
situations and appropriate interactions; this principle has strong implicaitons 
for the design of learning and instruction. Moreover, such a principle is 
consistent with a constructivist approach to learning that suggests that the 
learning environment should serve as an information resource which can be 
used by a learner to focus on relevant aspects of a problem and activate 
relevant schemas and prior knowledge. Learning activities are, consequently, 
required that enable learners to explore and interact with the learning 
environment in a meaningful, problem-centered context. Consistent with 
cognitive apprenticeship and model-facilitated learning, support and 
scaffolding should be provided to help problem solvers to be successful and 
develop both competence and confidence [53, 59]. This general approach can 
also be found in what is currently being called learning by design [50, 62]. 
Additionally, Kirschner and colleagues [60] and Mayer [73] have argued that 
minimal guidance during instruction, especially with learners new to a 
problem-solving domain, is not effective. Consistent with cognitive 
apprenticeship and model-facilitated learning, explicit coaching and overt 
learning support should be provided to those inexperienced in the domain. 

What is not known or well established is how best to support the 
development of expertise and insight with regard to complex, problem solving 
activities in specific problem domains. How well instruction created in 
accordance with the principles of MFL works in terms of developing 
competence and expdertise, especially in comparison with other instructional 
methodologies, has not been established. Which kinds of models (student-
created, expert-created, partially complete, etc.) are effective with different 
learners and learning tasks is also not well known, nor is it well known how 
external models align with internal models in specific problem solving 
situations. In addition, the efficacy of using model representations to identify 
and address motivational, volitional and emotional issues has not been 
sufficiently explored in the research literature. 

While versions of MFL have been implemented and evaluated in the first 
two stages indicated above (problem orientation and inquiry exploration), very 
few MFL environments exist to promote learning at the last stage of learner 
development (policy development). As a result, research on effective MFL 
techniques to promote policy development knowledge remains very open for 
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further research and development, and additional research is needed in the 
first two stages as well. Additionally, effective MFL instructional sequences for 
complex problem task domains is not very well established. A central 
underlying problem concerns the need for well-developed means to assess 
the progressive development of student understanding in complex task 
domains. This requires validated means to elicit and evaluate student 
generated models in response to a wide variety of problem types and 
scenarios, yet those means are still in the early stages of development. 
Finally, integrating external models of various kinds and aligned those with 
individually generated internal models remains an important area open for 
further exploration. 
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