
DOI:10.2298/CSIS111216033D

Using Aspect-Oriented State Machines for

Detecting and Resolving Feature Interactions

Tom Dinkelaker1, Mohammed

Erradi

2
, and Meryeme Ayache

2

1 Ericsson R&D, Frankfurt, Germany
tom.dinkelaker@ericsson.com

2 Networking & Distributed Systems Research Group, TIES, SIME Lab, ENSIAS,
Mohammed V-Souissi University, Rabat, Morocco
erradi@ensias.ma, meryemeayache@gmail.com

Abstract. Composing different features in a software system may lead
to conflicting situations. The presence of one feature may interfere with
the correct functionality of another feature, resulting in an incorrect be-
havior of the system. In this work we present an approach to manage
feature interactions. A formal model, using Finite State Machines
(FSM) and Aspect-Oriented (AO) technology, is used to specify, detect
and resolve features interactions. In fact aspects can resolve interac-
tions by intercepting the events which causes troubleshoot. Also a Do-
main-Specific Language (DSL) was developed to handle Finite State
Machines using a pattern matching technique.

Keywords: feature interactions, aspect interactions, aspect-oriented
programming, state machines, conflict detection, conflict resolution,
object-oriented programming, formal methods, domain-specific aspect
languages.

1. Introduction

An important problem in modeling and programming languages is handling
Feature Interactions. When composing different features in a software
system, these may interact with each other. This can lead to a conflicting
situation, where the presence of one feature may interfere with the correct
functionality of another feature, resulting in an incorrect behavior of the
system. Various techniques have been explored to overcome this problem.
Among them, formal approaches have received much attention as a means
for detecting feature interactions in communication service specifications.

In Software Product-Line (SPL) engineering [1], [2], the designer
decomposes a software system into functional features by creating a feature
model [1], [3]. But a feature model can only define a set of features and
known interactions between them. Feature models do not help, when the
designer overlooks a feature interaction – especially at the implementation
level.

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1046

Aspect-Oriented Programming (AOP) [4] uses a special kind of modules
called aspects that supports localization of code from crosscutting features.
AOP has been extended with special language concepts for controlling
aspect interactions [5], [6], but AOP does not support controlling feature
interactions with modules that are not aspects in particular objects.

To address the above problems, in this work we propose a formal ap-
proach which uses an extension to finite state machines as the formalism for
behavioral specification. The central idea behind using finite state machines
as specification models is to have a strong mean to envision feature interac-
tions. The formalism defines a process, which consists of the following steps:
First, the developer gives a formal specification of each feature that extends
the system’s core feature, even partial specifications are allowed. Second,
using a suitable composition mechanism for FSMs (e.g., the FSM’s synchro-
nized cross-product [7]), the developer makes a parallel composition of the
selected feature specifications and analyzes this composition. Third, the de-
veloper can identify conflicting states by analyzing the composed specifica-
tion of the global system. Forth, to resolve feature interactions, the approach
uses aspect-oriented state machines to intercept, prevent, and manipulate
events that cause conflicts. We suggest a new formalism for aspect oriented
state machines (AO-FSM) where pointcut and advice are used to adopt Do-
main-Specific Language (DSL) [8] state machine artifacts. The advice de-
fines a state and transition pattern that it applies at the selected points, i.e. it
may insert new states and transitions as well as it may delete existing ones.

2. Case Study: Telecommunication Systems

2.1. Plain Old Telephone Service (POTS)

Features in Telecommunication systems are packages providing services to
subscribers. The Plain Old Telephone System (POTS) is considered as a
feature providing basic means to set up a conversation between subscribers.
In the following we provide the design and the specification of the basic ser-
vice of a telephone system (POTS). We assume that a phone is identified by
a unique number, and it can be either calling or being called.

In this specification, there are three objects that constitute the telephone
system: the "user", the "agent" and the "call" as shown in Fig. 1. According to
our semantics, the instantiation of these objects provides three objects run-
ning in parallel. The communication between objects is based on operation
calls using a rendezvous mechanism. Note that the behavior part of these
objects is specified using a finite state machine model.

Fig. 1 partially specifies the behavior of the system using finite state ma-
chines (see section 4 for a more detailed presentation of the formalism). This
system works as follows: Once the caller (user-1, an instance of the User

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1047

behavior of Fig. 1) picks up (offhook) his phone (Agent-1, an instance of the
Agent automaton), the network (designated by the object "call") responds by
sending a tone. This user is then ready to dial the telephone number of the
called party (using the operation "dial") using a standard telephone interface
(Fig. 2). Then the network sends back a signal (operation "Ring") which caus-
es a ring on the called phone (Agent-2, another instance of Agent). An
Echo_ring is then sent to the caller (operation Echo_ring). We assume that
the called user is always ready to answer a call. When the called user picks
up (offhook) his phone, the ring is then interrupted and the two users engage
in a conversation.

Fig. 1. Partial automata specifying the three objects

Fig. 2. Standard telephone interface with a flash-hook button (labeled with “R”)

Flash-hook button

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1048

2.2. Features available for User Selection (User Services)

According to the definition provided by Pamela Zave [9]: “in a software sys-
tem, a feature is an increment of functionality, usually with a coherent pur-
pose. If a system description is organized by features, then it probably takes
the form B + F1 + F2 + F3 . . ., where B is a base description, each Fi is a
feature module, and + denotes some feature-composition operation”. There-
fore, telecommunication software systems have been designed in terms of
features. So different customers can subscribe to the features they need.
Many features can be enabled or disabled dynamically by their subscribers.
Among the telecommunications features provided by a telephone system we
found: Call Waiting, Three Way Calling, Call Forwarding, and Originating Call
Screening.

2.2.1 Call Waiting (CW)

A Call Waiting feature (CW) is a service added to the basic service POTS
described earlier. It allows a subscriber A (having the service CW) already
engaged in a communication with a user B to be informed if another user C
tries to reach him. A can either ignore the call of C, or press a flash_hook
button to get connected to C. In other words, if C makes a call to A, while A is
in communication with B, then C receives an Echo_ring, as if A was availa-
ble, and A receives an “on hold” signal. Then A could switch between B and
C by pressing the flash_hook button. If B or C hangs up, then A will be in
communication with the user still on line. The basic service POTS to which is
added the Call Waiting feature is symbolically designated by POTS + CW.

2.2.2 Three Way Calling (TWC)

The Three Way Calling is a service which extends the basic service POTS. It
allows three users A, B and C to communicate in the following way: Consider
a subscriber A (having the TWC feature) who is communicating with B. A can
then add C in the conversation. To reach this goal, A put first B on hold by
pressing a button flash hook button. Then, establish a communication with C.
And finally, press the flash hook button again, to get, A, B and C connected.
A can remove C from the conversation by pressing the flash hook button. If A
hangs up, B and C remain in communication. The basic service POTS to
which is added the Three Way Calling feature is symbolically designated by
POTS + TWC.

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1049

2.2.3 Call Forwarding on Busy (CFB)

Call forwarding on busy is a feature on some telephone networks that allows
an incoming call to a called party, which would be otherwise unavailable, to
be redirected to another telephone number where the desired called party is
situated.

2.2.4 Originating Call Screening (OCS)

The OCS Feature allows a user to define a list of subscribers hoping to
screen outgoing calls made to any number in this screening list. A
user A (with the OCS feature) who registered user B on the list will no
longer make a call to B, but B could call A.

2.3. Feature Interactions

Feature interactions could be considered as all interactions that interfere with
the desired operation of a feature and that may occur between a feature and
its environment, including other features. Therefore, a feature interaction may
refer to situations where a combination of different services behaves
differently than expected.

For instance, pressing a “tap” button can mean different things depending
on which feature is anticipated. This is the case of a flash-hook signal
(generated by pressing such button) issued by a busy party could mean
adding a third party to an established call (Three Way Calling) or to accept a
connection attempt from a new caller while putting the current conversation
on hold (Call Waiting). Should the flash hook be considered the response of
Call Waiting, or an initiation signal for Three-Way Calling?

Another feature interaction may occur if we consider a situation where a
user A has subscribed to the Originating Call Screening (OCS) feature and
screens calls to user C. Suppose that a user B has activated the service Call
Forwarding (CF) to user C. In this situation, if A calls B, the intention of OCS
not to be connected to C will be violated since the call will be established to C
by way of B.

Usually, the causes of interactions may be due to the violation of
assumptions related to the feature functionality, to the lack of a technical
support from the network, or to problems related to the distributed
implementation of a feature. Despite the lack of a formal definition of a
feature interaction due to the diversity of the interactions types, the reader
will find a detailed taxonomy of the features interactions in [10].

Our approach to process the feature interaction problem consists in two
methods based on formal techniques. The first method is used to detect the
interactions while the second resolves them. In the context of formal
techniques, interactions are considered as "conflicting statements". This may

http://en.wikipedia.org/wiki/Called_party
http://en.wikipedia.org/wiki/Telephone_number

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1050

be a deadlock, a non-determinism, or constraints violation which may result
from states incompatibility between two interacting features. The
incompatibility between states can be detected using a “Model-Checking”
technique.

3. Problem Statement

Feature interaction is considered a major obstacle to the introduction of new
features and the provision of reliable services. In practical service
development, the analysis of interactions has often been conducted in an ad
hoc manner.

However, the feature interactions problem is not limited to the
telecommunications domain. The phenomenon of undesirable interactions
between components of a system can occur in any software system that is
subject to changes. This is certainly the case for service-oriented
architectures. First, we can observe that interaction is at the very basis of the
web services concept. Web services need to interact, and useful web
services will emerge from the interaction of more specialized services.
Second, as the number of web services increases, their interactions will
become more complex. Many of these interactions will be desirable, but
others may be unexpected and undesirable, and we need to prevent their
consequences from occurring.

There is a broad body of research that addresses the problem of feature
interactions. However, as elaborated in the following, there are important
limitations how the state of the art can detect and resolve feature
interactions.

3.1. OOP cannot localize crosscutting Code of Features

Object-oriented programming (OOP) enables a hierarchical decomposition of
the system into classes that can be extended by other classes. Using an OO
language, developers can completely describe the system behavior in form of
an implementation that can be executed. However, standard OO languages
(such as Java or C++) do not provide special means to control feature
interactions at the implementation level.

Furthermore, there are certain features for which OOP does not allow a
good Separation of Concerns [12] because their implementation is scattered
over several classes and tangled with the implementation of other features
[4]. Examples for such features are non-functional components like tracing,
billing calls, or feature interaction resolution.

Because OO languages do not have the right means to implement features
and manage interactions among them, developers are left alone with
implementing the logic that handles crosscutting and feature interactions,
which results in code that is hard to understand and maintain.

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1051

3.2. Feature Models can only detect anticipated Feature Interactions

Feature models (FMs) [3] are a well-known technique to model the
functionality of a system. They also allow prevent interactions between
features that the developer is already aware of.

For example, Fig. 3 shows an FM for the telephone system, which does
not only model features selected by the user, but choices made by the
vendor. The telephone system has abstract features, such as a platform, a
user interface, a receiving call indicator, and a set of user services, which can
be implemented by a choice of features. The telephone platform can be
either analog or digital (exclusive-or). If it is analog, then there can be a
digital display. It must have a bell (mandatory feature), and in addition, it may
have a LED (optional feature) that indicates receiving calls e.g. when the
volume of the bell is low. The user may choose from the set of services from
Section 2.2 (inclusive-or).

To model constraints of valid configurations that cannot be expressed
using exclusive or inclusive or, the developer uses feature constraints. For
example, the feature model in Fig. 3 defines that the features CW and TWC
requires a flash_hook button has to be selected as well. In contrast, when
selecting an analog platform, this excludes selecting a digital display.

Digit a l

Display
TW CCW

User

Services

CFB

POTS

User

Int erface

OCS
Flash-hook

But t on

Volum e

But t ons

Receiving Call

Indicat or

BellLED

requires

m andat ory

opt ional

exclusive or

or

const ra int

requires

Plat form

Analog Digit a l

excludes

Fig. 3. A feature model of the telephone system (POTS)

An FM allows checking a particular selection of features, which is called a
configuration, whereby a tool validates that all modeled feature constraints
are met. However, an FM cannot guarantee that there is no feature
interaction at the implementation-level. In case, the developer overlooks an
interaction and does not model it correctly in the FM. In FMs, there is no
support for formal behavioral modeling. Consequently, with FMs, developers
cannot analyze the combined behavior of the features and for possible
interactions between them.

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1052

3.3. AOP can only detect Aspect Interactions

Aspect-oriented programming (AOP) enables developers to modularize such
non-functional concerns in OO languages. Important AOP concepts are
pointcut, join point model, and advice. Pointcuts are predicates over program
execution actions called join points. That is, a pointcut defines a set of join
points related by some property; a pointcut is said to be triggered or to match
at a join point, if the join point is in that set. It is also common to speak about
join points intercepted by a pointcut. Such a join-point model (JPM)
characterizes the kinds of execution actions and the information about them
exposed to pointcuts (e.g. a method call). An Advice is a piece of code
associated with a pointcut, it is executed whenever the pointcut is triggered,
thus implementing crosscutting functionality. There are three types of advice,
before, after, and around; relating the execution of advice to that of the action
that triggered the pointcut the advice is associated with. The code of an
around advice may trigger the execution of the intercepted action by calling
the special method proceed.

However, there is a lack of a general approach to weave on code
fragments of DSLs. The problem is that current AOP tools support only one
JPM at a time, which is for most aspect-oriented (AO) languages one JPM for
the events in the execution of an OO language [4]. Only for some DSLs,
there is a domain-specific aspect language with a domain-specific JPM [13]
(e.g. encompassing join points like a state transition in a state machine). Still,
current AOP tools do not provide support for special quantifications for
weaving aspects into programs written in several languages that have
different kinds of join-point models.

For example, consider implementing a logging feature as an aspect that
needs to be woven into the code of several languages for debugging, such as
it need to be woven into code in Java with an Aspect-like JPM, code in SDL1
that defines a JPM for FSMs, and code in LOTOS2 that defines a JPM on top
of protocols as communicating processes.

4. Characterization of Aspect-Oriented FSMs

In this paper, we propose a new formalism for aspect-oriented state machines
(AO-FSM) which is based on finite-state machines and the Essential
Behavioral Model. An AO-FSM defines a set of states and transitions like a
FSM, but states and transitions do not need to be completely specified.
Developers can selectively omit states, transitions, and labels, and therefore

1 SDL: Specification and Definition Language: http://www.sdl-

forum.org/SDL/index.htm
2 LOTOS: Language Of Temporal Ordering Specification: http://language-of-

temporal-ordering-specification.co.tv/

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1053

constitutes a partial FSM in which parts are missing so that it can be used as
a pattern for matching against other FSMs and for manipulating them.

4.1. The Basic Finite State Machines (FSMs) Model

An automaton with a set of states, and its “control” moves from state to state
in response to external “inputs” is called a Finite State Machine (FSM). A
Finite State Machine provides the simplest model of a computing device. It
has a central processor of finite capacity and it is based on the concept of
state. It can also be given a formal mathematical definition. Finite State
Machines are used for pattern matching in text editors, for compiler lexical
analysis, for communication protocols specifications [15]. Another useful
notion is the notion of the non-deterministic automaton. We can prove that
deterministic finite State Machine, DFSM, recognize the same class of
languages as Non-Deterministic Finite State Machine (NDFSM), i.e. they are
equivalent formalisms.

Definition 1: A non-deterministic Finite State Machine is defined by a quad-

ruplet Q, Σ, δ, q0 where Q is a set of states, Σ is an alphabet, δ is the transi-

tion function, and q0 is the initial state. The transition function is δ: Q× Σ → 2
Q

where 2
Q
 is the set of subsets of Q.

An event σ ∈ Σ is accepted out from a state q ∈ Q if the occurrence of σ is
possible from the state q, i.e. if δ(q,σ) is not empty, we denote this by δ(q,σ)!
When δ(q,σ) is empty, we write δ(q,σ)¬!. We consider a blocking state q
(deadlock) if no transition is possible from this state. Formally: q is blocking
⇐⇒ ∀σ ∈ Σ, δ(q σ)¬!.

Definition 2: A deterministic finite state machine is defined by a quadruplet

Q, Σ, δ, q0 and corresponds to a particular case of the non-deterministic

finite state machine where for any q and for any event σ, δ(q,σ) is either the

empty set or a singleton. When δ(q,σ) is not empty, δ(q,σ) = {r} will be simply

noted δ(q, σ) = r.

The definitions introduced above refer to the basic formal model, but the
actual notations used in our system modeling extend this model with other
features in order to make it more practical and to support the requirements of
our approach. Among these extensions we find: nested states, dependencies
between states, and propositions. Therefore nested states, as shown in Fig.4,
will be used to allow for partial automata modeling that hide parts of an
automaton. Such partial specification hides the states and transitions which
are not concerned by the composition and will not lead to an interaction. The
dependencies between states allow indicating the order of occurrence of a
given transition within different features. The propositions could be used as

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1054

guards to characterize a given state according to the value of defined
variables within such state.

Fig.1 gave an example of FSM. In addition, we give here additional exam-
ples concerning the partial finite state machines corresponding to the Call
Waiting (CW) and Three Way Calling (TWC) features:

A partial formal specification of POTS+CW is a FSM FCW shown in Fig. 4.
The shown states Qi, for i=1 to 5, have the following semantics:

 Q1: A and B are connected and start communicating.

 Q2: A and B are communicating, then a call from C occurs on the switch
of A.

 Q3: A and B are communicating, and A receives the signal call-waiting
indicating that someone is calling.

 Q4: B is waiting, A and C are communicating.

 Q5: C is waiting, A and B are communicating.
The events Ei, for i=1 to 3, have the following semantics:

 E1: a call from C arrived on the switch of A.

 E2: A receives the signal call-waiting indicating that someone else is call-
ing.

 E3: A pushes the flash_hook button.
A partial formal specification of POTS+TWC is the FSM FTWC shown in

Fig. 4. The states Ri, for i=1 to 4, have the following semantics:

 R1: A and B are communicating.

 R2: B is waiting.

 R3: B is waiting, A and C are communicating.

 R4: A, B and C are communicating.
The event E3 has already been defined for the specification POTS + CW.

The event E4 has as its semantics:

 E4: A is communicating with C.
Note that the states “in bold” Q1 and R1 represent nested FSM. For in-

stance this means that the state Q1 corresponds to a FSM which is a portion
of the global specification, nested in this state Q1.

Fig. 4. Specification FCW (left) and specification FTWC (right)

FC

W
FT

WC

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1055

4.2. Aspect-Oriented Finite State Machines (AO-FSM)

In an AO-FSM aspect, there are two parts: a pointcut and advice – like in
other aspect-oriented languages for GPLs, but our pointcut and advice adapt
DSL state machine artifacts. There is a composition model that defines how
aspects at the meta-level are composed with base-level state machines,
which is elaborated in the following.

An AO-FSM pointcut defines a state and transition pattern that selects all
FSMs that the advice adapts. This pattern (at the meta-level) describes a
model that needs to be observed on the execution of other (base-level) state
machines. When the first part of the pattern is observed, in other words when
a base-level state machine enters the initial state of the pointcut’s state
machine, our execution model creates a new meta-level instance of the state
machine that describes the pattern and monitors the further execution of the
base state machine. When observing new events at the base level, our
composition model updates the meta-level instance in parallel to executing
and updating the base-level instance. Finally, when the meta-level instance
enters a final state, this means that the pattern has been recognized. In
contrast, whenever the pointcut state machine does not define a matching
transition for one of the observed events, the meta-level instance is deleted
and garbage collected, since the pattern can no longer be fulfilled.

The advice defines a state and transition pattern that it applies at the
selected points in the base-level state machine, i.e. it may insert new states
and transitions as well as it may delete existing ones. As long as the meta-
level instance remains in the final state, the advice is active, i.e. the changes
are applied.

Fig. 5 shows visual models of all types of AO-FSMs. The upper row
enumerates all pointcut types (alphabetic indices), in which only the shown
parts define the pattern and omitted parts match like wildcards. The lower row
enumerates all advice types (roman indices), in which only the bold parts
adapt the corresponding parts of an FSM. When constructing an AO-FSM
aspect, the different types of pointcut and advice types can be composed.

There are 6 different kinds of pointcuts: a) matches states with a particular
label Sp, b) matches any state regardless of its label, c) matches a state in
which a certain preposition p1 is true, d) matches a state that has an incoming
transition with label Eo, e) matches a state with an outgoing transition with a
label Eq, and f) matches a sequence of two states with a transition that has
the label Er.

There are 8 different kinds of advice: i) inserts a new transition for event
Es, ii) inserts a new state St, iii) adds a new proposition p2 to a state, iv)
defines a dependency constraint c2 between two states or two transitions, v)
deletes the transition for event Eu, vi) deletes the state Sv, vii) deletes the
property p3, and finally, viii) defines a conflicting composition that results in
an error message.

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1056

Fig. 5. Pointcut and advice types in aspect-oriented finite state machines

Usually, pointcut and advice compose the above basic patterns to more
complex ones. For example, if we need a composite pointcut that matches a
particular state Sp with an incoming transition with label Eo, then we would
combine the basic patterns a) and f). For example, if we need a composite
advice that adapts an existing state Sp by adding new transition Es to a new
state St, then we would combine the basic patterns a), i) and ii). With these
compositional semantics, rich adaption scenarios can be modeled.

To weave an aspect, we match all pointcuts and apply all advice for all
FSMs. For a single FSM, the pointcut matches at every point in the FSM and
applies the advice at each of these points. The adapted FSMs are then used
for execution.

5. Resolving Feature Interactions with AO-FSMs

To control feature interactions, developers uses aspects to analyze and
manipulate the behavior of a system that they compose from a set of
modular feature specifications. In a nutshell, they compose specifications into
a global behavior which we call an Essential Behavioral Model (EBM) of the
system. The EBM consists of nested state machines that describe the
composition of all features in the system. In the beginning, the EBM may
expose feature interactions. To achieve a conflict-free composition of the
features, developers use AO-FSM aspects to detect interactions that manifest
singularities in the composed specification. There are three possible

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1057

singularities: 1) the composed EBM is non-deterministic, 2) the composed
EBM has contradicting prepositions, or 3) the composed EBM has blocking
states. The main advantage of our approach is that feature interactions can
be directly identified from the model. Finally, the developer can resolve
feature interactions by eliminating singularities using AO-FSM aspect.

5.1. The Composition Mechanisms

A composition mechanism models the way in which features are composed
together to yield a single FSM model of the system. In this section we present
two possible composition mechanisms: the synchronized product and the
exclusive sum. Such operations are defined as follows3:

Definition 4: Consider two FSMs A=QA, ΣA, δA, qA0 and B=QB, ΣB, δB, qB0.

Let Ω be a subset of ΣA and ΣB, in other words Ω ⊆ ΣA∩ΣB. The Synchro-

nized Product of A and B, according to Ω, is a FSM represented by A∗B[Ω]

= Q, Σ, δ, q0 defined formally as follows:

 Q ⊆ QA×QB , Σ = ΣA∪ΣB , q0 = (qA0,qB0)

 ∀q=qA,qB∈ Q, ∀σ∈Ω:

(δ(q,σ)!) ⇐⇒ (δA(qA,σA)! ∧ δB(qB,σB)!)

(δ(q,σ)!) ⇒ (δ(q,σ)) = (δA(qA,σ) × δB(qB,σ))

 ∀q =qA, qB∈ Q, ∀σΩ:

(δ(q,σ)!) ⇐⇒ (δA(qA,σA)! ∨ δB (qB,σB)!)

(δ(q,σ)!) ⇒ (δ(q,σ) = (δA(qA,σ)×{qB}) ∪ ({qA}×δB(qB,σ))

Intuitively, if A and B specifies two processes, then A∗B[Ω] is the global
specification of the two processes composed in parallel and have to

synchronize on Ω’s actions. By AB[] we will note the product of the
automaton A and B obtained by removing the blocking states from the

Synchronized Product A∗B[Ω]. When Ω is empty, the two processes are said
to be independent and their product is called the cross-product of A and B. It
is denoted by A∗B[]. When Ω = ΣA∩ΣB , their product is denoted A∗B.

Definition 5: (Sum of two FSMs, the Extension Relationship)

Consider two FSMs A=QA,A,A,qA0 and B=QB,B,B,qB0. The extension
relation of A and B is a FSM defined formally as follows:

Q ⊆ (QA×QB) ∪ QA ∪ QB, Σ = ΣA∪ΣB , q0 = (qA0,qB0)

3 Recall that a negated exclamation mark (δi (qi, σ)¬!) means that there is no

transition defined, while an exclamation mark (δi (qi, σ)!) means that there is a

transition defined.

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1058

 ∀q=qA,qB∈ Q ∩ (QA×QB), ∀σ ∈ Σ:

 (δ(q,σ)!) ⇐⇒ (δA(qA,σ)! ∨ δB(qB,σ)!)

 (δA(qA,σ)! ∧ δB(qB,σ)!) ⇒ δ(q,σ) = δA(qA,σ)

 (δA(qA,σ)! ∧ δB(qB,σ)!) ⇒ δ(q,σ) = δB(qB,σ)

 (δA(qA,σ)! ∧ δB(qB,σ)!) ⇒ (δ(q,σ)) = (δA(qA,σ) × δB(qB,σ))

 ∀q=qA ∈ Q ∩ QA, ∀σ ∈ Σ:

 (δ(q,σ)!) ⇐⇒ (δA(qA,σ)!)

 (δ(q,σ)!) ⇒ δ(q,σ) = δA(qA,σ)

 ∀q=qB ∈ Q ∩ QB, ∀σ ∈ Σ:

 (δ(q,σ)!) ⇐⇒ (δB(qB,σ)!)

 (δ(q,σ)!) ⇒ δ(q,σ) = δB(qB,σ)

Intuitively, if A and B specify two processes, then AB is the global speci-
fication of the two processes behaving exclusively.

Fig. 6. Cross product of FCW and FTWC

As an example of a composition, Fig. 6 shows the result of the cross prod-
uct of the FSMs corresponding to the features Call Waiting and Three Way
Calling (shown in Fig. 4). We can observe the presence of non-determinism
at index i for i=1,2,3,4,5,6,7,8, which is illustrated by having at least two tran-
sitions for one event going out from the same state and leading to two differ-
ent states. There are 8 cases of non-determinism in Fig. 6, which are indexed

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1059

and high-lighted with the ellipses. For example, the state(R3,Q3) has two tran-
sitions to (R3,Q4) and to (R4,Q4) but using the same event E3. This non de-
terminism reflects the presence of an interaction between the composed fea-
tures (CW and TWC in this case).

5.2. The Essential Behavioral Model (EBM)

Recall that the principle of our method for managing feature interactions
consists in three phases: the global behavior specification, the interaction
detection and the interaction resolution. Interactions can be presented by
states called conflicting states. This can be a deadlock (blocking) situation, a
non-determinism or a constraints violation that is presented as an
incompatibility between two states of features in interaction.

There are two steps that are necessary in order to design a global behavior

specification for a system with a set of features:

 Step 1: Specify formally each feature (involved in the interaction) with
the basic system service (i.e. POTS in the case of a telecommunication
system). This specification can possibly be partial.

 Step 2: Make a composition of the features, using a suitable composition
mechanism (e.g., synchronized product, a cross-product, a sum, …),
leading to the global behavior defined by the EBM, which then is subject
to further analysis. For instance, if the synchronized product is used, it
implies making a synchronized automaton product (as shown in definition
4) of the behaviors of the composed features. Note that the synchroniza-
tion alphabet could be possibly empty.

5.3. Interaction Detection

Interaction Detection consists in the identification of the conflicting states by
analyzing the EBM automaton produced in Step 2 (see Section 5.2 above).
Such states could be either a state where a given transition can lead to two
distinct states (this is the case of non-determinism which is defined in
definition 1), to a deadlock state (where one can execute no transition) or to a
state constraints violation (i.e. a state belonging to the product of two features
specifications, and that results from two incompatible states). Formally, this
violation means that two incompatible states allocate different “logical” values
to the same variable.

For example, there is a feature interaction when we compose the two
feature specifications Call Waiting (CW) and Three Way Calling (TWC) using
a cross-product operation. For instance, when A is in communication with B

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1060

and A gets an incoming call from C, will the CW feature or the TWC feature
be invoked?

m)

ExEx

o)

pz  py

py  pz

p)

Si

(Si,)!

Fig. 7. Three detection aspects checking for composition singularities

When composing the aspects, a set of so-called detection aspects check
the composition for possible conflicts. A detection aspect detects a singularity
using a pointcut and its advice always declares a conflict, which makes the
composition fail as long as the singularity is not corrected. Fig. 7 shows three
detection aspects that detect the three aforementioned singularities: m)
matches any state if there are more than one transition with the same event
Ex, o) matches any state with contradicting prepositions py and pz, and p)
matches every blocking state Si for which there is no outgoing transition.
When necessary, developers can define their own detection aspects.
Whenever one of the detection aspect’ pointcuts matches in a composed
system, its advice will report a conflict.

Detection aspects are in particular useful when composing many models
and aspects that manipulate those models. Detecting composition
singularities prevents any further incorrect processing of the system in a
potentially undefined state. The above three detection aspects help
automatically detecting the most important composition singularities.
Therefore, the developer does no longer have to worry about them. Similar to
related work on aspects interaction [5], [16], automatic feature interaction
detection is enabled. However, automatic feature conflict resolution is not
possible in general [5].

5.4. Interaction Resolution

In order to solve feature interactions, a resolution aspect can implement
different resolution strategies. For instance, in our previous works we used
the following ones:

 Strategy 1: Make a composition using an exclusive choice of the two
features specifications involved in an interaction. The designer could use

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1061

existing merge algorithms [15] for LTS (Labeled Transition Systems)
based specifications. Such algorithm produces a specification where its
behavior extends the merged ones. The definition of the “extension” re-
lation was given in Definition 5.

 Strategy 2: Solve the interaction by making a precedence order upon the
occurrence of certain events of the features in interaction. This allows a
feature to hide some events from the other feature.

 Strategy 3: Establish a protocol between features involved in an interac-
tion. This protocol consists in exchanging the necessary information to
avoid the interaction. This approach is more adapted in the case where
the features are dedicated to be implemented on distant sites.

However, these strategies are largely based on pre-established and rigid

conventions. Therefore, in this paper we propose a more flexible and
customizable approach: to use aspects also as an interaction resolution
mechanism. According to this proposal, for resolving the conflict, the
developer needs to specify a set of resolution aspects. Each aspect
intercepts the reception of events, and removes one or more singularities
(e.g. cases of non-determinism) from the composed specification. Depending
on corresponding context (e.g. the path to the current state and the received
events), the aspect can make a choice concerning which of the conflicting
features should be active and which not. Therefore, a resolution aspect
defines a pointcut and advice for the corresponding conflict resolution, which
may have been detected using a detection aspect. Its pointcut matches the
conflict situation. Further, its advice declares what states and transitions to
remove from the composition such that it becomes deterministic. In the
following we explain the suggested method in the case where an interaction
occurs between the call waiting (CW) feature and the Three Way Calling
(TWC) Feature specified in Section 2, when they are composed using the
cross-product operation (see Fig. 6).

First, the detection aspect, in Fig. 7 at index m, identifies this non-
determinism singularity. Second, the developer specifies the resolution as-
pect in Fig. 8. The figure illustrates the pointcut as the thin solid lines that are
used as pattern to be recognized on some automaton. It illustrates two pieces
of advice as the bold solid lines that indicate what will be added to the au-
tomaton. In this case, there are pointcuts that matches the paths E1;CW.E3
and E3;TWC.E3. In both cases, the advice inserts a precedence constraint
over the non-deterministic transition labeled with the E3 event, depending
from which FSM this transition originates from CW.E3 or TWC.E3. In other
words, the resolution aspect resolves the interaction of the CW and TWC
features by defining precedence between those features that depends on the
sequence of previous events. Intuitively, if a call of C arrives on agent A
(event E1) before A presses the flash_back button (event E3), the CW fea-
ture will be active. In this case, the left pointcut in Fig. 8 will match and tem-
porarily remove the transition TWC.E3. Conversely, if E3 takes place before

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1062

E1, then the TWC feature will be active. In this case, the right pointcut in Fig.
8 will match and temporarily remove the transition CW.E3.

TWC.E3

E3

CW.E3TWC.E3

E1

preceeds
CW.E3 preceeds

Fig. 8. A resolution aspect that resolves the CW/TWC interaction

In this way, these aspects can be applied to the cross-product in Fig. 6 in
order to eliminate the non-determinism from index 1 and 2. In particular, in
these indexes the left pointcut in Fig. 8 applies, while the corresponding a
vice gives precedence to CW E3 transition with respect to TCW one. Thus,
the interaction is resolved in favor of CW.

6. Implementation

This section describes the proof-of-concept implementation of the AO-FSM
approach proposed in the previous sections. The proof-of-concept is provided
as a domain-specific aspect language AO4FSM. On the one hand, we have
implemented composition operators for state machines. On the other hand,
we are using the implementation of AO4FSM to detect and to resolve feature
interactions.

With this implementation, concrete solutions for feature interactions can be
implemented by using aspects whose pointcuts detect conflict situations and
advices to handle those situations.

We have implemented a prototype of AO4FSM in the Groovy language
[18] using the POPART framework [17] that allows embedding DSLs and
developing aspect-oriented extensions for those DSLs in form of plug-ins.
Further, we have implemented the examples presented in [7] and which were
used as a running example in this paper as a case study.

The implementation of AO4FSM is structured into four parts: the Embed-
ded DSL, the Domain-Specific Join Point Model, the Domain-Specific
Pointcut Language, and the Domain-Specific Advice Language. Each part will
be elaborated in the following.

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1063

6.1. Embedded FSM DSL

The implementation of AO4FSM is based on an embedding of a small
FSM DSL for describing finite state machines. The idea of embedding a lan-
guage is to describe its syntax and semantics using an existing language –
the host language – which is in our case Groovy. Basically, a language is
implemented as a library, instead of implementing it with a parser and a
compiler. Then the DSL programs are evaluated by invoking this library. Note
that it is out of the scope of this paper to completely present the embedding
of the FSM DSL. We therefore refer the reader who is interested in the gen-
eral approach to [17].

The following excerpt in Lst. 1 gives a rough idea of how we embed
FSMDSL into a Groovy class called FSMDSL. For the keyword in FSMDSL’s

syntax, the class defines methods, such as fsm, state, transition, and

when.

Lst. 1. Groovy Code for embedding FSMDSL

Our host language is Groovy. Indeed we chose Groovy because it allows
embedding DSLs (such as FSM DSL). Furthermore, Groovy is lightweight,
dynamic, and provides a higher level of abstraction, but at the same time,
you can mix Groovy code with Java. If one needs to extend a DSL with As-
pects, like in our FSM DSL, one can do so by exploiting the dynamicity of
Groovy provided by its Meta-Object Protocol (MOP) [17]. Despite the addi-
tional flexibility provided by using Groovy’s MOP, Groovy only enhances
Java instead of replacing it. Hence, our implementation runs on every stand-
ard JVM.

6.2. Domain-Specific Join Point Model

From a design point of view, Fig. 9 shows the join point types defined for
AO4FSM. There are five join point types that represent points in the execu-

public class FSMDSL {

 private State currentState;

 public StateMachine fsm(Map params, Closure body) {

 StateMachine stateMachine = new StateMachine(…);

 body.delegate = this; body.call();

 return stateMachine;}

 public State state(Map params, Closure stateDefinition){

 public void transitions(Closure transitionDefinitions) {…}

 public void when(Map params) {State from = currentState;

 def t = new Transition(from, params.to, params.event);

 from.addTransition(t);

…

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1064

tion of a FSM program. The joinpoint stargingStateMachine is triggered when
a state machine is started. The EntringState joinpoint could be reified once a
FSM enters into a given state. And when it exits the given state, ExitingState
joinpoint is then reified. The ResetStateMachine joinpoint is reified when
moving back to the starting state. As far as concerned, the EventReceiving
joinpoint, it is reified when the FSM receives an event.

Fig. 9. The Join point types of AO-FSM

Lst. 2. Groovy Code for reifying an EntringStateJoinPoint instance

As shown in the Lst. 2, each join point holds a set of parameters that de-
fines its context. For instance, the context of the EntringState join point refers
to the name of the FSM and to the targeted State as parameters. To reify a
join point at runtime, the POPART framework will execute this code, which
creates an instance of the class EntringStateJoinPoint.

6.3. Domain-Specific Pointcut Language

The other important components of our implementation design are the
pointcuts. In POPART, each pointcuts is implemented as a class which inher-
its the Pointcut class. In FSMDSL, pointcut sub-classes match the current

state parameters with the context of a corresponding join point. It returns
“true” if the pointcut matches – and “false” if not. All pointcuts implement a

joinPointContext = new HashMap();

State thisTargetState =

(State)instrumentationContext.receiver;

joinPointContext.thisFSM = thisTargetState.getOwningFsm();

joinPointContext.thisTargetState = thisTargetState;

def joinPoint = new EntringStateJoinPoint(joinPointContext);

joinPointContext.thisJoinPoint = joinPoint;

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1065

similar pattern, as shown in Lst. 3 for the EventReceivingPointcut. This

pointcut only matches EventReceivingJoinPoint with an event name

given by expectedEvent.

In addition to join point types mentioned in the Fig. 9, we added a more
history-based pointcut to AO4FSM: the Stateful pointcut. This pointcut uses a
state machine as a pattern that should match the execution trace of an ob-
served state machine. The pattern state machine is only internally visible for
the pointcut, to keep track of the events received by an observed state ma-
chine.

Lst. 3. Excerpt of EventReceivingPointcut which matches reifications of
EventReceivingJoinPoint

One can use the StatefulPointcut shown in Lst. 4 to detect the occur-

rence of patterns in FSMs, such as non-determinism. The first thing that the
pointcut will do is that it makes sure that the EventReceiving joinpoints is
triggered. Then it verifies that the current event matches the event and the
name of the current State are the same once in the context of the join points
(respectively: esjp.getEvent() and esjp.getCurrentState()). If the

first state matches, we have to check the event that leads us to get out that
the state does match as well and so on until we arrive to the final state in our
pattern. Then we have to check if the current state in the pattern is final or
not, if it is the case then the pointcut matches, and then its corresponding
advice is applied.

public class EventReceivingPointcut extends Pointcut {

 String expectedEvent; //given by constructor

 public boolean match(JoinPoint jp) {

 if (jp instanceof EventReceivingJoinPoint) {

 EventReceivingJoinPoint esjp =

 (EventReceivingJoinPoint)jp;

 if (esjp.event.euqals(expectedEvent))

 return true;

 else

 return false;

 }

 }

}

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1066

Lst. 4. Excerpt of StatefulPointcut to track an execution history

6.4. Domain-Specific Advice Language

The last part of the implementation is the advice language. This language
deals with making changes to FSMs to which pointcuts have been matched.
When implementing an advice using this language, developers can avoid the
problem of non-determinism as mentioned earlier in this paper. For example,
to resolve a non-determinism, the advice can remove one of the non-
deterministic outgoing edges as suggested by the resolution aspect in Fig. 8.

In the implementation of the advice language, we heavily exploit the
Groovy language features. We use closures and aspects that advise the
FSMDSL language implementation in order to embed the semantics of the
advice languages. One can think of the advice language of AO4FSM as a
DSL that produces aspects for Groovy that change the implementation of the
embedded FSMDSL. As the FSMDSL is changed by aspects, the evaluation
of FSMDSL programs is adapted as well.

To implement the keywords in the advice language, we use aspect tem-
plates, which are closures whose evaluation returns a Groovy aspect that
changes the behavior of some methods in FSMDSL. Such changes will re-
main dynamic, they do not change the static structure of the state machine,

public class StatefulPointcut extends Pointcut {

 StateMachine stateMachinePattern;

 public boolean match(JoinPoint jp) {

 State pCurrentState = stateMachinePattern.

 getCurrentState();

 String pCurrentStateName = pCurrentState.getName();

 if (jp instanceof EventReceivingJoinPoint) {

 EventReceivingJoinPoint esjp = (…)jp;

 String jpCurrentStateName =

 esjp.getCurrentState().getName();

 if (((jpCurrentStateName == pCurrentStateName)) &&

 (pCurrentState.getEvents().

 contains(esjp.getEvent()))) {

 stateMachinePattern.receiveEvent(esjp.getEvent());

 } else if((jpCurrentStateName == "*") &&

 pCurrentState.getEvents().contains(esjp.getEvent())){

 stateMachinePattern.receiveEvent(esjp.getEvent());

 }

 if(jpCurrentStateName.equals(

 stateMachinePattern.getFinalState().getName())) {

 return true;

 }

 }

 else

 return false;

 }

}

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1067

because there will be no changes conducted in the real FSM instance, but
they will be only applied by the aspects. Hence, we can consider those
changes as if they were applied to a “copy” of the real FSM. This part of the
implementation refers to the patterns described in Fig. 8. Indeed each advice
tries to change the behavior of an existing method in the State class.

For instance, the removeTransitionAdvice is the keyword that rep-

resents the advice type at index v) from Fig. 5, whose implementation is
shown in Lst. 5. The removeTransitionAdvice changes the behavior of a

method called State.handleEvent, which is responsible for looking up

the transition from the current to the next state. The advice eventually

changes the behavior of the handleEvent method. If for the current state

an event is received, that matches the event name passed in the advice

template’s arguments, and if it finds a corresponding transition in the cur-

rent state, then it will do nothing but it will proceed as if the transition does

not exist. Otherwise, the advice calls proceed, which will execute the

handleEvent as normal, i.e. without the change.

Lst. 5. Implementation of the AddTransitionAdvice

7. Discussion

To validate the approach, we use the AO4FSM prototype to automatically
detect the interactions, and we have developed a resolution aspect to revolve
these interactions. We could achieve the objectives stated in our introduction,
namely the support of the separation of concerns (in particular crosscutting
features), the formalization of the behavior, and how to deal with interactions.
With the current prototype, conflicts can be successfully detected and
resolved. However, correct results depend on whether the developer
completely specifies the model and correctly implements aspects with the
AO-FSM tool.

In the remainder of this section, we discuss the details about generality and
limitations of our approach with respect to our model (Section 7.1) and the
current prototype implementation (7.2).

removeTransitionAdvice = { current, next, event ->

 aspect(name:"generatedName_" +

 "removeTransitionAdvice\$instante\$" +

 current+"\$"+next+"\$"+event, perInstance:current) {

 around(method_execution("handleEvent")){

 if(matchesRemovedTransition(current,next,event)){
 //omitting proceed ignores the transition

 else {

 return proceed() //proceeds the transition }

…

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1068

7.1. Discussion about the Model

When using aspects for feature interaction detection and resolution, the de-
veloper has to decide case by case what are all encountered interaction sin-
gularities in a composed global behavior, which may have combinations of
the basic singularities shown in Fig. 7. For example, there can be a non-
deterministic transition with the same label (instance of index m) to a state
which has two contradicting prepositions (instance of index o) within a com-
position. Another example is the case where there are more than one block-
ing states (instance of index p). The compositionality can lead to complex
scenarios of interactions. Still, the detections aspects will seek all instances
of the three kinds of interactions and combinations thereof.

Regarding the totality of feature interaction detection, also detecting other
kinds of singularities is conceivable. Possible singularities can be derived
from properties observed by the theory of finite state machine and graph
theory. There are properties like connectivity and cycles. Some of these
properties could indicate a singularity of a possible interaction. Other proper-
ties are not relevant for interactions in our model. For example, with respect
to the connectivity property from graph theory, all FSMs in an EBM are by
definition a connected graph, i.e., there is a path from any node to any other
node in the graph. It is trivial to conclude that all synchronized cross-product
are connected. Therefore, this property does not need to be observed in our
model.

An example of a property which could be relevant is the presence of cy-
cles. A cycle in a directed graph is a path from one node back to the same
node, which in our EBMs could indicate whether the execution of a feature’s
behavior will not terminate. For instance, if there is no cycle, the behavior will
terminate (i.e. there are only finite sequences of input that are recognized by
the FSMs), or it stays alive (liveness property, i.e., something good can hap-
pen). It can be interesting in certain domains, such as security or safety,
whether an EBM has such a property or not. If there are two EBMs that are
free of cycles, still there may be composition that has cycles, i.e., the com-
posed behavior may not terminate or a liveness property is violated, which
indicates a feature interaction.

The current three detection aspects do not consider these more complicat-
ed scenarios. They are out of scope of the paper because for the time being
we found no interesting situation in the software product-line scenarios we
focus on. Still, at the current stage, we cannot draw universally valid conclu-
sions from the case study. A larger case would be more convincing. At the
end, only a formalization proof of the formalism in a proof assistant (like Isa-
belle or Coq) would give absolute guarantees.

With respect generality, the detection capabilities of our three detection
aspects are limited. But, if it is needed, researchers and developers can de-
fine new kind of detection aspects. Since our pointcut language is based on
finite state machines and from automata theory, we can derive that interac-
tion detection for all properties of the composed automaton in an EBM (the
global behavior) that can be recognized by another finite state machine (the

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1069

pointcut). The class of properties that can be recognized by finite state ma-
chines is well known: it can recognize properties expressed by regular ex-
pressions over the input alphabet, Linear-Time Temporal Logic (LTL), and
similar classes. With respect to generality, it can be considered as an ad-
vantage that the approach is based on formal methods of Automata Theory,
which allows us to draw such conclusions from a large body of theoretic re-
search.

The resolution capabilities in our model are complete with respect to finite
state machine, because developers can add and remove all elements in an
FSM, which are accessible as first-class objects in our aspect language. De-
veloper can insert and delete both states and transitions. Developer can ma-
nipulate transitions by changing the incoming and outgoing state. We did not
impose any restrictions with respect to the model into the aspect language
about what could be manipulated in AO4FSM advice.

7.2. Discussion about the Implementation

Our prototype implementation only covers feature detection and resolution at
design time. For save feature implementation, our approach could easily be
integrated with a code generator from state machines to C or Java code.

Various practicable limitations need to be addressed by future work; the
expressiveness of the model is confined by state machines and therefore
systems whose behavior can be formalized as a regular language. The ap-
proach could be extended for models with richer semantics, which conse-
quently would make it more complicated. Because we build the synchronized
product of FSMs, the approach suffers from the well-known state explosion
problem when using FSMs for modeling. Therefore, the prototype can only be
used to analyze small models. In future work, we want to reduce synchro-
nized products by finding equivalent states. Another limitation is that it cur-
rently does not nicely integrate with standard modeling notations, such as
UML. In future work, we would like to support for importing UML state charts
and let the developer enhance them to EBMs.

8. Related Work

Our work is related to the works in the field of FOP, AO modeling, and model
driven development.

FOP [11] provides language support for implementing modular features
that encapsulate basic functionality. Similar to FOP, our EBM and AO-FSM
allow modular specification of features. While FOP uses so called lifters for
inheriting features into a composition, we build on the sum for inheriting
FSMs and the synchronized product for composing them. While FOP is an
approach at the implementation level, we focus on the specification of
features. FOP allows defining known interactions. In contrast, EBM and AO-

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1070

FSM allow automatic detecting of interactions that the developer is not aware
of.

Aspect-oriented modeling has come up with various modeling notations
into which aspects are woven. There are AO state machines [13] and other
AO models available. However, they have been little explored in the context
of detecting feature interactions in behavioral models. AO models can only
detect conflicts involving aspects, but they cannot detect interactions
between base features as we do.

An ongoing trend in language research is to extend more and more base
languages with aspects, like we did for our state machine base language
(FsmDSL). Recently, aspects for Petri nets have been proposed [20].

There are also a number of other extensible compilers and language
workbenches that can be used for extending existing base languages with
aspects, namely the Aspect SandBox [25], Reflex [22], JAsCo [21], the
AspectBench Compiler [23], JAMI [24], and AspectASF [26]. These
extensible language infrastructures mostly support only extensions to
general-purpose language, but not to DSLs.

Achieving better modularization of language implementations in language
engineering is a central subject of research in recent years. There are parser
generators, such as ANTLR [28] and compiler-compilers, such as
SableCC [29] that enable modular and extensible language implementations.
In their specification languages, they use language constructs, such as inher-
itance, that enable better modularity in the language’s specifications and their
implementations. Aspect-oriented modularization itself has been proposed to
be used in language engineering to improve modularity in language specifica-
tions [26], [30] and implementations [23]. Such special specification language
constructs can be used to implement aspect-oriented language extensions in
a modular way [27].

All above mentioned language implementation approaches use an external
tool e.g. compiler that generates from the specification language (meta-
language) the executable code in a particular target language. In contract to
these approaches, we embed the DSL and aspects as internal DSLs. There is
no external tool because DSL programs are processed with the same compil-
er as host programs. This fact allows us to use the extension constructs of the
host language (inheritance and meta-object protocol) to extend the state ma-
chine DSL with aspect-oriented syntax and semantics using a modular AO
language implementation.

Model-driven development proposes various kinds of models – not only
FSMs. Life-Sequence Charts [19] are similar to AO-FSM. Such models are
often used for code generation. While standard model notations do not ade-
quately consider interactions, there are a few special models that allow ex-
pressing such constraints for a restricted set of domains, such as telecom-
munications for which special DSLs are available. Currently, developers are
left alone to encode constraints on the modeled feature using constraint lan-
guages for which often there is no complete support for code generation. In
contrast to this, possible domains for EBM and AO-FSM are not limited.

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1071

9. Conclusion

In this paper, we suggested a formal approach to detect and resolve feature
interactions within a distributed software system. The approach is based on a
new formalism for aspect-oriented state machines (AO-FSM) and language
implementation AO4FSM based on finite-state machines and Essential Be-
havioral Models (EBM). An EBM defines states and transitions as a FSM, but
states and transitions do not need to be completely specified and therefore it
allows defining partial FSM models.

A specific mechanism for interactions detection and a strategy for feature
interaction resolution were presented. The implementation of this mechanism
and its associated strategy were made using the AO-FSM formalism.
Therefore, the pointcut defines a state and transition pattern that selects all
FSMs that the advice adapts, while the advice defines a state and transition
pattern that it applies at the selected points. In fact, the approach uses
aspect-oriented state machines to intercept, prevent, and manipulate events
that cause conflicts.

Acknowledgements. This work was partially supported by the EMERGENT project
(01IC10S01N), Federal Ministry of Education and Research (BMBF), Germany. A
support was also provided by the DAAD (German Academic Exchange Service) and
the Moroccan CSPT Research Program.

The authors would like to thank Professor Mira Mezini and the Software
Technology Groups at the Technische Universität Darmstadt. Two of the co-authors
have worked as part of her group while conducting this research.

The authors would like to thank the anonymous reviewers for their valuable
comments and recommendations.

The authors would also like to thank Yassine Essadraoui who has contributed to
the implementation of the prototype of AO4FSM and the telephone case study as part
of his Master’s thesis.

References

1. Clements, P. and Northrop, L., “Software product lines”, Addison-Wesley, 2001.
2. Pohl, K. and Böckle, G. and Van Der Linden, F., “Software product line engi-

neering: foundations, principles, and techniques”, Springer-Verlag New York Inc,
2005.

3. K. Czarnecki and A. Wasowski. “Feature diagrams and logics: There and back
again” in Proc. 11th Int. Software Product Line Conference (SPLC 2007), Wash-
ington, DC, USA, 2007, pp. 23–34.

4. Kiczales, G. and Lamping, J. and Mendhekar, A. and Maeda, C. and Lopes, C.
and Loingtier, J.M. and Irwin, J.: “Aspect-oriented programming” in Proc. Europ.
Conf. on Object-Oriented Programming, Springer, 1997, pp. 220–242.

5. G. Kniesel, “Detection and Resolution of Weaving Interactions. TAOSD: De-
pendencies and Interactions with Aspects”, In Transactions on Aspect-Oriented

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1072

Software Development V, pp. 135–186, LNCS, vol. 5490, Springer Berlin / Hei-
delberg, 2009.

6. Tanter, E., “Aspects of composition in the Reflex AOP kernel”, Software Com-
position, Springer, 2006, pp. 98–113.

7. M. Erradi and A. Khoumsi, “Une approche pour le traitement des interactions de
fonctionalités des systèmes téléphoniques”, in Proc. Colloque Francophone In-
ternational sur l'Ingénierie des Protocoles (CFIP'95), Rennes, France, 1995.

8. M. Mernik, J. Heering, and A.M. Sloane, “When and how to develop Domain-
Specific Languages” ACM Computing Surveys (CSUR), vol. 37, no. 4, 2005, pp.
316–344.

9. Pamela Zave, “Feature Interaction”, http://www2.research.att.com/~pamela/
fi.html

10. E.J. Cameron, N.D. Griffeth, Y.-J. Lin, M. Nilson, W.K. Schnure, et H.
Vlethuijsen. “A feature Interaction Benchmark for IN and beyond”, Feature Inter-
actions in Telecommunications Systems, Eds. L.G. Bouma and H. Velthuijsen,
IOS Press, Amsterdam, 1994.

11. Prehofer, C.: “Feature-oriented programming: A fresh look at objects” in Proc.
ECOOP, Springer, 1997, pp.419–443.

12. Parnas, D.L., “On the criteria to be used in decomposing systems into mod-

ules”, Communications of the ACM, vol. 15, no. 12, 1972, pp. 1053–1058.
13. M. Mahoney, T. Elrad, “A Pattern Story for Aspect-Oriented State Machines”,

LNCS, Vol. 5770, 2009.
14. G. v. Bochmann, “Finite State Description of Communication Protocols”, Com-

puter Networks, Vol. 2 (1978), pp. 361-372.
15. F. Khendek and G. v. Bochmann, “Merging Behavior specifications”, Proc.

FORTE'1993, Boston, USA.
16. W. Havinga, I. Nagy, L. Bergmans, M. Aksit, "A graph-based approach to mod-

eling and detecting composition conflicts related to introductions". In Proc. In-
ternational Conference on Aspect-Oriented Software Development, ACM, 2007.

17. T. Dinkelaker, M. Eichberg, and M. Mezini, „An Architecture for Composing Em-
bedded Domain-Specific Languages”. In Proc. Aspect-Oriented Software Devel-
opment ACM New York, 2010.

18. D. König, A. Glover, “Groovy in Action”. Manning, 2007.
19. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.

Formal Methods in System Design, vol. 19, no. 1, pp. 45–80, 2001.
20. T. Molderez, B. Meyers, D. Janssens and H. Vangheluwe, “Towards an Aspect-

oriented Language Module: Aspects for Petri Nets”, In Proc. Workshop on Do-
main-specific Aspect Languages, ACM New York, 2012.

21. D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: “An Aspect-Oriented Ap-
proach tailored for Component-based Software Development.” In AOSD, pages
21-29, 2003.

22. E. Tanter. From Metaobject Protocols to Versatile Kernels for Aspect-Oriented
Programming. PhD thesis, Université de Nantes, France, 2004.

23. P. Avgustinov, J. Tibble, A. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O.
Lhoták, O. de Moor, D. Sereni, and G. Sittampalam, “abc: An extensible
AspectJ Compiler.” In AOSD, pages 87-98, 2005.

24. W. Havinga, L. Bergmans, and M. Aksit, “Prototyping and Composing Aspect
Languages using an Aspect Interpreter Framework.” In ECOOP, pages 180-
206, 2008.

Using Aspect-Oriented State Machines for Resolving Feature Interactions

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1073

25. H. Masuhara, G. Kiczales, and C. Dutchyn, “A Compilation and Optimization
Model for Aspect-Oriented Programs.” In CC 2003, volume 2622 of LNCS, pag-
es 46-60, 2003.

26. P. Klint, T. van der Storm, and J. Vinju, “Term Rewriting Meets Aspect Oriented
Programming.” In Proc. of Processes, Terms and Cycles: Steps on the Road to
Infinity, Springer, LNCS 3838, 2005.

27. E. Van Wyk, “Aspects as modular language extensions.” In Electronic Notes in
Theoretical Computer Science, volume 82(3), pages 555-574, Elsevier, 2003.

28. T. Parr, “The definitive ANTLR reference: building domain-specific languages.”
The Pragmatic Bookshelf, 2007.

29. E.M. Gagnon and L.J. Hendren, “SableCC, an object-oriented compiler frame-
work.” In Proc. Of Technology of Object-Oriented Languages, pages 140-154,
IEEE, 1998.

30. M. Mernik, X. Wu, and B. Bryant, “Object-oriented language specifications: Cur-
rent status and future trends.” In ECOOP Workshop: Evolution and Reuse of
Language Specifications for DSLs (ERLS), 2004.

Tom Dinkelaker holds a PhD and a German Diploma in computer science
from the Technische Universitaet Darmstadt, Germany. His research focuses
on the implementation of embedded domain-specific languages and aspect-
oriented programming languages. To provide support for customizing
language semantics and implementation strategies, in his thesis, he explored
the potentials of using meta-object protocols to enable open language
semantics. Tom has embedded a set of languages that are language product-
lines, i.e., their syntax and semantics can be extended by language
developers or end users in order to customize them for special domains. Tom
is now working at Ericsson R&D in the Customer Care team. At Ericsson, he
develops the next generation of business support systems that delivers
features on top of a flexible architecture that customers adapt for individual
needs.

Mohammed Erradi has been a professor in Computer Science since 1986.
He has been leading the distributed computing and networking research
group since 1994 at ENSIAS (Ecole Nationale d’Informatique et d’Analyse
des Systèmes) of Mohammed V-Souissi University (Rabat Morocco), and
was head and founding member of the Alkhawarizmi Computing Research
laboratory. Before joining ENSIAS, Professor Erradi has been affiliated with
the University of Sherbrooke and the University of Quebec in Canada. His
recent main research interests include Communication Software Engineering,
Distributed Collaborative Applications, and Reflection and Meta-level
Architectures. He obtained his Ph.D. in 1993 at University of Montreal in the
area of Communicating Software Engineering under the supervision
Professor Gregor Von Bochmann. He is currently the Principal Investigator of
a number of research projects grants. Among the topics of these projects we
find: Collaborative environment for Telediagnosis in NeuroScience, Cloud
Computing Security, Security Policies composition, Adaptive Wireless
Sensor Networks, Vertical Handover in Mobile Networks. Professor Erradi

Tom Dinkelaker, Mohammed

Erradi, and Meryeme Ayache

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1074

has published more than 60 papers in international conferences and journals.
He has organized and chaired five international scientific events and has
been a member of the program committee in multiple international
conferences.

Meryeme Ayache is a young security researcher, she graduated in 2012
from ENSIAS (Ecole Nationale Supérieur d’Informatique et d’Analyse des
Systèmes, Rabat, Morocco) specializing in Security of Information Systems.
She participated in the implementation of a project on “Behavioral Modeling
with Aspect-Oriented State Machines” as an internship within the Software
Technology Group of the Technical University of Darmstadt. Her interest is
on mobile computing and security.

Received: December 16, 2011; Accepted: July 18, 2012.

