
DOI: 10.2298/CSIS111216023S

LL conflict resolution
using the embedded left LR parser

Boštjan Slivnik

University of Ljubljana
Faculty of Computer and Information Science

Tržaška cesta 25, 1000 Ljubljana, Slovenia
bostjan.slivnik@fri.uni-lj.si

Abstract. A method for resolving LL(k) conflicts using small LR(k) par-
sers (called embedded left LR(k) parsers) is described. An embedded
left LR(k) parser is capable of (a) producing the prefix of the left parse
of the input string and (b) stopping not on the end-of-file marker but on
any string from the set of lookahead strings fixed at the parser genera-
tion time. The conditions regarding the termination of the embedded left
LR(k) parser if used within LL(k) (and similar) parsers are defined and
examined in-depth. It is proved that an LL(k) parser augmented with a set
of embedded left LR(k) parsers can parse any deterministic context-free
grammar in the same asymptotic time as LR(k) parser. As the embedded
left LR(k) parser produces the prefix of the left parse, the LL(k) parser
augmented with embedded left LR(k) parsers still produces the left parse
and the compiler writer does not need to bother with different parsing
strategies during the compiler implementation.

Keywords: embedded parsing, left LR parsing, LL conflicts.

1. Introduction

Choosing the right parsing method is an important issue in a design of a mod-
ern compiler for at least two reasons. First, the parser represents the backbone
of the compiler’s front-end as the syntax-directed translation of the source pro-
gram to the (intermediate) code is based upon it. And second, syntax errors
cannot be scrupulously reported without the appropriate support of the parser.

As the study of available open-source compilers reveal [18], nearly all of
the most popular parsing methods nowadays belong to one of the two large
classes, namely LL and LR [16, 17]. LR parsing, the most popular bottom-up
parsing method, is generally praised for its power while LL parsing, the principal
top-down method, is credited for being simpler to implement and debug, and
better for error recovery and the incorporation of semantic actions [14].

Many variations of the original LL and LR parsing methods [7, 8] have been
devised since their discovery decades ago. Some methods, e.g., SLL, SLR and
LALR [16, 17], focus on reducing the space complexity by producing smaller
parsers (either less code or smaller parsing tables), and some tend to produce

Boštjan Slivnik

faster parsers [1]. Other methods extend the class of languages that can be
parsed by the canonical LL or LR parsers. Methods like GLR and GLL are
able to parse all context-free languages in qubic time (compared with the linear
time achieved by the classical LL and LR methods) [21, 22, 15, 14] while LL(∗)
parsers (produced by the popular ANTLR parser generator) are able to parse
even some context-sensitive languages by resorting to backtracking in some
cases [11]. Finally, some methods modify the behavior of the LR parsing so
that by producing the left parse of the program being compiled instead of the
right parse, they behave as if the top-down, e.g., LL, was used [13, 20].

The discourse on whether LL or LR parsing is more suitable either in gen-
eral or in some particular case still goes on. It has been reignited lately by the
online paper entitled “Yacc is dead” [10] and two issues have been made clear
(again): first, parser generators are appreciated, and second, both methods, LR
and LL, remain attractive [18].

To combine the advantages of both bottom-up and top-down parsing, left
corner parsing was introduced [12, 3]. Basically it uses the top-down parsing
and switches to bottom-up parsing to parse the left corner of each derivation
subtree. However, modern variations switch to bottom-up parsing only when
bottom-up parsing is needed indeed [6, 2]. Left corner parsing never gained
much popularity, most likely because it produces a mixed order parse which
makes incorporating semantic actions tricky.

As described, left corner parsing uses bottom-up parsing to resolve the
problems arising during the top-down parsing while LL(∗) parser uses DFAs
for LL conflict resolution. The former produces a tricky parse and the latter
must always rescan the symbols already scanned by a DFA. In this paper an
embedded left LR(k) parser which can be used within an LL(k) parser instead
of a DFA, is proposed. As it produces the left parse it does not require rescan-
ning of tokens already scanned or backtracking, and thus guarantees the linear
parsing time for all LR(k) grammars.

Another method, namely packrat parsing [4], could perhaps have been used
to resolve LL(k) conflicts, but there are two obstacles. First, packrat parsers are
made for parsing expression grammars where the productions are ordered —
the conversion of a context-free grammar to a parsing expression grammar is
tricky even for the human and cannot be made by the parser generator. Second,
packrat parsers do not handle left recursion well — something in particular that
the embedded left LR(k) parser must handle instead of LL(k) parser.

The problem, i.e., the requirements for embedding an LR(k) parser into the
LL(k) parser, is formulated in Section 2. The solution is described in Sections
3 and 4: the former contains the solution of correct termination of the embed-
ded left LR(k) parser while the latter contains how the parser can produce the
shortest prefix of the left parse as soon as possible. The evaluation of the em-
bedded left LR(k) parser is given in Section 5 together with a brief evaluation
of the new parser.

An intermediate knowledge of LL and LR parsing is presumed. The notation
used in [16] and [17] is adopted except in two cases. First, a single parser

1106 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

step is not described by relation =⇒ (as if a pushdown automaton is defined
as one particular kind of a rewriting system [16]) but by relation ` among the
instantaneous descriptions of a pushdown automaton [5]. Second, the notation
[A → α•β, x] where S =⇒∗rm γ′Av =⇒rm γ′αβv = γβv and x ∈ FIRSTk(z),
denotes the LR(k) item valid for γ.

Finally, it is assumed that the result the parser produces is the left (right)
parse of the input string, i.e., the (reversed) list of productions needed to derive
the input string from the initial grammar symbol using the leftmost (rightmost)
derivation.

2. On resolving LL(k) conflicts

Consider an LR(k) but non-LL(k) grammar G = 〈N,T, P, S〉, i.e., G ∈ LR(k) \
LL(k). If the input string w ∈ L(G) is derived by a derivation

S =⇒πu

G,lm uAδ =⇒πv′
G,lm uv′δ =⇒πv′′

G,lm uv′v′′ = uv = w , (1)

the expected result of parsing it with an LL(k) parser is the left parse

πw = πuπv′ πv′′ ∈ P ∗ . (2)

Since G 6∈ LL(k), an LL(k) conflict is likely to occur and must therefore be
resolved. LL(∗) parsing [11], for instance, tries to determine the next production
using a set of DFAs: if A causes an LL(1) conflict in the derivation (1), a DFA
for A determines the next production by scanning the first few (but sometimes
more) tokens of the string v = v′v′′; afterwards the LL(∗) parser continues
parsing by reading the entire string v again (not just the unscanned suffix of
it). While LL(∗) parser produces the left parse (2), it reads some tokens more
than once and in some cases it must even resort to backtracking (if the DFA
cannot determine the next production). Furthermore, LL(∗) parsing prohibits
left-recursive productions.

To produce the left parse but to avoid rescanning, backtracking and pro-
hibiting left-recursive productions, small LR(k) parsers can be used instead of
DFAs. However, these small LR(k) parsers must differ from the classical LR(k)
parsers in two regards:

1. LR(k) parsers used within an LL(k) parser cannot rely on the end-of-
input symbol $ to terminate (unlike the standard LR(k) parsers can).
More precisely, if an LR(k) parser is to be used for parsing the substring v′

of the string w derived by the derivation (1), it must be capable of terminating
with any string x ∈ FIRSTGk (δ$) in its lookahead buffer (instead of $).

2. LR(k) parsers used within an LL(k) parser must produce the left
parse of its input (instead of the right parse as the standard LR(k) parsers
do).
More precisely, a standard LR(k) parser for A produces the right parse of
v′, but if used within an LL(k) parser, it should produce the left parse πv′ .

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1107

Boštjan Slivnik

If an LR(k) parser fulfills both conditions, it is called the embedded left LR(k)
parser : embedded as it can be used within the backbone LL(k) parser, and
left as it produces the left parse and thus guarantees that the overall result of
parsing is also the left parse.

3. Termination of the embedded LR(k) parser

The main problem regarding the termination of the embedded LR(k) parser can
be explained most conveniently by the following example.

Example 1. Consider the grammar Gex1 with the start symbol S and produc-
tions

S −→ aAb | bAab and A −→ Aa | a .

As A is a left-recursive nonterminal, it causes the LL(1) conflict whenever a is
in the lookahead buffer of the LL(1) parser.

If the input string starts with aa, then after the first two steps, namely

$S aa . . . $
L̀L

$bAa aa . . . $
L̀L

$bA a . . . $,

the backbone LL(1) parser reaches the configuration $bA a . . . $ (the strings
on the left side and on the right side of represent the stack contents and the
remaining (yet unscanned) part of the input, respectively; the topmost stack
symbol and the contents of the lookahead buffer are close to). The configu-
ration $bA a . . . $ exhibits an LL(1) conflict on A a. At this point, an embedded
LR(1) parser for A should be used: as b is never derived from A, it can function
as the end-of-input marker.

If the input string starts with baa, then LL(1) parsing starts as

$S baa . . . $
L̀L

$baAb baa . . . $
L̀L

$baA aa . . . $.

The backbone LL(1) parser reaches the configuration $baA aa . . . $ where the
embedded LR(1) parser must be used. This time the embedded LR(1) parser
for A cannot be used as it cannot stop on a that follows A in the production
S −→ bAab. More precisely, after shifting the first a on the stack and reducing it
to A, i.e.,

$[ε] aa . . . $
L̀R

$[ε][a] a . . . $
L̀R

$[ε][A] a . . . $,

the embedded LR(1) parser faces the second a in its lookahead buffer, but it
cannot determine whether it should be shifted or not. If the entire input is baab,
the embedded LR(1) parser should terminate and handle the control back to the
backbone LL(1) parser, otherwise it should continue by shifting and reducing
using A −→ Aa. Therefore, the embedded LR(1) parser for Aa, i.e., one that
can terminate on b for the same reason as above, must be used instead of the
one for A.

(Modifying the problem to any k is left as an exercise.)

Two conclusions follow from Example 1:

1108 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

1. The embedded LR(k) parser must sometimes parse substrings de-
rived from a sentential form starting with the LL(k)-conflicting non-
terminal instead of from that nonterminal only. More precisely, if the first
part of the derivation (1) is rewritten as

S =⇒πu′
G′lm u′Bδ′ =⇒G′lm u′β1Aβ2δ

′ =⇒πu′′
G′lm u′u′′Aβ2δ

′ = uAδ , (3)

the parser for Aβ′2, where β2 = β′2β
′′
2 in B −→ β1Aβ2, might be needed

instead of the parser for A. In Example 1 a parser for Aa is needed in
production S −→ bAab instead of a parser for A.

2. The right context of the left sentential form the embedded LR(k) par-
ser is made for, is important. More precisely, the right context is the prefix
of the string that comes after the string derived from the sentential form the
embedded parser is made for, i.e., in the derivation (3) the termination of
the embedded LR(k) parser for Aβ′2 depends on the contents of the set
FIRSTGk (β′′2 δ

′).

Hence, in general an embedded LR(k) parser for Aβ′2 capable of termination
on any string from FIRSTGk (β′′2 δ

′) is needed.
The easiest way to resolve the right context of the embedded LR(k) parser

is to transform grammar G = 〈N,T, P, S〉 into grammar Ḡ = 〈N̄ , T, P̄ , S̄〉 by
applying the transformation of an LL(k) grammar to an SLL(k) grammar [17]:
in the transformed grammar Ḡ each nonterminal occurs in exactly one right
context. More precisely, the start symbol becomes S̄ = 〈S, {ε}〉 and the set N̄
of nonterminals is defined as

N̄ = {〈A,FA〉; S =⇒∗lm uAδ ∧ FA = FIRSTGk (δ)} .

For any nonterminal 〈A,FA〉 the new set P̄ of productions includes productions

〈A,FA〉 −→ X̄1X̄2 . . . X̄n

where, for any i = 1, 2, . . . , n,

X̄i =

{
Xi Xi ∈ T
〈Xi,FIRSTGk (Xi+1Xi+2 . . . XnFA)〉 Xi ∈ N

provided that A −→ X1X2 . . . Xn ∈ P . (This transformation does not introduce
any new LL(k) conflicts; in fact, if k > 1, it even reduces the number of LL(k)
conflicts for some non-SLL(k) grammars [17].)

Example 2. If the grammar Gex1 is transformed, a grammar Ḡex1

〈S, {ε}〉 −→ a〈A, {b}〉b | b〈A, {a}〉ab
〈A, {a}〉 −→ 〈A, {a}〉a | a
〈A, {b}〉 −→ 〈A, {a}〉a | a

is obtained. Two embedded LR(1) parsers are needed: 〈A, {b}〉 and 〈Aa, {b}〉:

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1109

Boštjan Slivnik

1. The parser for 〈A, {b}〉 results from production 〈S, {ε}〉 −→ a〈A, {b}〉b: the
parser’s right context is {b} = FIRSTGk (b{ε}): b follows 〈A, {b}〉 in production
〈S, {ε}〉 −→ a〈A, {b}〉b and {ε} (from 〈S, {ε}〉) determines the right context
of the entire production 〈S, {ε}〉 −→ a〈A, {b}〉b.

2. The parser for 〈Aa, {b}〉 results from production 〈S, {ε}〉 −→ b〈A, {a}〉ab,
again with the right context {b} = FIRSTGk (b{ε}): b follows the sentential
form 〈A, {a}〉a in production 〈S, {ε}〉 −→ b〈A, {a}〉ab and {ε} (from 〈S, {ε}〉)
determines the right context of the entire production.

After the LR(1) parsers are embedded, productions for 〈A, {a}〉 and 〈A, {a}〉
are eliminated as they are no longer needed — the embedded LR(k) parsers
are based on the original grammar Gex1.

To resolve conflicts during LL(k) parsing based on the grammar Ḡ, every
production

〈B,FB〉 −→ β1〈A,FA〉β2 ∈ P̄ (4)

with an LL(k)-conflicting nonterminal 〈A,FA〉 is supposed to be replaced with a
production

〈B,FB〉 −→ β1〈〈Aβ′2,FAβ′
2
〉〉β′′2

where β2 = β′2β
′′
2 and FAβ′

2
= FIRSTḠk (β′′2FB). The new symbol 〈〈Aβ′2,FAβ′

2
〉〉 6∈

N̄ acts as a trigger for the embedded LR(k) parser for Aβ′2 capable of termina-
tion on any string from FAβ′

2
.

As the amount of LR parsing is to be minimal, β′2 should be as short as
possible, i.e., ε in the best case. If, on the other hand, not even β′2 = β2 and
β′′2 = ε suffices for the safe termination of the embedded LR(k) parser, 〈B,FB〉
must be declared a conflicting nonterminal.

Finally, if marker 〈〈β,F〉〉 is introduced into the grammar Ḡ = 〈N̄ , T, P̄ , S̄〉
(based on G = 〈N,T, P, S〉), an embedded LR(k) parser for β that terminates
on any lookahead string x ∈ F , is needed. The easiest way to achieve this is to
build the LR(k) parser for the embedded grammar

Ĝβ,F = 〈N̂ , T, P̂ , S1〉

where N̂ = N ∪ {S1, S2} for S1, S2 6∈ N and

P̂ = P ∪ {S1 −→ S2x, S2 −→ β ; x ∈ F} .

The trick is obvious: the embedded LR(k) parser for Ĝβ,F must accept its input
no later than when the reduction on S2 −→ β is due. In other words, if the
reduce on S2 −→ β is replaced with the accept action, the parser never pushes
any symbol of any string x ∈ F onto the stack. If the reduce on S2 −→ β cannot
be determined (because of the LR(k) conflict), the embedded LR(k) parser for
〈〈β,F〉〉 cannot be used.

Determining whether the embedded LR(k) parser does not contain any
LR(k) conflicts is time consuming if a brute-force approach of using testing
whether Ĝβ,F ∈ LR(k) is used. However, the method based on the follow-
ing theorem significantly reduces the time complexity of testing the embedded
LR(k) parser for LR(k) conflicts.

1110 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

Theorem 1. Let G = 〈N,T, P, S〉 be an LR(k) grammar with the derivation

S =⇒∗G,lm uBδ =⇒G,lm uβ1β
′
2β
′′
2 δ .

Grammar Ĝ = 〈N̂ , T, P̂ , S1〉 where

N̂ =N ∪ {S1, S2} for S1, S2 6∈ N and
P̂ = P ∪ {S1 −→ S2x, S2 −→ β′2 ; x ∈ FIRSTGk (β′′2 δ)} ,

is not an LR(k) grammar if and only if

– either β′′2 = ε and [S → β′2•, x′], [B → β′2•, x′] ∈ [$β′2]Ĝ
– or β′′2 6= ε and [S2 → β′2•, x′], [A→ α•α′, y′] ∈ [$β′2]Ĝ

where α′ 6= ε and x′ ∈ FIRSTGk (α′y′).

Proof. The idea the proof is based on is rather simple. Because of the leftmost
derivation specified by this theorem, there is a state of the LR(k) machine for G
that includes all [B → β1•β′2β′′2 , y] where y ∈ FIRSTGk (δ). This state corresponds
to the initial state of the LR(k) machine for Ĝ. By careful examination of all
possibilities only those possibilities permitting LR(k) conflicts in Ĝ are singled
out. The formal proof follows.

First, the structure of the grammar Ĝ implies that items

[S1 → •S2x, $] and [S2 → •β′2, x′] ,

where x ∈ FIRSTGk (β′′2 δ) and x′ ∈ FIRSTGk (β′′2 δ$), appear only in the initial state
[$]Ĝ of the canonical LR(k) parser for the ($-augmented version of) grammar
Ĝ. Likewise, items

[S1 → ψ1•ψ2, $] and [S2 → ψ1•ψ2, x
′] ,

where x′ ∈ FIRSTGk (β′′2 δ$), appear only in [$ψ1]Ĝ. Furthermore, states [$S2ψ]Ĝ,
for various ψ, contain only items based on productions S1 −→ S2x.

Second, as G ∈ LR(k) and is thus unambiguous, the leftmost derivation

S =⇒∗G,lm uBδ =⇒∗G,lm w

implies the existence of the rightmost derivation

S =⇒∗G,rm γBv′′ =⇒G,rm γβ1β
′
2β
′′
2 v
′′ =⇒∗G,rm w .

Moreover, if δ =⇒∗G v′′, then the viable prefix γ depends only on the left senten-
tial form uBδ, i.e., it is unique for all w. Therefore,

{[B → β1•β′2β′′2 , y′]; y′ ∈ FIRSTGk (δ$)} ⊆ [$γβ1]G

where [$γβ1]G is the state [$γβ1]G of the canonical LR(k) machine for the ($-
augmented version of) grammar G.

Consider any two items i1 and i2 (except items based on the production
S′ −→ $S1$ as these items are never involved in an LR(k) conflict) in any state
[$γ̂]Ĝ of the canonical LR(k) machine for Ĝ, i.e., i1, i2 ∈ [$γ̂]Ĝ:

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1111

Boštjan Slivnik

1. If i1 and i2 are based on productions in P , then i1, i2 ∈ [$γβ1γ̂]G and there
is no LR(k) conflict between i1 and i2 since G ∈ LR(k).

2. If i1 and i2 are based on productions in P̂ \ P , the following three cases
must be considered:
(a) i1 = [S1 → γ̂•α, $] and i2 = [S1 → γ̂•α′, $]:

If γ̂ = ε, then i1 and i2 imply no actions because α and α′ start with S2.
Otherwise they imply no reduce action (if α 6= ε and α′ 6= ε), imply the
same action (as i1 = i2 if α = ε and α′ = ε), or imply the reduce on $
and shift on non-$ (if α = ε and α′ 6= ε; or vise versa).

(b) i1 = [S1 → γ̂•α, $] and i2 = [S2 → γ̂•α′, y′] (or vice-versa):
i1 implies no action if γ̂ = ε as α starts with S2. The other case, if γ̂ 6= ε,
is impossible: γ̂ starts with S2 in i1 and does not start with S2 in i2.

(c) i1 = [S2 → γ̂•α, y] and i2 = [S2 → γ̂•α′, y′]:
α = α′ and both items imply either the same action or imply no action.

3. If i1 is based on a production in P̂ \ P and i2 is based on a production in P
(or vice versa), the following two cases must be considered:
(a) i1 = [S1 → γ̂1γ̂2•α, $] and i2 = [A→ γ̂2•α′, y′]:

If γ̂1γ̂2 = ε, then i1 implies no action as α starts with S2. The other case,
if γ̂1γ̂2 6= ε, is impossible: i1 ∈ [$γ̂1γ̂2]Ĝ while i2 6∈ [$γ̂1γ̂2]Ĝ.

(b) i1 = [S2 → γ̂1γ̂2•α, y] and i2 = [A→ γ̂2•α′, y′]:
As i1, i2 ∈ [$γ̂1γ̂2]Ĝ, so does

[B → β1γ1γ̂2•αβ′′2 , y′′], [A→ γ̂2•α′, y′] ∈ [$γβ1γ̂1γ̂2]G

where y ∈ FIRSTGk (β′′2 y
′′
2).

– If α 6= ε and α′ 6= ε, then neither i1 nor i2 implies a reduce action.
– If α 6= ε and α′ = ε, then

[S2 → γ̂1γ̂2•α, y], [A→ γ̂2•, y′] ∈ [$γ̂1γ̂2]Ĝ

exhibit a shift-reduce conflict if and only if y′ ∈ FIRSTGk (αy). But
then items

[B → β1γ̂1γ̂2•αβ′′2 , y′′], [A→ γ̂2•, y′] ∈ [$γβ1γ̂1γ̂2]G

exhibit a conflict. This is not possible as G ∈ LR(k) and therefore
items i1 and i2 do not exhibit a conflict in Ĝ.

– If α = ε and α′ 6= ε, then

[S2 → γ̂1γ̂2•, y], [A→ γ̂2•α′, y′] ∈ [$γ̂1γ̂2]Ĝ

exhibit a shift-reduce conflict if y ∈ FIRSTGk (α′y′). But

[B → β1γ̂1γ̂2•β′′2 , y′′], [A→ γ̂2•α′, y′] ∈ [$γβ1γ̂1γ̂2]G

and the only possibility of a shift-reduce conflict in [$γ̂1γ̂2]Ĝ without
the conflict in [$γβ1γ̂1γ̂2]G is that β′2 = γ̂1γ̂2 and β′′2 6= ε.

1112 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

– If α = ε and α′ = ε, then

[S2 → γ̂1γ̂2•, y], [A→ γ̂2•, y′] ∈ [$γ̂1γ̂2]Ĝ

exhibit a reduce-reduce conflict if y = y′. But

[B → β1γ̂1γ̂2•β′′2 , y′′], [A→ γ̂2•, y] ∈ [$γβ1γ̂1γ̂2]G

and the only possibility of a reduce-reduce conflict in [$γ̂1γ̂2]Ĝ with-
out the conflict in [$γβ1γ̂1γ̂2]G is that β1γ1 = ε, β′2 = γ̂2 and β′′2 = ε.

Finally, proving the theorem in the opposite direction is trivial — if the canon-
ical LR(k) machine for the grammar Ĝ contains an LR(k) conflict, then clearly
Ĝ 6∈ LR(k).

Corollary 1. Let G = 〈N,T, P, S〉 be an LR(k) grammar with the derivation

S =⇒∗G,lm uBδ =⇒G,lm uβ1β
′
2δ .

Grammar Ĝ = 〈N̂ , T, P̂ , S1〉 where N̂ = N ∪ {S1, S2} for S1, S2 6∈ N and P̂ =
P ∪ {S1 −→ S2x, S2 −→ β′2 ; x ∈ FIRSTGk (δ)} is not an LR(k) grammar if and
only if

[S2 → •β′2, x′] desc∗ [B → •β′2, x′]
where B 6= S2 and x′ ∈ FIRSTGk (δ$) [18].

To conclude this section, Algorithm 1 is given. It is based on Theorem 1 and
is (to be) used for computing the shortest prefix of 〈A,FA〉β2 in production

〈B,FB〉 −→ β1〈A,FA〉β2

where the embedded LR(k) parser must be employed to resolve the LL(k)
conflict caused by 〈A,FA〉. Once Theorem 1 is digested, the algorithm comes
out relatively simple: it just checks both conditions exposed by Theorem 1, one
for β′′2 = ε and the other for β′′2 6= ε.

4. Terminating while producing the left parse

As mentioned in Section 2, the embedded LR(k) parser must produce the left
parse instead of the right parse. To achieve this, the left LR(k) parser [20]
(based on the Schmeiser-Barnard LR(k) parser [13]) is taken as the starting
point.

Consider an LR(k) grammar G = 〈N,T, P, S〉 and the input string w = uv
derived by the rightmost derivation

S =⇒∗G,rm γv =⇒∗G,rm uv . (5)

After reading the prefix u, the canonical LR(k) parser for grammar G reaches
the configuration

$[$][$X1][$X1X2] . . . [$X1X2 . . . Xn] v$ (6)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1113

Boštjan Slivnik

Algorithm 1 Computing the shortest prefix β′ of the sentential form β = β′β′′ so
that the embedded LR(k) grammar Ĝβ′,F ′ ∈ LR(k) where F ′ = FIRSTGk (β′′F).
INPUT: The sentential form β = X1X2 . . . Xn and the right context F .
OUTPUT: The prefix β′ (or ⊥ if the prefix does not exist).
1: for i← 1 . . . (n− 1) do
2: β′ = X1X2 . . . Xi and β′′ = Xi+1Xi+2 . . . Xn

3: if ¬(∃[A→ α•α′, y′] ∈ [$β′]Ĝ : FIRSTĜk (α
′y′) ∩ FIRSTĜk (β

′′F$) 6= ∅) then
4: return β′

5: end if
6: end for
7: β′ = X1X2 . . . Xn and β′′ = ε

8: if ¬(∃[A→ α•, x′] ∈ [$β′]Ĝ : x′ ∩ FIRSTĜk (F$) 6= ∅) then
9: return β′

10: end if
11: return ⊥

where X1X2 . . . Xn = γ, [$X1X2 . . . Xn] is the current parser state and x =
k: v$ is the contents of the lookahead buffer. ([$X1X2 . . . Xj], for j = 0, 1, . . . , n,
denotes the state of the canonical LR(k) machine MG reachable from the state
[$] by string X1X2 . . . Xj where MG is based on the $-augmented grammar G′

obtained by adding the new start symbol S′ with production S′ −→ S to G).
The Schmeiser-Barnard LR(k) parser augments each nonterminal pushed

on the stack with the left parse of the substring derived from that nonterminal
and thus reaches the configuration

$〈[$]; ε〉〈[$X1];π(X1)〉〈[$X1X2];π(X2)〉 〈[$X1X2 . . . Xn];π(Xn)〉 v$ (7)

instead. π(Xj) denotes the left parse of the substring derived from Xj and thus

X1X2 . . . Xn =⇒π(X1)π(X2)...π(Xn)
G,lm u .

To accumulate left parses on the stack, the actions are modified as follows:

– If the parser performs the shift action, no production is pushed on the stack,
i.e., the terminal pushed is augmented with the empty left parse ε.

– If the parser performs the reduce action, the left parses accumulated in
states removed from the stack are concatenated, and prefixed by the pro-
duction the reduction is made on. The resulting left parse is pushed on the
stack together with the new nonterminal.

Note that if this method is used, the first production of the left parse is produced
only at the very end of parsing.

Example 3. Consider the embedded grammar Gex3 with productions

S1 −→ S2c , S2 −→ A , A −→ aa | aB | bBa | bBaa , B −→ Bb | ε .

1114 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

Table 1. Parsing the string bbbaac ∈ L(Gex3) using the Schmeiser-Barnard LR(1) parser.

STACK INPUT

1 $ 〈[$]; ε〉 bbbaac$
2 $ 〈[$]; ε〉 〈[$b]; ε〉 bbaac$
3 $ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π1 = B→ε〉 bbaac$
4 $ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π1 = B→ε〉 〈[$bBb]; ε〉 baac$
5 $ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π2 = B→Bb·π1〉 〈[$bBb]; ε〉 aac$
6 $ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π3 = B→Bb·π2〉 aac$
7 $ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π3 = B→Bb·π2〉 〈[$bBa]; ε〉 ac$
8 $. . . 〈[$bB];π3 = B→Bb·π2〉 〈[$bBa]; ε〉 〈[$bBaa]; ε〉 c$
9 $ 〈[$]; ε〉 〈[$A];π4 = A→bBaa·π3〉 c$

10 $ 〈[$]; ε〉 〈[$S2];π5 = S2→A·π4〉 c$
11 $ 〈[$]; ε〉 〈[$S2];π6 = S2→A·π5〉 〈[$S2c], ε〉 $

12 $ 〈[$]; ε〉 〈[$S1];π7 = S1→S2c·π6〉 $

where π7 = S1→S2c·S2→A·A→bBaa·B→Bb·B→Bb·B→ε

Parsing of the input string bbbaac using the Schmeiser-Barnard LR(1) parser
is shown in Table 1. Note that the first production of the resulting left parse,
namely S1 −→ S2c, is not known until the end of parsing.

The left LR(k) parser [20] is able to compute the prefix of the left parse of
the substring corresponding to the prefix of the input string read so far during
parsing (although this is not possible in every parser configuration). In other
words, if corresponding to the derivation (5) the input string w = uv is derived
by the leftmost derivation

S =⇒π(u)
G,lm uδ =⇒∗G,lm uv , (8)

then the left LR(k) parser can compute the left parse π(u) in configuration (7)
provided that certain conditions specified later on are met. As this part of the
left LR(k) parser is modified, it deserves more attention.

By theory [17], configurations (6) and (7) imply that machine MG contains
at least one sequence of valid k-items

[A0 → •α0A1β0, x0] · . . . · [A0 → α0•A1β0, x0] ·
· [A1 → •α1A2β1, x1] · . . . · [A1 → α1•A2β1, x1] ·

...
· [A` → •α`A`+1β`, x`] · . . . · [A` → α`•A`+1β`, x`]

(9)

where [A0 → •α0A1β0, x0] = [S′ → • S, ε], γ = α0α1 . . . α` and k: v$ ∈
FIRSTG

′

k (A`+1β`x`) (and A`+1 = ε); the horizontal dots denote repetitive appli-
cation of operation passes (or GOTO) while the vertical dots denote the appli-
cation of desc (or CLOSURE).

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1115

Boštjan Slivnik

Sequence (9) induces the (induced) central derivation

S′ = A0 =⇒G α0A1β0 =⇒G α0α1A2β1β0 =⇒G . . . =⇒G

=⇒G α0α1 . . . α`A`+1β`β`−1 . . . β0 ;

the name “central” becomes obvious if the corresponding derivation tree pre-
sented in Figure 1(a) is observed.

A1

A2

A3

A4

...

A!−1

A!

α1

α2

α3

α!−1

α!

β1

β2

β3

β!−1

β!

(a) The derivation tree of the induced cen-
tral derivation.

A1

A2

A3

A4

...

A!−1

A!

α1

α2

α3

α!−1

α!

β1

β2

β3

β!−1

β!

u1 u2 u3
. . . u!−1 u!

(b) The derivation tree of the induced left-
most derivation (the left parses παj must
be provided).

Fig. 1. The derivation trees corresponding to various kinds of induced derivations; re-
member that A`+1 = ε in all three cases.

However, if the left parses π(α0), π(α1), . . . , π(α`), where αj =⇒π(αj)
G′,lm uj

for j = 0, 1, . . . , `, are provided, sequence (9) induces the (induced) leftmost
derivation

S′ = A0 =⇒G,lm α0A1β0 =⇒π(α0)
G,lm u0A1β0

=⇒G,lm u0α1A2β1β0 =⇒π(α1)
G,lm u0u1A2β1β0

...
=⇒G,lm u0u1 . . . u`−1α`A`+1β`β`−1 . . . β0

=⇒π(α`)
G,lm u0u1 . . . u`A`+1β`β`−1 . . . β0

where u = u0u1 . . . u` and k: v$ ∈ FIRSTG
′

k (β`β`−1 . . . β0$). The corresponding
derivation tree is shown in Figure 1(b) and the left parse of the induced leftmost

1116 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

derivation is therefore

π(u) =A0 −→ α0A1β0 · π(α0) ·A1 −→ α1A2β1 · π(α1) · . . . ·
·A` −→ α`A`+1β`] · π(α`) .

(10)

(Likewise, if the right parses π(β1), π(β2), . . . , π(β`) are known, then sequence
(9) induces the (induced) rightmost derivation.)

Subparses π(αj) of the left parse (10) are available on the parser stack
because α0α1 . . . α` = γ = X1X2 . . . Xn, but productions Aj −→ αjAj+1βj are
not. However, if sequence (9) is known, the missing productions and in fact the
entire prefix of the left parse can be computed [20]. Starting with π = ε and
i = [A` → α`•A`+1β`, x`], the stack is traversed downwards:

– If i = [A → •β, x], then (a) i expands the nonterminal A by production
A −→ β and (b) i′, the item that precedes i in sequence (9), is in the same
state. Hence, let π := A −→ β · π and i := i′.

– If i = [A → αX •β, x] ∈ [$γX] for some γ, then (a) the left parse π(X) is
available on the stack and (b) i′ is in the state [$γ] (which is found beneath
[$γX]). Hence, let π := π(X) · π and i := i′; furthermore, proceed one step
downwards along the stack, i.e., to the state [$γ].

The downward traversal stops when the item [S2 → •β, x] ∈ [$], for some
β ∈ (N ∪ T)∗ and x ∈ (T ∪ {$})∗k, is reached (the production S2 −→ β is not
added to the resulting left parse).

This method can be upgraded to compute the prefix of the left parse and
the viable suffix δR in derivation (8) as well since δ = A`+1β`β`−1 . . . β0 — see
Figure 1(b). Hence, start with δ = A`+1β` and whenever i = [A → •β, x], let
δ := δ · β′ where i′ = [A′ → α′•Aβ′, x′] is the item preceding i in sequence (9).

Example 4. Consider again the grammar Gex3 and the input string bbbaac ∈
L(Gex3) from Example 3. After the prefix bbba of the input string has been read,
the parser reaches the configuration shown in the 7th line of Table 1. But as
illustrated in Figure 2, there is only one item active for the current lookahead
string a in state [$bBa], namely [A→ bBa•a, $]. Furthermore, there exist exactly
one sequence of LR(1) items starting with [S′ → •$S1$, ε] ∈ [ε] and ending with
[A→ bBa•a, $] ∈ [$bS2a]:

[S′ → •$S1$, ε] · [S′ → $•S1$, ε] · [S1 → •S2c, $] · [S2 → •A, c] ·
· [A→ •bBaa, $] · [A→ b•Baa, $] · . . . · [A→ bB•aa, $] · [A→ bBa•a, $]

Hence, the prefix of the left parse and the corresponding viable suffix can be
computed as shown in Figure 3 using the method outlined above.

In general, cases where exactly one sequence (9) exists (as in Example 4)
are extremely rare, but all sequences (9) that differ only in lookahead strings xj ,
where j = 1, 2, . . . , `, induce the same (leftmost) derivation. In other words, the
lookahead strings xj are not needed for computing the prefix of the left parse
and the viable suffix.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1117

Boštjan Slivnik

S′→•$S1$, ε S′→$•S1$, ε
S1→•S2c, $
S2→•A, c
A→•aa, c
A→•aB, c
A→•bBa, c
A→•bBaa, c

S′→$S1•$, ε S′→$S1$•, ε

S2→A•, c

A→a•a, c
A→a•B, c
B→•Bb, c
B→•, c
B→•Bb, b
B→•, b

A→aB•, c
B→B•b, c
B→B•b, b

B→Bb•, c
B→Bb•, b

A→aa•, c

A→b•Ba, c
A→b•Baa, c
B→•Bb, a
B→•, a
B→•Bb, b
B→•, b

A→bB•a, c
A→bB•aa, c
B→B•b, a
B→B•b, b

A→bBa•, c
A→bBa•a, cA→bBaa•, c

B→Bb•, a
B→Bb•, b

S1→S2•c, $ S1→S2c•, $

$ S1

A

a b

S2

$

B

a

b

B

a

b

a

c

Fig. 2. The canonical LR(1) machine for Gex3 — items that end multiple sequences
starting with [S′ → •S, ε] ∈ [ε] are shown in bold face.

The left LR(k) parser uses an additional parsing table called LEFT to estab-
lish whether the prefix of the left parse can be computed in some state [$γ] for
some lookahead string x, and the left-parse-prefix automaton (LPP) to actually
compute sequence (9) with the lookahead strings omitted.

The LEFT table implements mapping

LEFT: QGk × (T ∪ {$})∗k −→ (IG0 ∪ {⊥})

where QGk and IG0 denote the set of LR(k) states and the set of LR(0) items
for grammar G′, respectively. It maps LR(k) state [$γ] and the contents x of the
lookahead buffer to either

– [A` → α`•A`+1β`], where α` 6= ε, if all sequences (9) that are active for x,
i.e., they end with some some LR(k) item [A` → α`•A`+1β`, x`] (for different
x`) where x ∈ FIRSTG

′

k (A`+1β`x`), differ in lookahead strings only, or
– ⊥ otherwise.

Hence, the parser can produce the prefix of the left parse and compute the
viable suffix if and only if LEFT([$γ], x) 6= ⊥.

The above definition of LEFT works well for the left LR(k) parser [20]. But as

[$] = desc∗({[S′ → $•S1$, ε]})

(note that the embedded grammar is being used) and there is only one path to
{[S′ → $•S1$, ε]} ∈ [$], the value of LEFT([$], x) is set to [S′ → $•S1$] for all
x ∈ FIRSTG

′

k (S1$) if the definition suitable for the let LR(k) parser is used. It
is valid but useless because if the method outlined in Example 4 is used, the
embedded left LR(k) parser would print ε and stop before ever producing any
production of the left parse.

Thus, an exception must be made in state [$]. Provided that the grammar
includes the productions S1 −→ S2y and S2 −→ Aβ, the value of LEFT([$], x)
must be set to either

1118 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

$〈[$]; ε〉〈[$b]; ε〉〈[$bB];B −→ Bb ·B −→ Bb ·B −→ ε〉〈[$bBa]; ε〉 ac$

[A→ bBa•a, c] ∈ [$bBa]
[A→ bB•aa, c] ∈ [$bB] π1 = ε · π0

π2 = B → Bb ·B → Bb ·B → ε · π1 δ1 = δ0
δ2 = δ1

[A→ b•Baa, c] ∈ [$b], π3 = ε · π2, δ3 = δ2

[A→ •bBaa, c] ∈ [$], π4 = A→ bBaa · π3, δ4 = δ3
[S2 → •A, c] ∈ [$], π5 = S2 → A · π4, δ5 = δ4

The result: π = S2 → A ·A→ bBaa ·B → Bb ·B → Bb ·B → ε and δ = a

Fig. 3. Computing the prefix of the left parse of the string bbbaac ∈ L(Gex3)
and the corresponding viable suffix after bbba has been read: the computation
starts at the top of the stack (right side of the figure) with π0 = ε and δ0 = a,
and traverses the stack downwards (towards the left side of the figure, and then
downwards).

– [A` → •A`+1β`] if all sequences (9) that are active for x, i.e., they end
with some some LR(k) item [A` → •A`+1β`, x`] (for different x`) where
x ∈ FIRSTG

′

k (A`+1β`x`), differ in lookahead strings only and

[S2 → •A`β, y] desc [A` → •A`+1β`, x`] ,

or
– ⊥ otherwise.

The left-parse-prefix automaton represents mapping

LPP: IG0 ×QGk −→ IG0

which is a compact representation of all possible sequences (9) with lookahead
strings stripped off. Hence, LPP(i0, [$γ]) = i′0 if and only if there exists some
sequence (9) with two consecutive LR(k) items i′k, ik, where ik ∈ [$γ], so that
i0 (i′0) is equal to ik (i′k) without the lookahead string.

Example 5. The left-parse-prefix automaton for the grammar Gex3 is shown in
Figure 4. (In this example, the left-parse-prefix automaton is trivial, i.e., without
any loop, but if the grammar is bigger and describes a more complex language,
the corresponding LPP gets more complicated — see [20].)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1119

Boštjan Slivnik

S′→•$S1$ S′→$•S1$ S′→$S1•$ S′→$S1$•

S1→•S2c S1→S2•c S1→S2c•

S2→•AS2→A•

A→•aa

A→a•a

A→aa•

A→•aB

A→a•B

A→aB•

A→•bBa

A→b•Ba

A→bB•a

A→bBa•

A→•bBaa

A→b•Baa

A→bB•aa

A→bBa•a

A→bBaa•

[$] [$S1] [$S1$]

[$]
[$S2] [$S2c]

[$]
[$A]

[$]

[$a]

[$aa]

[$]

[$a]

[$aB]

[$]

[$b]

[$bB]

[$bBa]

[$]

[$b]

[$bB]

[$bBa]

[$bBaa]

Fig. 4. The left-parse-prefix automaton for Gex3 — items that are not needed during
embedded left LR(1) parsing are shown in bold face.

Mapping LEFT for Gex3 is defined as

LEFT([$S2], c) = [S2 → A•c]
LEFT([$a], a) = [A→ a•a]
LEFT([$a], b) = [A→ a•B]

LEFT([$bBa], $) = [A→ bBa•]
LEFT([$bBa], b) = [A→ bBa•a]

(in all other cases, the value of LEFT equals ⊥). Note that LEFT([$], a) = ⊥ and
LEFT([$], b) = ⊥ because of A −→ aa|aB and A −→ bBa|bBaa, respectively.

The algorithms for computing LEFT and LPP can be found in [20]. Once
mappings LEFT and LPP are available, the method for computing the prefix of
the left parse and the viable suffix as outlined above and illustrated by Example
4 can be formalized as Algorithm 2. It is basically an algorithm which performs
a long reduction: a sequence of reductions on productions whose right sides
have been only partially pushed on the stack.

Algorithm 2 Computing the prefix of the left parse and the viable suffix.
INPUT: Stack contents of the left LR(k) parser and a state of LPP automaton.
OUTPUT:The prefix of the left parse and the corresponding viable suffix.
long-reduction (Γ, [A→ α•β]) = 〈π, β · δ〉 where
〈π, δ〉 = long-reduction′ (Γ, [A→ α•β])
long-reduction′ (Γ, [S′ → $•S$]) = 〈ε, ε〉
long-reduction′ (Γ · 〈[$γX], π(X)〉, [A→ •β]) = 〈A −→ β · π, δ · β′〉

where [A′ → α′•Aβ′] = LPP([A→ •β], [$γX])
〈π, δ〉 = long-reduction′ (Γ · 〈[$γX], π(X)〉, [A′ → α′•Aβ′])

long-reduction′ (Γ · 〈[$γX ′], π(X ′)〉 · 〈[$γX ′X], π(X)〉, [A→ α•β]) = 〈π(X) · π, δ〉
where 〈π, δ〉 = long-reduction′ (Γ · 〈[$γX ′], π(X ′)〉, LPP([A→ α•β], [$γX]))

1120 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

Algorithm 3 Embedded left LR(k) parsing.
1: let q ∈ QGk denote the topmost state
2: let x ∈ (T ∪ {$})∗k denote the LA buffer contents
3: while (i← LEFT(q, x)) = ⊥ do
4: perform a step of the Schmeiser-Barnard LR(k) parser
5: end while
6: 〈π, δ〉 ← long-reduction (stack, i)

7: PRINT π

8: return δ

If compared with the similar method used by the left LR(k) parser [20], this
one is not only augmented to compute the viable suffix but also simplified in that
it does not leave any markers on the stack about which subparses accumulated
on the stack have already been printed out. It does not need to do this as after
the first long reduction the LR parsing stops, the LR stack is cleared, and the
control is given back to the backbone LL(k) parser.

Finally, for the sake of completeness, the sketch of the embedded left LR(k)
parser is given as Algorithm 3: in essence, it is a Schmeiser-Barnard LR(k)
parser [13] with the option of (a) premature termination and (b) computing the
viable suffix.

Algorithm 3 always terminates: if not sooner (including cases where it de-
tects a syntax error), the parser eventually reaches the (final) state [$S2] =
{[S1 → S2•x, $]} where LEFT([$S2], $) = [S1 → S2•x] causing it to exit the loop
in lines 3–5.

5. The embedded left LR(k) parser

The embedded left LR(k) parser is the left LR(k) parser for the embedded
grammar (with a modified mapping LEFT) which (a) produces the left parse of
the substring parsed and the remaining viable suffix, and (b) terminates after
the first (simplified) long reduction.

Below, the first theorem establishes that the combination of LL(k) parsing
and LR(k) parsing is asymptotically as fast as LR(k) parsing, and the second
states that it is just as powerful as LR(k) parsing.

Theorem 2. A backbone LL(k) parser augmented with embedded left LR(k)
parsers can parse the input string w derived by the derivation S =⇒π w in time
O(|w|) +O(|π|).

Proof. Each symbol of w is shifted only once, either by the backbone LL(k)
parser or one of the embedded left LR(k) parsers, hence the O(|w|) part.

Each production in π is either produced by the backbone LL(k) parser or
reduced upon by one of the embedded left LR(k) parsers. There are two differ-
ent kinds of reductions: reductions performed during the long reduction require

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1121

Boštjan Slivnik

time k1|α| and ordinary “left” reductions require time k2|α| for a reduction on
A −→ α (but |α| is bounded by a constant depending on the grammar only).
Hence the O(|π|) part.

Theorem 3. A backbone LL(k) parser augmented with embedded left LR(k)
parsers can parse any deterministic context-free language.

Proof. If L is DCFL, then there exists an LR(k) grammar G so that L(G) = L.
For each LL(k)-conflicting nonterminal A of Ḡ (the “SLL(k)” variant of G)

– either an embedded left LR(k) parser can be constructed
– or a nonterminal on the left side of the production where A appear on the

right side can be declared LL(k)-conflicting nonterminal.

By repeatedly applying this trick all LL(k) conflicts get resolved — if not other-
wise, when the initial symbol of Ḡ is declared to be an LL(k)-conflicting symbol
(note that the embedded left LR(k) parser for G with the terminating set {$}
can always be constructed).

It must be admitted that Theorem 3 should be taken with a grain of salt.
While its proof is technically correct, it exposes the true nature of resolving
LL(k) conflicts with embedded left LR(k) parsers. Namely, if embedded left
LR(k) parsers are triggered for LL(k) conflicting nonterminals deriving relatively
short substrings, then employing embedded left LR(k) parsers makes sense
as the amount of a hidden bottom-up parsing is kept within some reasonable
limits. Otherwise, if the grammar requires that an embedded left LR(k) parser
is triggered relatively close to the root of the derivation tree, then a large part of
the input string is going to be parsed by the embedded LR(k) parser and the
method loses much of its appeal (to the point that perhaps the left LR(k) parser
is more suitable [20]).

6. Conclusion

The embedded left LR(k) parser has been obtained by modifying the left LR(k)
parser in two ways. First, the left LR(k) parser was made capable of comput-
ing the viable suffix which the unread part of the input string is derived from.
Second, if was simplified not to leave any markers on the stack about which
subparses accumulated on the stack have been printed out already — as the
parser stops after the first “long” reduction anyway. However, the algorithm for
minimizing the embedded left LR(k) parser, i.e., for removing states that are not
reachable before the first long reduction is performed, is still to be formalized.

At present, both, the backbone LL parser and the embedded left LR parsers,
need to use the lookahead buffer of the same length. However, if the LL parser
was built around LA(k)LL(`) parser (where k ≥ `) as defined in [17], then the
combined parsing could most probably be formulated as the combination of
LL(`) and LR(k) parsing (note that LL(`) ⊆ LA(`′)LL(`) for any `′ ≥ `). This
would make the combined parser even more memory efficient.

1122 ComSIS Vol. 9, No. 3, Special Issue, September 2012

LL conflict resolution using the embedded left LR parser

The left LR(k) parser could be based on the LA(k)LR(`) parser (most likely
for ` = 0) instead of on the canonical LR(k) parser. This would further reduce
the parsing tables while the strength of the resulting combined parser would be
reduced from LR(k) to LA(k)LR(`): not a significant issue as today LA(1)LR(0)
is used instead of LR(1) whenever LR parsing is applied.

By using an LL(k) parser augmented by the embedded left LR(k) parsers
instead of the left LR(k) parser the error recovery can be made much better
— especially if the error recovery of the embedded left LR(k) parsers is made
using the method described in [19].

Finally, apart from using the embedded left LR(k) parser for LL(k) conflict
resolution, the embedded left LR(k) parser can be a convenient method for
parsing the embedded domain-specific languages [9]. Furthermore, the termi-
nation condition formulated in Section 3 can be considered as a guideline for
designing an embedded domain-specific language which fits gently into the en-
closing (usually general-purpose) programming language, i.e., without explicit
markers denoting the border between the embedded and the enclosing lan-
guage; the termination condition also provides an efficient automatic method
for detecting any syntactic problems arising from the embedding itself.

References

1. Aycock, J., Horspool, N., Janoušek, J., Melichar, B.: Even faster generalized LR
parsing. Acta Informatica 37(9), 633–651 (2001)

2. Boyland, J., Spiewak, D.: TOOL PAPER: ScalaBison recursive ascent-descent
parser generator. Electronic Notes in Theoretical Computer Science 253(7), 65–74
(2010)

3. Demers, A.J.: Generalized left corner parsing. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages POPL’77.
pp. 170–182. ACM, ACM, Los Angeles, CA, USA (1977)

4. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: Proceedings of the 31st ACM SIGACT-SIGPLAN symposium on Principles of
programming languages POPL’04. pp. 111–122. ACM, ACM, Venice, Italy (2004)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, MA, USA (1979)

6. Horspool, R.N.: Recursive ascent-descent parsers. In: Hammer, D. (ed.) Compiler
Compilers, Third International Workshop CC ’90, Schwerin, FRG, Lecture Notes in
Computer Science, vol. 477, pp. 1–10. Springer-Verlag (1990)

7. Knuth, D.E.: On the translation of languages from left to right. Information and Con-
trol 8(6), 607–639 (1965)

8. Lewis II, P.M., Stearns, R.E.: Syntax directed transduction. In: Proceedings of the
7th Annual Symposion on Switching and Automata Theory (SWAT’66). pp. 21–35.
IEEE Computer Society Press, Berkeley, CA, USA (1966)

9. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316–344 (2005)

10. Might, M., Darais, D.: Yacc is dead. Available online at Cornell University Library
(arXiv.org:1010.5023) (2010)

11. Parr, T., Fischer, K.: LL(*): The foundation of the ANTLR parser generator. ACM
SIGPLAN Notices - PLDI’10 46(6), 425–436 (2011)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1123

Boštjan Slivnik

12. Rosenkrantz, D.J., Lewis, P.M.: Deterministic left corner parsing. In: Proceedings of
the 11th Annual Symposium on Switching and Automata Theory (SWAT 1970). pp.
139–152. IEEE Computer Society, Washington, DC, USA (1970)

13. Schmeiser, J.P., Barnard, D.T.: Producing a top-down parse order with bottom-up
parsing. Information Processing Letters 54(6), 323–326 (1995)

14. Scott, E., Johnstone, A.: GLL parsing. Electronic Notes in Theoretical Computer
Science 253(7), 177–189 (2010)

15. Scott, E., Johnstone, A., Economopoulos, R.: BRNGLR: a cubic Tomita-style GLR
parsing algorithm. Acta Informatica 44(6), 427–461 (2007)

16. Sippu, S., Soisalon-Soininen, E.: Parsing Theory, Volume I: Languages and Parsing,
EATCS Monographs on Theoretical Computer Science, vol. 15. Springer-Verlag,
Berlin, Germany (1988)

17. Sippu, S., Soisalon-Soininen, E.: Parsing Theory, Volume II: LR(k) and LL(k) Pars-
ing, EATCS Monographs on Theoretical Computer Science, vol. 20. Springer-
Verlag, Berlin, Germany (1990)

18. Slivnik, B.: The embedded left LR parser. In: Proceedings of the Federated Confer-
ence on Computer Science and Information Systems. pp. 871–878. IEEE Computer
Society Press, Szczecin, Poland (2011)

19. Slivnik, B., Vilfan, B.: Improved error recovery in generated LR parsers. Informatica
28(3), 257–263 (2004)

20. Slivnik, B., Vilfan, B.: Producing the left parse during bottom-up parsing. Information
Processing Letters 96(6), 220–224 (2005)

21. Tomita, M.: Efficient Parsing for Natural Language. Kluwer Academic Publisher,
Boston, MA, USA (1985)

22. Tomita, M. (ed.): Generalized LR Parsing. Springer-Verlag, Berlin, Germany (1991)

Boštjan Slivnik received the M.Sc. and Ph.D. degrees in computer science
from the University of Ljubljana in 1996 and 2003 respectively. He is currently
at the University of Ljubljana, Faculty of Computer and Information Science. His
research interests include parsing algorithms, compilers, formal languages, and
distributed algorithms. He has been a member of the ACM since 1996.

Received: December 16, 2011; Accepted: April 2, 2012.

1124 ComSIS Vol. 9, No. 3, Special Issue, September 2012

