DOI: 10.2298/CSIS120108028P

Implementing an eXAT-based distributed
monitoring system prototype

Gleb Peregud!, Julian Zubek!, Maria Ganzha??, and Marcin Paprzycki?*

1 Warsaw University of Technology, Warsaw, Poland
2 University of Gdansk, Gdarsk, Poland
3 Systems Research Institute Polish Academy of Sciences
Warsaw, Poland
<firstname>.<lastname>@ibspan.waw.pl
1 Warsaw Management Academy, Warsaw, Poland

Abstract. Monitoring resource utilization in distributed systems remains
of importance. This is especially the case in LAN-based distributed sys-
tems (and, in particular, in global Grid systems), where individual nodes
can be (may need to be) added to and/or removed from the system at
“random” moments. The aim of this paper is to report initial results of the
project that aims at using Erlang-based software agents as a robust and
flexible resource monitoring infrastructure. The implemented prototype is
capable not only of collecting performance data, but can also detect cer-
tain network problems. Furthermore, an assessment of the eXAT agent
platform, based on experiences gathered during prototype implementa-
tion, is included.

Keywords: Grid computing, resource monitoring, Erlang, eXAT, intelligent
agents

1. Introduction

In computing, Grid is a term that typically refers to a group of loosely coupled
computers, working in a dynamically created arrangement to reach a common
goal [37]. Grid technology is used both to solve computationally intensive sci-
entific problems, and/or to deliver needed resources (e.g. computing cycles,
software services, or data) in commercial applications. Such systems, by the
definition, are heterogeneous and geographically dispersed. Here, two types
of Grid systems can be distinguished. First, a Global Grid, somewhat similar
to volunteer computing systems (e.g. the BOINC infrastructure [6]). Second, a
Local/Desktop Grid, which can be characterized, among others, by existence
of designated administrators (for the whole Grid installation, or for each of its
parts). Unfortunately, Grid systems (as well as other LAN-based distributed sys-
tems) are prone to problems originating, for instance, from the network infras-
tructure, configuration, etc. Furthermore, one of the common problems con-
cerning use of Grid infrastructures is load balancing. Hence, the need for soft-
ware tools, which can help system administrators to monitor the state of the
Grid (be it local or global) and efficiently manage its resources.

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

One of the interesting ideas, put forward by leading specialists in the fields
of Grid and agent computing was to combine the strength of both approaches
to deliver the computing fabric of the future (see [36], for more details). In other
words, the idea was to use intelligence of software agents to provide the “brain”
for the computational “muscle” of the Grid infrastructure. While there exists
projects like the Agents in Grid [46,26,45,27,44], which attempt at directly real-
izing this vision, here, we focus our attention on application of software agents
as “intelligent monitors” within the Grid (as well as in other LAN-based dis-
tributed systems, including Cloud infrastructures). In this context, note that a
number of cases of agent-based monitoring systems have been described in
the literature for other application areas. For instance, agents where used to
monitor network traffic [53], an experimental environment in a laboratory [52],
as well as power systems [51].

The aim of our project was two-fold. First, to develop foundations for a ro-
bust, fault tolerant, extensible, agent-based Grid / LAN / Cloud monitoring sys-
tem, capable of working without need for manual configuration. Furthermore,
the proposed system was to be capable of inferring knowledge from gathered
data and acting upon it. Note that, while we focus on the Grid as the main
use case, all results presented here are immediately applicable to the infras-
tructures within the Cloud environments, as well as to standard LAN infras-
tructures. Therefore, in what follows, the term Cloud (or LAN) could have been
used in place of Grid (with proper caution applied, and with reflection on con-
sequences of such interchange). Second, to assess robustness and flexibility
of the eXAT agent framework [63,61,58] applied to the task at hand. Here, the
potential advantages of an Erlang-based, FIPA compliant, agent framework are
to be judged against their actual realization in the eXAT framework.

2. Related work

The proposed system is designed to support Grid / Cloud / LAN administrators
in their routine activities. The two main use cases considered in our work are:
(1) detection of “connectivity problems” (e.g. disappearance of a node or a link),
and (2) monitoring (and reporting) performance metrics of individual nodes (or
their groups). The latter use case can provide foundation for autonomous load
re-balancing.

Task of resource monitoring has been solved by the monitoring software
like Nagios [39] or Ganglia [49]. Both projects are quite mature, ready to use
in complex, real-world situations. They were written without employing agent
model, using traditional programming paradigms.

Nagios is an all-in-one system, which is able to monitor every key part of
an IT infrastructure: system metrics, network protocols, applications, services,
servers, etc. It is a general tool, which can be applied to monitoring Grid in-
frastructures as well. Within the Nagios there is a lot of space for customization
through custom plugins. However, use of the Nagios system requires extensive
manual configuration, which may be inconvenient in a geographically distributed

1250 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

large-scale Grid infrastructures. Furthermore, the fact that ownership of various
fragments of the (global) Grid belongs to different entities, makes any “global
configuration” task much more difficult.

Ganglia is a more specialized software for clusters and Grids (possibly con-
sisting of smaller clusters). It is designed to achieve low per-node overhead,
focuses on gathering performance metric of each machine, and on generat-
ing statistics for the whole cluster. Ganglia requires little configuration to start
working and, like Nagios, supports custom plugins. However, it is not easy to ex-
tend its functionality beyond the assumed one (e.g. add inferencing knowledge
based on collected data, and acting on it).

Furthermore, both these systems depend on the existence of a central server
(or a group of servers), gathering information from remote processes working
on every node. Note that, while in the monitoring system’s nomenclature, those
remote processes are often called agents, they are just clients for a central
server, and they lack typical properties of agents (for a classical definition of
software agents and agent systems, see [40]). Design with a centralized server
leads to potential problems. When the application server (or the machine on
which it is running) fails, data will no longer be gathered. Similar situation oc-
curs when, due to a network failure, some connections are broken. Another
drawback of these approaches, is a need to reconfigure servers, in the case of
adding new nodes to the Grid (or node removal).

Finally, let us recall that we would like to develop a system, which is able not
only to provide information, which can be inferred from metrics gathered from
the LAN, but also to act on it. While it would be possible to develop such system
on top of either Nagios or Ganglia, it would immediately involve problems de-
scribe above. Furthermore, it would add another layer of software into already
crowded Grid system software stack. Therefore, we have decided to build a
system that will use capabilities of software agents, avoid the above mentioned
problems of Nagios and Ganglia, and be capable of providing the additional
needed functionality.

In the multi agent systems world, most of the projects connected with grid
computing focus on goals similar to the Agents in Grid project. Monitoring of
the physical network infrastructure is usually out of their scope. Nevertheless,
some of them use approach similar to the proposed one.

AgentScape [23] is a distributed middleware that supports large-scale agent
systems. It has features of an agent platform, as well as those of a distributed
agent operating system. Among its features it provides decentralized resource
discovery. However, since the focus of the AgentScape system is to develop
agent middleware for large scale distributed systems, this project is much broader
in scope. Furthermore, the last update of the AgentScape software is from April
2011 and it is unclear what is the progress of development of the AgentScape
2.

Similar, but less advanced, project was MAGDA: Mobile Agent Based Grid
Architechture [20]. It was build on top of JADE agent platform and facilitated cre-
ating Grid applications based on mobile agents. Monitoring of agents and sys-

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1251

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

tem resources as well as service discovery and load balancing were planned. It
provided support for collective communication and use spanning trees for effec-
tive broadcast over the Grid. The same approach was later used in our project.
Note that, the last published reference to the MAGDA system is from 2006 and
thus we have to assume that it is no longer pursued.

An interesting approach to service discovery is represented by the ARMS [25]
project. It provides an agent-based resource management system for Grid com-
puting. The system consists of homogeneous agents managing local resources
and advertising them through the Grid. A special agent has a global view of the
system and simulates other agents’ performance during runtime. It uses the
PACE performance prediction tool-kit and, based on computed metrics, opti-
mizes the behaviour of other agents. However, according to J. Cao, the devel-
opment of both the PACE tool-kit and the ARMS project stopped in 2002.

3. Proposed approach—overview

Taking into account the above considerations, let us outline the main tenets of
our proposed approach. First, we use software agents to develop a framework
for intelligent monitoring of the state of a distributed system. We envision that a
single agent will be placed at each node the system. Such autonomous agent
will be capable of acting both as a “client” and as a “server.” As a result, it
will be capable not only of monitoring the state of the node, but also of infer-
ring knowledge about the state of the system (or its fragments) and act on this
knowledge. For instance, in the case of load imbalance, it will be capable of ini-
tiating procedures leading to the load re-balancing (see, also [28]). To achieve
these goals, the proposed system will be designed in such a way that informa-
tion about the state of the Grid (nodes of a distributed system) will be spread
among the agents. Therefore, the information will remain available (at least to
some extent) even after network link (or Grid node) failure. Furthermore, adding
new nodes will not require any reconfiguration, because agents will be able to
discover themselves, communicate and share the load of monitoring of whole
system (Grid) evenly between them. Finally, this design of the system will alle-
viate the potential problem of a single point of failure. Let us present now two
simple use cases that we have implemented in the initial system prototype, to
illustrate its features and properties.

The simplest use case is: monitoring basic metrics in a basic LAN environ-
ment, with a star topology. Due to the zero-configuration feature, deployment of
the system in a standard LAN should be very easy to complete. Right after the
system is deployed, its administrator should be able to access his local agent
(via a web interface) and start receiving information about the state of the nodes
in the LAN (e.g. in form of plots).

A more complex use case is: continuous monitoring of a LAN with topol-
ogy different than the simple star. System should be able to detect problems
with network links and distinguish between network link failures, node failures,
and failures of monitoring agents. This functionality requires that the system

1252 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

contains redundant network links, or alternative paths in the network. In most
cases, no manual configuration should be necessary to make the monitoring
system work.

Fig. 1. Sample grid with monitoring agents. An edge from node A to B means that agent
A monitors agent B. Number in circle is the number of agents monitoring agent running
on the specific node.

To illustrate our approach, in Figure 1 we depict a sample network topology
with agents running on every node. As we can see, there is no central node
monitoring the remaining agents — the monitoring obligation is distributed, and
every agent is monitored by at least one other agent. This illustrates how the
robustness of monitoring process is achieved (this system will work correctly
after the failure of a single node), and how the monitoring tasks are distributed
evenly between agents, avoiding saturation of resources.

Recall that the proposed system is aimed primarily at supporting Grid man-
agers (local administrators in the case of a local area network or a local Grid,
as well as local and global administrators in the case of the global Grid). There-
fore, as a starting point (to test the two use case scenarios), we have decided
to implement the following features:

— access to the resource utilization metrics,

— automatic, zero-configuration discovery of agents in the local area network
(or any other network where the multicast UDP is enabled), and

— inferring diagnostic information for basic problems, using a rule-based ap-
proach.

By the resource utilization metrics we understand various, easy to establish,
metrics such as: CPU load, memory usage, running processes and their CPU
usage, etc. Such data is going to be gathered and made available to the user. In

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1253

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

the case of a human user, it will be presented to her as plots showing how the
value of selected parameter changes over time. In the case of an agent user,
data will be presented in an appropriate, machine-understandable format. For
instance, in the case of the AiG project, such format is going to be derived from
the ontology of Grid used there (see, for instance, [29,30]. This feature remains
to be implemented.

For the two use cases, we decided to initially diagnose the following prob-
lems: (a) broken connections, (b) inactive nodes, and (c) inactive agents. Obvi-
ously, these are very basic problems, but they have been selected to illustrate
capabilities of our approach to monitoring (e.g. they will show how a rule based
expert system can be used within an agent to diagnose the nature of the net-
work problem). Obviously, this list can be easily extended (e.g. by adding new
rules to the expert system).

In our case, the zero-configuration means that no special information needs
to be provided (by the user) for the agent to join the system. Therefore, when
system administrator plugs her laptop into the network, her agent will find all
other monitoring agents within it autonomously. As soon as this is done, the
administrator agent can immediately start gathering information about the sta-
tus of the Grid. Note that, the administrator agent, by default, runs the same
code as all other agents with one exception—it is also running a GUI interface
to display the obtained information in a human-readable format (plots via a web
interface; see, section 4 for more details).

3.1. Agent technologies in the system

Agents and actors today Let us start from a brief methodological reflection.
Observe that, recently the actor model of computing has (re)gained popularity.
This due to the increasing complexity of building distributed software systems
using more conventional models. Multiple “older” systems modelled after the ac-
tor model became popular in the industry, while new ones have been developed
recently. Among them we can mention, Scala [50,24], SALSA [67], JavAct [17]
and Kilim [60] in the Java world [42]; E language [56]; Asynchronous Agents
Library [1] and Axum [5] from Microsoft; Act++ [41], Thal [43], libactor [8] and
Theron [11] for the C/C++ languages; Stackless Python [65] and Stage [21] for
Python; and Revactor [18] for Ruby. Some industry leaders have also employed
the actor model, like usage of Scala by Twitter [34], and usage of Erlang by
Facebook [47].

As we can see, the actor model is being adopted by a broad rage of compa-
nies, with at least some degree of success. Therefore, let us briefly discuss the
relationship between actors and agents. According to Gul Agha, actors have
the following properties [14]:

concurrent computational entities

independent from other actors (autonomous)

can communicate with other actors via messages
reacts to received messages

1254 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

— can create new actors

According to Stan Franklin and Art Graesser, intelligent agents have the
following properties [38]:

reactive (or sensing; or acting)

autonomous

goal—oriented (or pro-active purposefully)

temporary continuous (or continuous running processes)

Additionally they may display the following properties:

communicative (or socially—able)

learning (or adaptive)

mobile

flexible (actions not limited to simple script)

character (referring to “personality” and emotional state)

As we can see, basic properties of agents match well with properties of
actors. Hence we can argue that the agents model is a superset of the ac-
tor model, with addition of intelligence, goal-orientation, adaptiveness, mobility,
proactiveness, etc.

Since Erlang, as a specific implementation of the actor model, has all above
properties of actors build-in, we find it a good and natural foundation to develop
an agent system. This is precisely what underlined the eXAT project [63] that
we will now focus our attention on.

3.2. Erlang, eXAT and ERESYE

As stated above, we have decided to develop our system using the eXAT agent
framework [63]. There were multiple reasons for this choice. First, according to
its author (see [58]), the eXAT provides a FIPA-compliant implementation of an
agent platform that includes:

FIPA-ACL (Agent Communication Language),

AMS (Agent Management System),

support for ontologies,

messaging using the MTP protocaol,

integration with the ERESYE (ERlang Expert SYstem Engine).

Since this looked quite interesting, we have decided to assess the quality
of eXAT (which is an experimental tool) in practice of agent system develop-
ment. Note also that, according to our vision of agent system design and im-
plementation, Erlang, as an actor-based concurrent language with a distributed
virtual machine, is really promising for implementing agent-based systems. Fur-
thermore, being based on Erlang, could provide eXAT with certain advantages
over other agent frameworks. They include: (i) natural, functional language syn-
tax with declarative elements, suitable for representing knowledge; (ii) efficient

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1255

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

agent communication and concurrency; (iii) easy access to Erlang libraries; and
(iv) availability of a rule-based expert system engine build-in into eXAT.

One of often invoked characteristics of software agents is their intelligence.
In our system this can be facilitated through the use of a rule-based expert
system. We are referring to the ERESYE [62], which is a rule production sys-
tem, written in Erlang and created by the same team that has developed the
eXAT environment [62]. It is similar to other expert systems, like CLIPS [57] or
Jess [13]. However, due to Erlang’s declarative nature, it is possible to repre-
sent rules for the ERESYE using syntax very similar to the Erlang code itself.
This simplifies the learning curve and allows use of the same structures for
both communication between agents, and the reasoning subsystem. As stated
in section 3, the ERESYE is to be used to infer information and provide it to the
users of the system (e.g. system administrators).

Finally, note that, since the eXAT is claimed to be FIPA-compliant, and uses
the FIPA-ACL message format, it should be possible to establish communication
between agents written in eXAT and agents written in other FIPA-compliant
systems, e.g. JADE [22]. This, in turn, should allow one to write systems, which
utilize both agent platforms. For instance, it should be possible to add an eXAT-
based monitoring subsystems to agent teams formed in the above-mentioned
Agents in Grid project. Therefore, one of the auxiliary aims of our work was to
establish that passing messages (bidirectionally) between eXAT and JADE is
possible, without extra development efforts. Note also, that while implementing
the system prototype (and the eXAT-JADE communication), as an extra result,
we managed to made some observations comparing the Erlang/eXAT and the
Java/JADE agent platforms, which we report in section 7.

4. Implementation details

Thus far we have implemented, a somewhat limited in scope, prototype of the
above outlined system. This proof-of-concept implementation works in a LAN,
which can be considered a basic variation of a Grid environment. In the near
future, the system will be extended to support more complex environments.
Let us now look into some details of the implemented prototype; starting from
individual monitoring agents.

There are two basic functions of each agent in the system. First, monitoring
other agent(s), and second, collecting local performance metrics. The third, ex-
tra function, is running a GUI, but it is executed only by those agents that are
used to display data to the system administrators (see, below).

In our solution, to implement the monitoring other agents function, we use a
method similar to that found in [45], and apply periodic pinging with FIPA-ACL
QUERY-REF messages. Let us consider what information is needed for the
agent operation. In our case this is:

— agent’s own name (to provide correct reply address in sent messages),
— system metrics collected for the node,

1256 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

— list of known nodes in the LAN,
— list of other agents which are monitored by given agent.

For an agent to be able to perform its monitoring tasks, it needs to gather
the required information. Since the system assumes the zero-configuration ap-
proach, this has to be done automatically, using mechanisms, which are avail-
able at hand. Since agents are started independently on respective nodes,
there is no pre-existing information about other agents in the system. There-
fore, when choosing the name of the agent, which will be used to identify it in
the system, we need to ensure its uniqueness. To achieve this goal, the name
is generated automatically from the host name of the LAN (Grid) node. Here,
we modified the eXAT code to use the “<nodename>.<hosthame>" pattern
for defining it's platform name. The nodename is the name of the Erlang node
specified with the “-name” or the “-sname” parameter of the Erlang VM, while
the hostname is the FQDN (Fully Qualified Domain Name) hostname of the
system, as detected by the Erlang VM. The Erlang VM (and it’s helper process
epmd) ensure that there are no conflicting node names running locally. This
ensures uniqueness of the “nodename” component of the agent name. The as-
sumption that the host name of the node is correctly configured to be unique in
the LAN, is sufficient guarantee of uniqueness of the agent name. Hence, since
every monitoring node runs a single monitoring agent, we construct agent’s
name as “monitor_agent@ <platform-name>”. Additionally, a start script of a
monitoring node retrieves list of locally registered Erlang nodes, and automati-
cally selects a locally non-conflicting nodename.

System metrics can be acquired by using a suitable system library. Depend-
ing on the operating system used by the individual nodes, and the environment
of choice, libraries like parfait [2] for Java, glibtop [3] for Linux systems coded
in C/C++, or Performance Counters API [1] for Windows systems can be used.
For the system prototype, we decided to use the os_mon ([33]) library, which
comes with the standard Erlang distribution, and thus is a natural choice. Obvi-
ously, any of the above-mentioned libraries could be used, and interfaced with
the monitoring agent. Here, the natural meta-encapsulation of the local infor-
mation, which is the core of agent system development, is the guiding principle
of our design. Additionally the os_mon abstracts all cross-platform details and
exposes a consistent API for all platforms supported by Erlang. Therefore, let us
make it explicit that the proposed monitoring system is operating system agnos-
tic and will run also in a heterogeneous environment (consisting of computers
running different OS’es) as long as all of them can run the Erlang VM.

List of all LAN nodes is discovered by using a DNSSD-based mechanism (as
described in section 4.1). The remaining two lists can be built using a diffusion-
based algorithm (described in section 4.3). In the near future, for more complex
setups (e.g. in a distributed Grid), the agent discovery mechanism will be pro-
vided. This has to be done since the current algorithm assumes that multicast
UDP is enabled, which is rarely the case in a non-LAN environment. If the mon-
itoring system is going to be integrated into the project like the Agents in Grid,

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1257

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

it can reuse mechanisms of agents discovery used in it (e.g. the Grid middle-
ware).

Users of the monitoring system are provided with the monitoring data, using
a web-base interface. Specifically, the user GUI adds to an agent a built-in web
server. In our implementation, we have selected the Misultin framework [9].
It consists of two parts—a static HTML page, and a JavaScript code, which
governs all logic of the agent’s web Ul. The implemented GUI uses Websockets
to receive information from the agent (in real-time). The Misultin provides a
ready implementation of the server-side WebSocket protocol, which we take
advantage of. The web server is integrated into an agent in a form of one (or
more) Erlang process(es), which communicate with agent’s process(es) using
Erlang messaging. This allows for a clean separation between the agent’s logic
and the code, which is responsible for sending this information to the browser.
Here, the JavaScript library Smoothie Charts [10] is used for plotting the near
real-time system utilization metric data in the browser.

Two activities, based on communication with other agents, are used in mon-
itoring a group of neighbours are: (i) periodically pinging, and (ii) broadcast-
ing information about the state of each agent (e.g. performance metrics, node
status, link status, etc.) throughout the agent-Grid. Here, by broadcasting we
understand sending an information to all other agents in the LAN. To accom-
plish this, without over-saturating the network, we propagate messages over the
edges of a spanning tree. Creation and use of the spanning tree are described
in section 4.2.

Last of core activities of each monitoring agent is diagnosing problems with
nodes, links and other monitoring agents (see, also, section 3). This is achieved
by application of the ERESYE expert system, and described in detail in sec-
tion 4.4.

4.1. Agent discovery

Let us now consider how agents can find the list of other agents existing at
any given moment in the system. Perhaps the most obvious solution would be
a central registry (e.g. the AMS provided service), as it is used by default by
many agent platforms including the eXAT. However, the central registry would
be a single point of failure (SPOF) of the system. As a result, failure of the AMS
node would, for all practical purposes, lead to disintegration of the monitoring
system itself. Besides, it would not go well with our policy of zero-configuration
(joining agent would be forced to communicate with the AMS to start working).
Thus we decided to proceed the way that P2P systems collect information about
nodes in the system, and avoid the SPOF [15].

In our system every node runs its own eXAT instance acting as an au-
tonomous agent platform and registering only local agents. Information about
other, external agents is collected and stored explicitly by every agent. To pass
a message to another agent, we need to know the Internet address and the
port number of the destination platform, and the destination agent name.

1258 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

In this way, an agent registers another agent, when it stores the following
information: address, port number and agent name. Obviously, this means that
the amount of locally stored information is of order of the number of nodes in
the Grid, but this is a “fair price” for the zero-configuration and avoiding the
SPOF. Note that, agents entering or leaving the Grid should be registered (or
deregistered) by all other agents running in that Grid. Recall, that since we have
adopted the naming schema described in section 4, full agent name already
encapsulates the platform name and the hostname.

Since, as mentioned earlier, the initial system is designed to work in the
LAN environments (e.g. private Clouds/Grids) we have chosen a well-tested
approach known as the Zeroconf [12], which is based on the UDP multicast
and provides a DNS-like discovery system (multicast DNS—mDNS). The two
most popular implementations of the Zeroconf techniques are Bonjour [16] and
Avabhi [4].

Bonjour is an Apple Inc. implementation of zero-configuration networks, in-
cluding address assignment, service discovery and name resolution. It imple-
ments the DNS Service Discovery (DNS-SD), among others.

Avahi is an open source free implementation of the Zeroconf, including the
mDNS and the DNS Service Discovery. Avahi is currently a de facto standard
implementation of the Zeroconf for Linux and *BSD operating systems. Avahi
also implements a source code API compatibility layer for Bonjour. Therefore,
we have decided to use the Bonjour API, since it is available on all operating
systems, where either Bonjour or Avahi are available.

In our implementation, we use the dnssd_erlang library, which provides an
Erlang interface for the Bonjour API [66]. Each agent, during its start procedure,
registers itself in the local DNS-SD registry (as a provider of the monitoring ser-
vice) and receives a list of other monitoring agents. At the same time, it spawns
a process, which listens for newly registered agents and adds them to the list.
Note that the Avahi/Bonjour DNS-SD service, running in the operating system,
automatically broadcasts information about all registered services to all com-
puters in the LAN. It also automatically removes from this registry processes,
which have been terminated. In this way, agents that leave the system are au-
tomatically deregistered.

This approach provides a much more flexible way of handling discovery of
agents in the LAN than the eXAT AMS. In fact the eXAT AMS can be, with
relative ease, extended to support the DNS-SD based agents discovery in the
LAN. However, in our case, agent discovery is implemented directly in agents,
without use of the AMS.

Knowing how agents can find information about other agents that are avail-
able in the system at any given moment, let us now describe algorithms that use
this information and provide the monitoring infrastructure. In particular, we will
provide details of broadcasting through the spanning tree, building the spanning
tree, and the neighbour selection.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1259

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

4.2. Broadcasting through the spanning tree

We had to make sure that agents can effectively broadcast information in the
Grid, while the monitoring system is as non-intrusive as possible. In the case
of a system consisting of hundreds of nodes, if a naive broadcast (exchanging
information between every pair of agents) is used, network will become unnec-
essarily loaded. On the other hand, we had to ensure that the system will, with
high probability, survive the failure of a single agent, node or a connection. In
such case, the monitoring system should be able to send messages between
the remaining agents and report accurately where the problem occurred. Fur-
thermore, it should be able to successfully deal with leaving nodes (agents).
Therefore, since we decided to use a spanning tree as the network topology of
the monitoring system, this case should be handled in exactly the same way
as if that node (agent) had crashed. When developing the logical monitoring
network topology, we have taken into account the following issues:

— network saturation with messages exchanged between agents,
— need to detect and handle failures of:

o limited number of nodes (in limited time),

e limited number of links between nodes (in limited time).

The proposed solution consists of two stages. First to build a spanning tree
of agents/nodes and to use it to broadcast messages. This guarantees that
every agent will receive information just once (since the tree is by definition
acyclic). Note that the information will be propagated regardless of broken links
between specific nodes, as long as the network graph is connected (since in ev-
ery connected graph the spanning tree exists). Second, to reasonably increase
the number of agents monitoring each-other. In other words, the agent monitor-
ing process should go beyond the basic spanning tree structure.

To build the spanning tree we use the well-known token-based distributed
depth-first search [48] algorithm. Its core is based on passing a token along the
edges of the graph; where the token contains the following information:

— state (FORWARD or RETURN),
— sender,
— list of visited nodes.

Upon reception of a token an agent undertakes the following actions:

1. If the token is in FORWARD state:
(a) remember sender as parent
(b) add current node to visited list
(c) start children registration
2. If there are no unvisited nodes among the neighbours:
(a) return the token in RETURN state to parent
3. Otherwise:
(a) send token in FORWARD state to first unvisited neighbour
(b) register that neighbour as child

1260 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

One of the visible problems of this approach, when applied to monitoring
of a dynamic system, is the need to rebuild the spanning tree in the case of a
node, or a link, failure, as well as in the case of a node entering® or leaving the
Grid. We allow the rebuild process to be initiated by any agent in the system.
Such agent will initiate the spanning tree re-build as soon as it discovers that
it no longer can communicate with one of its child nodes in the spanning tree.
To discover it swiftly, an agent always monitors its children in the tree (through
periodic pinging). Since many agents can initiate the tree rebuilding process at
almost the same time (note that processes resulting in the need to rebuild the
spanning tree can happen in multiple locations; e.g. a node failure and a node
leaving the Grid can occur concurrently in various locations within the Grid),
mechanism of breaking ties is needed (so that only a single spanning tree will
result).

To implement such mechanism, we have modified the basic algorithm. Here,
observe that each agent has its own unique identifier and thus it is possible to
compare these identifiers using lexicographical ordering of their names. Thus,
along with the token, we send the identifier of an agent that initiated the span-
ning tree rebuild process. Now, if an agent receives another FORWARD token
before the RETURN token (that it has forwarded earlier), it checks whether the
ID of the agent initiating another tree-rebuild process precedes the ID of the
agent that initiated the previous one. If this is so, the previous FORWARD to-
ken is forgotten, which will lead to the previous rebuild process to time out, and
yield no result, while the new rebuild process will continue, eventually reaching
the previous search initiator. Otherwise the received token is ignored. After the
spanning tree is rebuild, a special FINISHED message is propagated through it.
Only after the reception of that message agents are ready to accept any further
spanning tree search request (FORWARD tokens), regardless of the initiator
ID. Such modification guarantees that in the case where multiple nodes initiate
search concurrently, only one will succeed.

Spanning tree (re)built using this algorithm will be used for broadcasting data
through agent’s network. Current approach does not take into consideration the
physical structure of the network over which agent’s are communicating. This
means that pings sent through agents’ spanning tree may be actually travers-
ing the longest possible paths in physical network and imposing unnecessary
stress over network devices and network links.

We believe that automatic adjustments of a spanning tree based on the
ping times between agents in a cluster (which is a case of an online minimum
weighted spanning tree problem [54,31]) can be implemented and we speculate
that it can be moderately effective for detecting the actual physical structure of
the network for small networks, if proper statistics of ping measurements are
used to determine the weights of edges in the graph. While this is a research
topic in its own right, and is out of scope of the current system prototype, we
plan to experiment with this approach in the future.

5 Currently new agents “appearing” in the Grid are initiating a full tree rebuild, but this
can be optimized in the future by attaching such agent as a leaf of the tree

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1261

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

4.3. Neighbour selection

Obviously, the spanning tree guarantees only that any missing node (or agent)
will be detected immediately, since every agent pings periodically his parent and
all his children, as a part of a standard monitoring procedure. However, it would
be impossible to discover all broken links while monitoring only the edges of the
spanning tree. If there is no direct monitoring between given two nodes, a bro-
ken connection between them would remain undetected; see figure 2. There,
broken link between A and C will be discovered instantly whereas lack of con-
nection between A and B is left undetected with the depicted spanning tree.
Therefore, we have decided to force agents to monitor multiple nodes.

Since we have no “external” / a’priori knowledge about the physical network
topology, we do not know if given two nodes are connected directly or if they
communicate through another node (which may or may not have a monitoring
agent running on it, e.g. a network router). Obviously, to monitor existence of
connections, it is necessary to monitor direct connections between nodes. How-
ever, without information about the actual network topology, we cannot decide,
which other nodes should be monitored by an agent. Therefore, we have de-
cided to employ a probabilistic approach: each agent monitors a set of random
neighbours. Here, we are satisfied that, with certain probability, all physical con-
nections are covered. Obviously, the question remains, how many nodes, not
belonging to the spanning tree, should an agent monitor?

To be absolutely certain that any broken network link will be detected (in the
worse case, when each pair of nodes has distinct physical connection) each
agent should monitor all other agents in the Grid. In some cases this would be
acceptable, however, for larger Grids and sparse network topologies, it would
lead to unnecessary network load (similarly to the naive broadcast considered
in section 4.2). As a solution, we propose a parametrized value k, which defines
a trade-off between the level of robustness we want to achieve, and the level
of network saturation, which is acceptable in the current environment. Here,
k = 0 means that no additional monitoring besides that through the spanning
tree edges takes place, while £ = n, where n is the number of nodes in the Grid,
corresponds to the situation when every agent is monitoring all other agents.

To build the actual monitoring dependencies, we proceed as follows. Based
on the list of all Grid nodes (which is available at each node, see section 4), each
agent starts monitoring £ random nodes. Choosing the exact value of k£ depends
on network topology, throughput of it’s links and the desired robustness of the
monitoring (in a sense of ability of the monitoring infrastructure to detect com-
plex network failures, and time needed to detect them). Unfortunately, to the
best of our knowledge, the value of k should be selected experimentally. Higher
k ensures better robustness, but increases bandwidth utilization, resulting from
the monitoring process, and vice versa. At first, some of this monitoring is bi-
directional, which leads to an unbalanced number of connections at each node.
To make it closer to the requested value k, we employ a simple diffusion-based
approach. Whenever two agents ping each other, they exchange information
about the number of “neighbours” each has and compare them. If it turns out

1262 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

Fig. 2. Sample Grid with physical network connections. Thick gray edges denotes work-
ing network connections, dotted gray edges denote broken connections. Thin black
edges denotes agents monitoring activity.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1263

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

that one number is higher than the other (with difference larger than one), one
agent will “pass” monitoring a specific node to the other. This will decrease
the number of nodes it is monitoring and increase the number of nodes mon-
itored by the other. To ensure data consistency, each exchange is realized as
an elementary transaction, which has to be confirmed from both sides. After the
diffusion is completed, in most cases monitoring ceases to be bi-directional and
number of monitoring neighbours should be close(r) to the desired k. Our imple-
mentation of monitoring balancing is simplistic, and it may be slow to converge.
Examples of better load-balancing algorithm of this type are well described in
the literature (see, for instance [59]), and we plan to experiment with them in
the future.

Furthermore, in the future versions of the system, this model will be slightly
extended. When the number of neighbours monitored by each agent is stabi-
lized, they will occasionally (after a predefined time) exchange monitoring obli-
gations (pass one monitoring obligation and receive another). This will introduce
neighbours rotation across the network. As a result, broken links that could not
be discovered immediately, will be eventually discovered (after some time).

4.4. Knowledge inferencing

During work of the system, agents exchange information they have obtained
(e.g. detected dead agents, detected dead nodes, performance metrics, etc.),
using the broadcast through the spanning tree. Based on gathered cumulative
information, agents are capable of interfering additional knowledge. Here, infor-
mation gathered from other agents is added to agent’s own knowledge base,
which is used by it's expert system. These facts are also annotated with the
name of the source agent. This allows to distinguish between information ob-
tained first hand, and information obtained from other agents.

Let’s consider three simple scenarios, which can be easily detected using a
rule-based approach:

1. How to distinguish between a dead agent and a dead node?

2. How to distinguish between a dead node and a dead link?

3. How to detect problems of a specific feature of the system, which is running
in the Grid?

For these scenarios, let us describe an appropriate set of rules, and their
representation in the ERESYE inference engine.

— Case 1: We have an agent which monitors some remote agent R running
on node node(R), we can use the following rule to detect if the agent is
malfunctioning, or it's the node that is dead.

(agent R does not respond to pings) A (node(R) does respond to ICMP
pings) = (agent R is dead)
agent_failure (Engine, {agent_state, BNode.id, active},
{link_state , ANode.id, BNode.id, working},
{pinging.state , ANode.id, BNode.id, not_responding}) —>

eresye:retract (Engine, {agent_state, BNode.id, active}),
eresye:assert(Engine, {agent_state, BNode.id, inactive}).

1264 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

(agent R does not respond to pings) A (node(R) does not respond to ICMP
pings) = (node(R) is unreachable)
node_unreachable (Engine, {link_state , ANode.id, BNode.id, broken},
{pinging.state , ANode.id, BNode.id, not_-responding})—>
eresye:assert({node_unreachable, ANode.id, BNode_id}).

— Case 2: We have an agent, which monitors node A that stops responding
to pings.
(node A is unreachable)A(node A is unreachable for other agents too) =
(node A is dead)

node_inactive (Engine, {node_state, ANode.id, active})
when not[”{link_state ,ANode.id, _,working}”];true —
eresye:retract (Engine, {node_state, ANode.id, active}),
eresye:assert(Engine, {node_state, ANode.id, inactive}).

(node A is unreachable)A(node A is reachable for some other agents) =
(link between A and myself is broken)

link_failure (Engine,{link_state , ANode_id, BNode.id, broken},
{link_state , ANode.id, _, active}) —
eresye:assert(Engine, {link_failure , ANode.id, BNode.id}).

— Case 3:
For Case 3 let us assume that the system is installed in a heterogeneous
Grid, where each monitored feature is handled by a subset of nodes. For
example, let us assume that the Grid is handling back-end operations of
some medium size web service, which has a search feature, which is being
handled by 3 servers A, B and C. The fact that those specific hosts are
handling some specific feature (in this case it is a search feature), can be
fed to the knowledge base of agents in the monitoring infrastructure. Such
information, would allow to create rules, which would detect that something
is wrong with this specific feature. For example the following rule could be
instantiated:
(all nodes with this feature have high CPU utilization) A (error rates for re-
lated category is elevated) = (the feature is broken)
Coupled with an alerting system, this rule could generate an alert, informing
administrators of the system that the search feature does not work correctly.
As seen from the rule above, this example also needs an additional er-
ror rate metric originating from a monitoring system, which can be easily
obtained by parsing error logs of said search servers. This can be imple-
mented, for instance, by adding an additional agent, which will parse these
logs and feed results to the local monitoring agent. Let us stress that to ex-
tend our existing prototype to handle this case would be relatively easy and
would require only (a) adding appropriate rules to the expert system, and
(b) adding (and integrating with other agents) a log parsing agent.

While these three cases are relatively simple, they were implemented to
illustrate the eXAT «+ ERESYE integration. Furthermore, these are the func-
tionalities that not only can be helpful in actual day-to-day work of an admin-
istrator of services running on multiple servers in LAN, but also show that the

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1265

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

implemented system works as assumed. Obviously, the set of possible rules is
naturally extensible.

5. Monitoring system at work

[} Oops! Google Chro..
€ C © localhost:80

Sat Jun 252011 11:28:14 GMT+0200 (CEST): websocket connected!

Fig. 3. Browser window after connecting to an agent.

Working with our system is very straightforward. We have prepared a wrap-
per script for running the agents:

./ start_agent.sh —http_port 7778 —ws_port 8080 \
—name platform_name

The http_port option denotes a port used by the eXAT for communication and
the ws_port is the websocket port number used by the web interface. Finally,
the name parameter is mandatory for the platform name. However, it can be
chosen freely, since it has no consequences for the operation of the system.

After the agent was started, the administrator can connect to it with a web
browser and preview the collected information. Currently, only more recent ver-
sions of Internet Explorer, Firefox and Chrome support the WebSocket protocol,
but since this support is likely to remain in these browsers in the future, we do
not see it as a serious drawback. Figure 3 presents the browser window just
after the connection with the administrator agent has been established.

Since the agent immediately starts gathering data, in a relatively short time
user should be presented with animated plots presenting the CPU load of ev-
ery node in the Grid (currently this is the metric, depiction of which has been
implemented). This is illustrated in figure 4.

In the case of discovery of an inactive agent (as described in section 4.4),
it is signaled by a red message appearing under its plot, as can be seen in
figure 5.

Similarly, any link problems are signaled by a red text in the links state col-
umn. Since links are symmetrical, failure of a link from A to B would be always
accompanied by failure of a link from B to A. This situation is depicted in figure 6.

1266 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

[) Ocps! Google Chro..

€« C @ localhost 8¢

Cpu load:

Agent active

Node: monitor_agent@c

Cpu loadh:

j Link between "monitor_agent@a" and
"monitor_agent@b" is working.
Link between “moniter_agent@b" and
"monitor_agent@a" is working.
Link between "monitor_agent@a" and
"monitor_agent@c" is working,
Link between "monitor_agent@c" and
"monitor_agent@a" is working

Agent active

Node: monitor_agent@a

Cpu load:

Agent active
Sat Jun 25 2011 11:28:14 GMT+0200 (CEST): websocket connected!

Fig. 4. Resource load plots for different nodes.

6. Experimenting with the monitoring infrastructure

In addition to the simplistic use cases described in section 5, the monitor-
ing system has been deployed in a network of 4 Ubuntu Linux workstations
at a small company in Warsaw. After the Erlang has been installed (using
apt—get install erlang), the monitoring system was unpacked and started with
a provided startup shell script start .sh. Each node has been detected and was
able to connect into the monitoring system in time below 5 seconds. The initial
spanning tree is depicted in figure 7. To observe the monitoring system at work,
we have implemented an additional monitoring mechanism, which recorded
ping times along the edges of the spanning tree. These times were consistent
with the physical layout of the network, which consisted of multiple 100 Mbps
switches connected in a star topology.

After the system has been started it reported the CPU load of each computer
in the network. Another metric, which has been presented to the user, was the
recorded ping time between agents, which were pinging each other. Due to the
mechanisms of broadcasting most locally harvested information, a user could
look up the state of all nodes in the network at any node. Full knowledge base

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1267

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

Node: monitor_agent@c

Cpu load:

Agent inactive.

Fig. 5. Inactive agent discovered.

of one of the agents, including mentioned metrics, in the cluster is presented in
figure 8.

When the root switch has been shut down, agents started to detect ping-
timeouts, which resulted in creation a new spanning tree, as presented in fig-
ure 9. Agents were able complete this task in around 15 seconds, since each at-
tempt of building a spanning tree resulted in multiple timeouts. A full knowledge
base of one of the agents after shutdown of a switch is illustrated in figure 10.

Separately we have collected measurements at the root switch, to estimate
the bandwidth overhead introduced by our monitoring system. With the pinging
interval set to 1 second, the average bandwidth overhead was approximately 70
kbps. Broadcasting overhead was changing linearly depending on the pinging
interval.

After the root switch has been restarted, agents were able to detect their
presence again, and were able to rebuild a new full spanning tree in around 7
seconds.

These experiments, performed in a realistic situation (though admitting, that
the network was somewhat small) show that mechanisms outlined in the pa-
per are working reasonably well and can be useful in practical use cases as a
“smarter” alternative to software like Ganglia. Let us also note, that in the near
future we plan to experiment with much larger network to test the scalability of
the proposed approach.

7. Experiences with eXAT

Since no other projects realized in eXAT are known to us, and no descriptions
of experiences regarding writing agents with this framework could be found in
the literature, we have decided to present some thoughts on working with this
tool.

1268 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

€ C' @ localhost:

Node: monitor_agent@a

Cpu load:

Agent active.

Node: monitor_agent@c

Link between "monitor_agent@c" and
"monitor_agent@b" is worling,

Link between "monitor_agent@b" and
"monitor_agent@c" is working.

Link between "monitor_agent@b" and
"monitor_agent@a" is working.

Link between " r_agent@a" and

Cpu load:

agent@a'" and
c" is broken.

Agent active

Node: monitor_agent@b

Cpu load:

Agent active.

Fig. 6. Broken links discovered.

7.1. eXAT-JADE interoperability

Since eXAT uses the FIPA compliant ACL messaging model, it should be pos-
sible to communicate with other agents platforms supporting the standard. We
verified this assumption experimentally, by establishing a bidirectional commu-
nication between an eXAT agent and a JADE agent. The connection proved to
be easy to set and no platform modifications or special syntax were necessary
(see, below). However, the original version of eXAT relied on a custom HTTP
server which was not fully reliable. In our project we switched to an external
solution — the Misultin [9], which helped with handling most of the JADE MTP
messages. We haven'’t tested all possible communication types between the
two systems, hence some other interoperability problems can still be present.

Despite possible inconveniences caused by the immaturity of eXAT, it seems
to be feasible to build heterogeneous agents systems based on eXAT and
JADE. Furthermore, using an eXAT agent to create an interface for the existing
Erlang applications is also an option (which, for instance, could be used if eXAT
agents would be incorporated into the AiG project).

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1269

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

~ma@mon7779:first.lan

. ma@mon?799%:jupiterlan

~ma@mon7779:atlas.lan

~ ma@mon7779:saturnlan

Fig. 7. Initial state of the spanning tree.

We shall now demonstrate how to make eXAT and JADE agents exchange
messages. In the eXAT all ACL-related functions are defined in the module acl.
The basic function for sending a message is acl:sendacl(message), where the
message is the following Erlang record (defined in the acl. hrl header file):

#aclmessage {speechact, sender, receiver, ’'reply—to’, content,
language, encoding, ontology, protocol, ’'conversation—id’,
‘reply—with’, ’in—reply—to’, ’'reply—by’}

To pass a message between the agents we have to fill correctly the sender
and the receiver fields. Both of them should be records of type:

#’ agent—identifier’ {name, addresses}

where the name has the form agent_name@platform_name, while the addresses
is a list of network addresses in the form http :// ip :port/acc. Finally, the # agent—identifier’
is defined in the fipa_ontology . hrl.
For example a command for sending simple ping message to an agent from
a different platform (another instance of eXAT, or any other FIPA-compliant plat-
form) running on the local host, could look as follows:

acl:sendacl (#aclmessage{speechact = query, content = "ping”,
sender = #’agent—identifier '{john_the_agent@platform1 ,
[http ://localhost:7778/acc]},

1270 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

"agent”, "ma@mon7779:atlas, lan"]

"ma@mon7779: first.lan"]

"ma@mon7779:saturn.lan"]

,"ma@non7799: jupiter.lan”]

"agent_node”, "ma@mon7779:atlas. lan", "mon7779:atlas. lan"]
"agent_node”, "ma@mon7779:first.lan", "men7779: first.lan"]
"agent_node”, "ma@mon7779:saturn.lan”, "mon7779: saturn. lan"]
"agent node", "ma@mon7799: jupiter.lan", "mon7799: jupiter.lan"]

"agent_status", "ma@mon7779:atlas, lan", "alive"]
"agent_status","
"agent_status","” : . .
"agent_status", "ma@mon7799: jupiter.lan”, "alive"]
"epu_state","atlas.lan", 8]

"epu_state rst.lan", 340]
"epu_state","jupiter.lan",282]
"cpu_state","saturn.lan",3]

JUfirst.lan"]
", "jupiter.lan"]
", "saturn.lan"]

"local_agent”, "ma@mon7779: first.lan"]
on7779: first.lan"]

"ma@mon7779:atlas. lan", ["magmon7799: jupiter.lan"]]
"ma@mon7779: first. lan", ["magmon7779:atlas. lan"]]
"ma@mon7779:saturn.lan", [1]

. "ma@mon7799: jupiter.lan”, ["magmon7779:saturn.lan"]]

L "mon7779: first. lan"]
", "mon7779:saturn.lan"]
"node”, "mon7793: jupiter.lan"]
“node_host", "mon7779:atlas. lan", "atlas.lan"]

rst.lan"]
aturn.lan"]

2t ,"jupiter.lan®]
ma@mon7779:atlas.lan", "ma@non7779: first.lan"]
"pare ma@mon7779: first.lan", "ma@mon7779: first.lan"]
"parent”, "ma@mon7779:saturn.lan", "ma@mon7799: jupiter.lan"]
"parent”, "ma@mon7799: jupiter.lan”, "magmon7779:atlas. lan"]
", "children", ["magmon7779:atlas.lan"]]
", "origin®, "magmon7779: first.lan"]
"stree”, "parent”, "ma@mon7779:first.lan"]
"stree","status”, "initial"]

Fig. 8. Initial state of agent’s knowledge base.

receiver = #’agent—identifier '{tom_the_agent@platform2,
[http ://localhost:7779/acc]}).

Here, an agent named john_the_agent sends a message to an agent fom_the_agent.
These two agents are running on two separate platforms started on the local-
host and distinguished by their port numbers.

Knowing the API of the ac/ module, we can create two simple agents — an
eXAT agent (see listing 1.1) and a JADE agent (see listing 1.2)—and make
them exchange messages.

Let us now analyse the listing in Figure 1.1. The eXAT code starts with
the necessary header declarations. Next, follows the declaration of the function
extends, which is a part of the eXAT object system syntax—it means that the

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1271

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

Listing 1.1. eXAT ping agent

—module (exat_agent).

—export([extends/0]).

—export([pattern/2,event/2,action/2,on_starting/1,
do._request/4,start/0]).

—include_lib (”exat/include/acl. hrl”).

—include_lib (”"exat/include/fipa_ontology.hrl”).

extends ()— nil.

pattern(Self, request)—> [#aclmessage{speechact="REQUEST'}].
event(Self, evt_request)—> {acl, request}.
action (Self, start)—> {evt.request, do_request}.

fellow_agent ()—> # agent—identifier ’{
name = ”jadeagent@jadeplatform”,
addresses = ["http://localhost:7778/acc”]}.

on_starting (Self)—
io:format(”[Agent:"w]._Starting\n”, [object:agentof(Self)]),
acl:sendacl(#aclmessage{speechact = 'REQUEST’,
content = "ping”, sender = Self,
receiver = fellow_agent()}).

do_request(Self, EventName, Message, ActionName)—>
io:format(”[Agent:"w]_Request_received._from_agent."p\n”,
[object:agentof(Self), Message#aclmessage.sender]),
object:do(Self, start).

start ()—
agent:new(the_exat_agent,[{behaviour, exat_agent}]).

1272 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

Zomai@meon?7T%first.lan

“omai@mon?79%:jupiterlan

Loma@moen?l7%:atlas.lan

Lomal@men?7i%saturndan

Fig.9. Spanning tree after a switch shutdown.

agent class has no explicit parent. The next three definitions are necessary for
the event mapping. The fellow_agent definition is a convenient way of storing
the agent address—it is a functional equivalent of a global (class) variable. The
on_starting is a function executed by the framework as soon as an agent is
created. It contains the code for sending the message. The do_request is exe-
cuted after receiving a REQUEST message. It returns a special construct, the
object:do(Self, start), which informs that an agent is still in the state start.

Let us now take a look into the JADE agent code (in figure 1.2). Functionality
of this agent is exactly the same as that of the eXAT agent, but the structure
is slightly different. The setup is equivalent to the on_starting. There are no
events for the message reception, so we have to manually fetch messages
with the receive method. To do this in a loop-like manner, we exploit the JADE
CyclicBehaviour.

7.2. eXAT vs. JADE—implementation details

Let us now take a look at the eXAT and the JADE agent platforms side-by-side.
Since JADE is substantially more mature than eXAT it, obviously, has a much
richer set of features. Nevertheless, their basic FIPA-compliant functionalities
are roughly equivalent.

One of JADE features nonexistent in eXAT is the possibility of sending Java
objects in ACL messages, without special encoding, between agents of the

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1273

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

Listing 1.2. JADE ping agent

import jade.core.Agent;

import jade.core.AlD;

import jade.lang.acl.ACLMessage;

import jade.core.behaviours.CyclicBehaviour;
import jade.lang.acl.MessageTemplate;

public class JADEAgent extends Agent {

private MessageTemplate template =

protected void setup() {
"

}

MessageTemplate . MatchPerformative (ACLMessage . REQUEST) ;

System.out. printin (
”].Starting”);

Agent:_.”"+this .getLocalName () +

addBehaviour (new CyclicBehaviour(this) {
public void action() {
ACLMessage msg = myAgent.receive (template);
if (msg != null) {
System.out. printin (”"[Agent:.” +
myAgent.getLocalName () +
”]-Request_.received._from_agent.” +
msg.getSender ().getName ());

}

else {
block ();

}

}
o)

sendMessage () ;

private void sendMessage () {

AID r = new AID ("the_exat.agent@exatplatform”, AID.ISGUID);
r.addAddresses(” http ://localhost:7779/acc”);

ACLMessage aclMessage = new ACLMessage (ACLMessage.REQUEST);
aclMessage . addReceiver(r);

aclMessage.setContent(”ping”);

this .send(aclMessage);

1274 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

["agent", "magmon7779: atlas. lan"]

["agent a@mon7779: first.lan"]

["agent", "ma@mon7779: jupiter.lan”]

["agent”, "ma@mon7779: saturn.lan"]

["agent_node", "ma@mon7779: first. lan", "mon7779: first.lan"]
["agent_node", "ma@mon7779: jupiter.lan”, "mon7779: jupiter.lan”]
["agent node", "ma@mon7779:saturn.lan”, "mon7779:saturn. lan"]

["agent_status", "ma@mon7779:atlas.lan", "left"]
["agent_status", "ma@mon7779: jupiter.lan","alive"]
["agent_status", "ma@mon7779:saturn.lan", "alive"]
["cpu_state", "atlas.lan",8]
["cpu_state","first.lan",20]
["cpu_state","jupiter.lan",12]
["cpu_state","saturn.lan", 43]

["host", "atlas.lan"]

["host","first.lan"]

["host","jupiter.lan”]

["host", "saturn.lan"]

["local_agent”, "ma@mon7779: first.lan"]
["local_node", "mon7779:first.lan"]
["node", "mon7779:atlas. lan"]
["node”, "mon7779: first.lan"]
["node”, "mon7779: jupiter.lan”]
["node”, "mon7779:saturn.lan"]
["node_host","mon7779:atlas.lan", "atlas.lan"]

["node_host", "mon7779: first.lan" irst.lan"]

["node_host", "mon7779: jupiter.lan”, "jupiter.lan"]
["node_host", "mon7779:saturn.lan", "saturn.lan"]

["parent", "ma@mon7779:atlas. lan", "ma@mon7779:atlas. lan"]
["parent”, "ma@mon7779:first.lan", "ma@mon7779:saturn.lan"]
["narent”. "ma@man7779:saturn.lan” . "ma@mon7779: iuniter. lan"1

Fig. 10. Knowledge base of one of agents after a switch shutdown.

same platform. This feature is not FIPA-compliant, but allows to greatly optimize
communication between local agents. In fact one can use it to share persistent
data across local platform. This is impossible to achieve with eXAT and only
partially possible with standard Erlang messages (only one special type of bi-
nary data can be shared). While lack of shared memory is one of foundations of
Erlang concurrency model (processes vs. threads), skipping unnecessary ob-
jects encoding is JADE’s advantage over eXAT. Since this feature is only useful
in local systems, we can assume that eXAT, like the whole Erlang, is designed
to build systems distributed between physically different machines.

Keeping this in mind, and considering the threading model, we can specu-
late about ideal agent size encouraged by the frameworks. JADE authors sug-

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1275

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

gest that there should be only a few “bigger agents” running within the platform,
as each of them is connected with its own thread (in most Java implementa-
tions, a native thread) and increasing the number of agents would considerably
increase the resource consumption. All the small-scale multi-tasking needed in
the system should be based on JADE behaviours, which are lightweight and
scheduled by the framework. However one has to remember, that behaviours
of one agent have to be executed on one CPU as they belong to a single thread.

It is quite different in the eXAT, where all multi-tasking is based on the Erlang
processes, running within the Erlang Virtual Machine (Erlang VM). They are
lightweight and can be executed on any CPU (Erlang VM does the scheduling
and workload balancing). This means that the eXAT agents can be as small or
as big as needed, and this should not influence the performance of the system.
Additionally the Erlang VM can handle millions of processes [68], hence there
is no hard limits on the number of agents started in the eXAT.

7.3. Integration with ERESYE

Another topic that needs to be discussed is the ERESYE, and its integration with
the eXAT. As stated above, the ERESYE is a full-feature rule-based inference
engine implementing the RETE algorithm. It allows stating facts and specifying
rules connecting these facts.

Facts are represented with standard Erlang data types, especially tuples.
Rules are written using a normal function declaration form. The general syntax
has been illustrated in section 4.4.

The inference algorithm is similar to an automatic logical inference, known
from Prolog, but is optimized for the situation where asserted facts change dy-
namically, and exploits a form of eager evaluation. As soon as a new fact is
asserted, all rules depending on it, are marked as partially satisfied. If the fact
was the last not asserted prerequisite of a rule, the action is executed immedi-
ately.

It is also possible to synchronously wait for a certain fact to be asserted in
the main code of the agent. This corresponds to an agent behaviour, which can
be expressed as: “do not do a thing until you are sure that A is true.”

This approach makes possible effective reasoning, in real-time, in a dynam-
ically changing environment. It is well-suited for the needs of responsive intel-
ligent agents, as it is possible to use ERESYE as the central decision-making
unit, which controls agent actions—a true equivalent of agent’s “brain.”

However, usage of ERESYE in eXAT goes further than that. Included tool
makes it possible to translate an ontology (as defined by FIPA [55]) expressed
in a simple hierarchical syntax, to a set of Erlang records suitable for stor-
ing as resolution engine facts. This is the basis for the so-called semantic
layer of the eXAT platform. When the fipa_semantics_simple semantics is en-
abled for the eXAT agent, all “INFORM” speech acts are automatically added to
the knowledge base of a given agent (called “mind” in eXAT). Additionally the
fipa_semantics_simple is able to automatically check feasibility condition of an
ACL message and perform a rational effect in accordance with the message’s

1276 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

communicative act. For example, a rational effect upon receiving a “CONFIRM”
message is to assert it’s content in the agent’s knowledge base. With the se-
mantic layer it is done automatically without any explicit message process-
ing code [64]. For more information about handling of ontologies in ERESYE,
please refer to [62].

In our opinion, the union between the eXAT and the ERESYE works very
well. However, we found this system to be overly complicated to use. For in-
stance, in our case, it was easier to explicitly use the ERESYE reasoner through
it's APl. However, we find the concept of integrating of eXAT agents with a rea-
soner, which is capable of parsing ontologies and processing ontological con-
cepts, a very promising and interesting solution. Furthermore, integrating rea-
soners directly with the platform is something that should be considered also in
other agent platforms.

7.4. eXAT not eXATly perfect

Unfortunately the eXAT, as an experimental tool, has some serious drawbacks.
Some of them are our subjective opinions, stemming from thoughts on the eXAT
design. This system is based on a custom implemented object-orientated em-
ulation layer, which adds considerable complexity into the project. Constructing
it feels a bit like “swimming against the current,” because Erlang is designed as
a purely functional language, and according to our beliefs, every agent aspect
can be expressed in that fashion. Furthermore, it adds additional, unneces-
sary, overhead to message passing between (at least two) processes, which
are used by a single agent. Finally, it adds an unnecessary learning curve, and
decreases programming efficiency compared to the pure Erlang code, which is
arguably a very efficient language to write in [69].

To clarify our opinion let us analyze a single case in depth. In eXAT, agents
are modelled after the finite-state machine, which allows to bind different actions
as a response to specific events, depending on the agent current state, thus
introducing branching in code execution.

Listing 1.3. eXAT finite state machine description example
pattern(Self, request)—> [#aclmessage{speechact="REQUEST'}].

event(Self, evt_request)—> {acl, request}.
action (Self, start)—> {evt.request, do_request}.

action (Self, finalizing)—> {evt_.request, decline_request}.

In 1.3, an agent executes the action do_request when in state start, but
upon reception of the REQUEST message in state finalizing , it will respond
with the decline_request.

For a finite-state machine, its single state is the only memory it has. In the
case of a computer program, the state is distributed and represented as sepa-
rate states of multiple variables. Each step of execution of a computer program

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1277

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

can be a conditional clause, depending on the value of any stored variable.
Therefore, the eXAT event mapping can be considered “syntactic sugar,” i.e., el-
ement that does not bring new functionality, but makes the code easier to read.
It is an alternative to wrapping event handling in explicit conditional instructions.
However, Erlang has native mechanism for handling such cases, called pattern
matching. It is possible to write multiple variants of the same function with dif-
ferent parameter patterns, and during the execution of the code, the correct ver-
sion will be chosen, depending on the actual parameters. Therefore, the same
goal is achieved, while maintaining brevity and sticking to Erlang’s functional
style.

Listing 1.4. Erlang finite state machine description example
handle_request(start, Request)—>

% do_request code

return_value;
handle_request(finalizing , Request)—>

% decline_request code

return_value.

The code in 1.4 handles or declines the request depending on the value
of the first parameter. As we can see, the eXAT obscures this syntax with its
own mechanism. We consider it a drawback, because it does not take full ad-
vantage of Erlang’s strengths and provides a “replacement mechanism,” which
(particularly, for the Erlang programmers) may feel unfamiliar and unnecessar-
ily complicated. To eliminate such complications introduced by the framework,
we have implemented a simple_agent OTP behaviour, closely modelled after
the OTP industry-standard gen_server behaviour[32]. It simplifies implementing
agents, while following the Erlang coding style, and the OTP standards.

There are also other places where the eXAT was not written according to the
Erlang/OTP coding standards, which are widely accepted in the Erlang com-
munity. Here are a few examples from eXAT source code demonstrating bad
practices:

— Using non-OTP standard indentation style[7] and whitespace usage (spaces
after function names):

inform.(Message) .—>
-.sendacl.(Message#aclmessage.{speechact_.=_'INFORM’ }).

— Using lists instead of tuples as messages, and not using records for storing
state of long-running processes:

handle_call([acl_erl_native , Acl], From,
[AgentName, AclQueue, AgentDict , ProcessQueue]) —>
%%io :format (”[Agent] Received ACL="wA\n”, [Acl]),
{AclQueuel, ProcessQueuel} =
perform_re (AgentName, AgentDict,
Acl, AclQueue, ProcessQueue),
{reply ,ok, [AgentName, AclQueuel, AgentDict ,ProcessQueuel]}.

1278 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

— Excessive use of if conditional, and using the /ength function where a sim-
ple case with pattern matching would be much more succinct and efficient:

handle_cast([getmessage, From],
[AgentName, AclQueue, AgentDict , ProcessQueue])—>

if
length (AclQueue) > 0 —
ProcessQueuel = ProcessQueue,
[Message | AclQueuel] = AclQueue,
catch(From ! Message);
true —
ProcessQueuel = ProcessQueue ++ [{nil, From}],
AclQueuel = AclQueue
end,

{noreply , [AgentName, AclQueuel, AgentDict , ProcessQueuel]};

— Excessive defensive programming, discouraged by the Erlang Program-
ming Rules and Conventions [35] and research [19]:

get_conds ({Module, Func}, Ontology, ClauselD) —
File = lists:concat ([Module, ’.erl’]),
case epp:parse_file (File, [".7]1, [1) of
{error, OpenError} —
io:format(”>>.Errore!!!"n"w:"w™n”,[{Module, Func},OpenError]),
error;
{ok, Form} —
Records = get_records (Form, []),
%%io :format (">> Records “p°n”, [Records]),
case search_fun (Form, Func, Records) of
{error, Msg} —
io:format(”>>_Errore!!!"n"w:"s™n”,[{Module,Func} ,Msg]),
error;
{ok, CL} —
Clauselist =
if
ClauselD > 0 — [lists :nth (ClauselD, CL)];
true — CL
end,
%%io :format (”Clauses "p°n”, [Clauselist]),
SolvedClauses =
if

Ontology == nil —> Clauselist;
true — eresye_ontology.resolver:resolve_ontology (Clauselist,
Ontology)
end,
%%io :format (>>> "p°n”, [SolvedClauses]),
case read_clause (SolvedClauses, [], Records) of
{error, Msg2} —
io:format(”>>_Errore!!!"n"w:"s"n”,[{Module,Func}, Msg2]),
error;
CondsList —> CondsList
end
end
end.

— Occasionally implementing features, which are already present in the Er-
lang/OTP standard library. The following code duplicates the features of the
ETS tables.

property_server (Dict) —
receive
{From, get, AttributeName} —

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1279

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

case catch (dict:fetch (AttributeName, Dict)) of
{’EXIT’, _} — From ! {ack, undef};
Other — From ! {ack, {value, Other}}
end,
property_server (Dict);
{From, set, AttributeName, AttributeValue} —
From ! {ack, ok},
property_server (dict:store (AttributeName, AttributeValue, Dict));
{From, list} —
X = dict:fetch_keys (Dict),
From ! {ack, X},
property_server (Dict);
{From, list_.values} —
X = dict:to_list (Dict),
From ! {ack, X},
property_server (Dict);
{From, exit } —
From ! {ack, ok};
Other —
property_server (Dict)
end.

Finally, note that the eXAT project was effectively discontinued by it’'s au-
thors, since there were no updates to it since 2005; it has no community sup-
port, and no production systems using the eXAT platform could have been
found. Furthermore, eXAT has a very sparse documentation. Additionally, it
uses some custom libraries for well known tasks like implementing HTTP servers,
when reusing existing libraries would lead to better tested and a more stable
code.

While working on this project we made a number improvements to the eXAT,
which can be found at the github.com/gleber/exat. Among others, we have re-
placed the internal custom-made HTTP server with the well-established Erlang
implementation of the HTTP server called Misultin. As mentioned, we simpli-
fied creation of agents with the simple_agent behaviour. We switched to the
rebar-managed compilation process, which is the current de-facto standard in
the Erlang community. Finally, we have updated the eXAT to work with latest
version of the Erlang/OTP distribution.

8. Concluding remarks

In this paper we have introduced an agent-based monitoring system for LAN /
Grid / Cloud infrastructure. The prototype of the system has been implemented
using an Erlang-based eXAT agent platform. After implementing the system,
we found Erlang to be a good fit for the task at hand. Furthermore, the eXAT
agent platform was acceptable as the tool to implement the monitoring system,
though in needed at least some improvements (which we have completed). For
the agent reasoning we have used the ERESYE rule-based expert system, na-
tively integrated with the eXAT. This integration worked very-well and we plan to
use it to cover more extensive cases of reasoning about the state of the system.
In the near future we plan to: (a) fix additional issues with the eXAT, primarily
continue refreshing it to match the state of the art of Erlang today (these im-
provements will be made available to the community); (b) expand the set of

1280 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

network topologies and detected problems; (c) integrate the eXAT monitoring
system with the resource managing agents in the AiG project, and (d) complete
additional research outlined in the paper. We will report the results of our work
in subsequent publications.

References

1.

A

o &

16.

17.

18.
19.

20.

21.

22.

http://msdn.microsoft.com/en-us/library/windows/desktop/
aa373083

http://code.google.com/p/parfait/
http://developer.gnome.org/libgtop/stable/libgtop-GlibTop.
html

Avahi homepage. http://avahi.org/

Axum - microsoft’s actor programming language, http://msdn.microsoft.
com/en—-us/devlabs/dd795202.aspx

Boinc project. http://boinc.berkeley.edu/

Erlang: submitting patches. https://github.com/erlang/otp/wiki/
submitting-patches

. libactor project documentation. http://www.chrismoos.com/

. Misultin. https://github.com/ostinelli/misultin

. Smoothie-Charts library. http://smoothiecharts.org/

. Theron - c++ concurrency library. http://www.theron-library.com/

. Zero Configuration Networking (Zeroconf). http://www.zeroconf.org/

. Jess website. http://www. jessrules.com/ (2011), sandia National Laborato-

ries

. Agha, G., Hewitt, C.: Concurrent programming using actors: Exploiting large-scale

parallelism. In: FSTTCS. pp. 19—41 (1985)

. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M., Vadacca, S.: Greic data gather service:

a step towards p2p production grids. In: Proceedings of the 2007 ACM Symposium
on Applied Computing (SAC). pp. 561-565. Seoul, Korea (2007)

Apple, I.: Bonjour overview. http://developer.apple.com/library/mac/
documentation/Cocoa/Conceptual /NetServices/Introduction.html#
//apple_ref/doc/uid/100001191i, december, 2011

Arcangeli, J., Maurel, C., Migeon, F.: An api for high-level software engineering of
distributed and mobil applications. In: Proceedings of the 8th IEEE Workshop on
Future Trends of Distributed Computing Systems. pp. 155—. IEEE Computer So-
ciety, Washington, DC, USA (2001), http://dl.acm.org/citation.cfm?id=
874065.875773

Arcieri, T.: (2008), http://revactor.github.com/

Armstrong, J., Helen, T.: Making reliable distributed systems in the presence of soft-
ware errors (2003)

Aversa, R., Di Martino, B., Mazzocca, N., Venticinque, S.: Magda: A mobile agent
based grid architecture. Journal of Grid Computing 4, 395-412 (2006)

Ayres, J., Eisenbach, S.: Stage: Python with actors. In: Proceedings of the 2009
ICSE Workshop on Multicore Software Engineering. pp. 25-32. IWMSE '09, IEEE
Computer Society, Washington, DC, USA (2009), http://dx.doi.org/10.
1109/IWMSE.2009.5071380

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: Jade—a white paper. Tech. rep.,
Telecom ltalia Lab, EXP Online (2003), december 2011

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1281

283.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

Brazier, FM.T., Mobach, D.G.A., Overeinder, B.J., van Splunter, S., van Steen, M.,
Wijngaards, N.J.E.: Agentscape: Middleware, resource management, and services.
In: Proceedings of the 3rd International SANE Conference (SANE 2002). pp. 403—
404. Maastricht, The Netherlands (May 2002)

Bruno, Gibbons, J.: Scala for generic programmers. In: Proceedings of the ACM
SIGPLAN workshop on Generic programming. pp. 25-36. WGP '08, ACM, New
York, NY, USA (2008), http://dx.doi.org/10.1145/1411318.1411323
Cao, J., Jarvis, S.A., Saini, S., Kerbyson, D.J., Nudd, G.R.: Arms: An agent-based
resource management system for grid computing. Sci. Program. 10(2), 135-148
2002

(Domiriiak, M., Ganzha, M., Gawinecki, M., Kuranowski, W., Paprzycki, M.,
Margenov, S., Lirkov, I.: Utilizing agent teams in grid resource brokering. Interna-
tional Transactions on Systems Science and Applications 3(4), 296—-306 (2008)
Dominiak, M., Kuranowski, W., Gawinecki, M., Ganzha, M., Paprzycki, M.: Utilizing
agent teams in grid resource management—preliminary considerations. In: Proc. of
the IEEE J. V. Atanasoff Conference. pp. 46-51. IEEE CS Press, Los Alamitos, CA
(2006)

Drozdowicz, M., Ganzha, M., Kuranowski, W., Paprzycki, M., Alshabani, I., Olejnik,
R., Taifour, M., Senobari, M., Lirkov, I.: Software agents in adaj: Load balancing
in a distributed environment. In: Todorov, M. (ed.) Applications of Mathematics in
Engineering and Economics’34. AIP Conf. Proc., vol. 1067, pp. 527-540. American
Institute of Physics, College Park, MD (2008)

Drozdowicz, M., Ganzha, M., Paprzycki, M., Olejnik, R., Lirkov, I., Telegin, P,
M.Senobari: Parallel, distributed and grid computing for engineering. chap. Ontolo-
gies, Agents and the Grid: An Overview, pp. 117—140. Saxe-Coburg Publications,
Stirlingshire, UK (2009)

Drozdowicz, M., Wasielewska, K., Ganzha, M., Paprzycki, M., Attaui, N., Lirkov, I.,
Olejnik, R., Petcu, D., Badica, C.: Trends in parallel, distributed, grid and cloud com-
puting for engineering. chap. Ontology for Contract Negotiations in Agent-based
Grid Resource Management System. Saxe-Coburg Publications, Stirlingshire, UK
2011

(Dynia? M., Korzeniowski, M., Kutytowski, J.: Competitive maintenance of minimum
spanning trees in dynamic graphs. In: Proceedings of the 33rd conference on Cur-
rent Trends in Theory and Practice of Computer Science. pp. 260-271. SOFSEM
'07, Springer-Verlag, Berlin, Heidelberg (2007), http://dx.doi.org/10.1007/
978-3-540-69507-3_21

Ericsson, A.: Erlang/otp system documentation (2010), http://www.erlang.
org/doc/pdf/otp-system-documentation.pdf

Ericsson, A.: Os_mon reference manual. http://www.erlang.org/doc/apps/
os_mon/os_mon.pdf (2011)

Eriksen, M.: Scaling scala at twitter. In: ACM SIGPLAN Commercial Users of Func-
tional Programming. pp. 8:1-8:1. CUFP '10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1900160.1900170

Eriksson, K., Williams, M., Armstrong, J.: Program development using er-
lang - programming rules and conventions. http://www.erlang.se/doc/
programming_rules.pdf (1996)

Foster, 1., Jennings, N.R., Kesselman, C.: Brain meets brawn: Why grid and agents
need each other. Autonomous Agents and Multiagent Systems, International Joint
Conference on 1, 8-15 (2004)

Foster, I., Kesselman, C. (eds.): The Grid 2, Second Edition: Blueprint for a New
Computing Infrastructure. The Elsevier Series in Grid Computing, Elsevier (2004)

1282 ComSIS Vol. 9, No. 3, Special Issue, September 2012

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

58.

54.

55.

56.

eXAT-based distributed monitoring system prototype

Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for au-
tonomous agents. pp. 21-35. Springer-Verlag (1996)

Galstad, E.: Nagios website. http://www.nagios.org/ (2011)

Jennings, N., Wooldridge, M.: Agent technology: foundations, applications, and mar-
kets. Springer (1998)

Kafura, D., Mukherji, M., Lavender, G.: Act++ 2.0 : A class library for concurrent
programming in c++ using actors (1992)

Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the jvm platform: A com-
parative analysis. In: PPPJ ’09: Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java. pp. 11-20. ACM, New York, NY,
USA (2009)

Kim, W.: Thal: An actor system for efficient and scalable concurrent computing
(1997)

Kuranowski, W., Ganzha, M., Gawinecki, M., Paprzycki, M., Lirkov, ., Margenov,
S.: Forming and managing agent teams acting as resource brokers in the grid—
preliminary considerations. International Journal of Computational Intelligence Re-
search 4(1), 9-16 (2008)

Kuranowski, W., Ganzha, M., Paprzycki, M., Lirkov, |.: Supervising agent team an
agent-based grid resource brokering system—initial solution. In: Xhafa, F., Barolli,
L. (eds.) Proceedings of the Conference on Complex, Intelligent and Software In-
tensive Systems. pp. 321-326. IEEE CS Press, Los Alamitos, CA (2008)
Kuranowski, W., Paprzycki, M., Ganzha, M., Gawinecki, M., Lirkov, I., Margenov, S.:
Agents as resource brokers in grids—forming agent teams. In: Proceedings of the
LSSC Meeting. vol. 4818, pp. 472—480. Springer, Berlin (2007)

Letuchy, E.: Erlang at facebook: Chat architecture. Presented at the Erlang Factory
2009, San Francisco, CA (2009)

Makki, S., Havas, G.: Distributed algorithms for depth-first search. Information Pro-
cessing Letters 60(1), 7-12 (1996)

Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:
Design, implementation and experience. In: Parallel Computing, vol. 30, pp. 817—
840. Elsevier (2004)

Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Inc, 2
edn. (Jan 2011), http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20\&path=ASIN/0981531644

Ponci, F., Cristaldi, L., Monti, A., Ottoboni, R.: Multi-agent based power systems
monitoring platform: a prototype. In: Power Tech Conference Proceedings, IEEE.
vol. 2, p. 5. Bologna, Italy (2003)

Ponci, F., Deshmukh, A., Cristaldi, L., Ottoboni, R.: Interface for multi-agent platform
systems. In: IEEE-Instrumentation and Measurement Technical Conference. vol. 3,
pp. 2226—2230. Ottawa, Canada (2005)

Rehak, M., Pechoucek, M., Grill, M., Stiborek, J., Bartos, K., Celeda, P.: Adaptive
multiagent system for network traffic monitoring. IEEE Intelligent Systems 24, 16-25
(May 2009)

Remy, J., Souza, A., Steger, A.: On an online spanning tree problem in randomly
weighted graphs. Combinatorics, Probability and Computing p. 2005 (2005)
Ribicre, M., Charlton, P.: Ontology overview. Motorola Labs, Paris (2002), http:
//www.fipa.org/docs/input/f-in-00045/f-in-00045.pdf

Richardson, J.E., Carey, M.J., Schuh, D.T.: The design of the e programming lan-
guage. ACM Transactions on Programming Languages and Systems 15, 494-534
(1993)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1283

Gleb Peregud, Julian Zubek, Maria Ganzha, and Marcin Paprzycki

57. Riley, G.: CLIPS website. http://clipsrules.sourceforge.net/ (2011)

58. Santoro, C.: exat: Software agents in erlang. http://www.erlang.org/euc/
05/ (2005), december 2011

59. Scheurer, C.A., Scheurer, H.K., Kropf, P.G.: Load balancing driven process migra-
tion. Tech. rep., Inst (1995)

60. Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for java. In: Proceedings
of the 22nd European conference on Object-Oriented Programming. pp. 104—-128.
ECOOP ’08, Springer-Verlag, Berlin, Heidelberg (2008), http://dx.doi.org/
10.1007/978-3-540-70592-5_6

61. Stefano, A.D., Santoro, C.: Designing Collaborative Agents with eXAT. Enabling
Technologies, IEEE International Workshops on pp. 15-20 (2004)

62. Stefano, A.D., Gangemi, F., Santoro, C.: Eresye: an erlang expert system engine.
In: Fourth ACM SIGPLAN Erlang Workshop. Tallin, Estony (2005)

63. Stefano, A.D., Santoro, C.: exat: an experimental tool for programming multi-agent
systems in erlang. In: Al*IA/Taboo Joint Workshop on Objects and Agents. Villasim-
ius, Italy (2003)

64. Stefano, A.D., Santoro, C.: Building semantic agents in exat. In: WOA. pp. 28-36
(2005)

65. Tismer, C.: Continuations and stackless python. Tech. rep.

66. Tunnell-Jones, A.: dnssd_erlang website. https://github.com/andrewtj/
dnssd_erlang

67. Varela, C.A., Agha, G., Wang, W., Desell, T., Maghraoui, K.E., LaPorte, J., Stephens,
A.: The SALSA programming language: 1.1.2 release tutorial. Tech. Rep. 07-12,
Dept. of Computer Science, R.P.I. (Feb 2007)

68. Vinoski, S.: Concurrency with erlang. IEEE Internet Computing 11(5), 90-93 (2007),
http://doi.ieeecomputersociety.org/10.1109/MIC.2007.104

69. Wiger, U.: Four-fold increase in productivity and quality—industrial-strength
functional programming in telecom-class products. http://www.erlang.se/
publications/Ulf_Wiger.pdf (2001)

Gleb Peregud is an MS student at the Warsaw University of Technology, where
he is researching synergies of agent-oriented programming and the actor model,
in practical applications. He is an Erlang enthusiast, looking for practical appli-
cation of actor model and massive concurrency in commercial and academic
fields.

Julian Zubek is an MS student at the Warsaw University of Technology in
Poland. In his MS thesis, he is developing an experimental Ruby to C com-
piler. His research interests include also artificial intelligence and programming
paradigms (including agent-oriented programming).

Maria Ganzha obtained M.S. and her Ph.D. in Applied Mathematics from the
Moscow State University, Moscow, Russia in 1987 and 1991 respectively. Her
initial research interests were in the area of differential equations, solving mixed
wave equations in space with disappearing obstacles in particular, currently she
works in the areas of software engineering, distributed computing and agent
systems in particular. She has published more than 100 research papers and is

1284 ComSIS Vol. 9, No. 3, Special Issue, September 2012

eXAT-based distributed monitoring system prototype

on editorial boards of 5 journals and a book series and was invited to Program
Committees of over 100 conferences.

Marcin Paprzycki (Senior Member of the IEEE, Senior Member of the ACM,
Senior Fulbright Lecturer, IEEE CS Distinguished Visitor) has received his M.S.
Degree in 1986 from Adam Mickiewicz University in Poznan, Poland, his Ph.D.
in 1990 from Southern Methodist University in Dallas, Texas and his Doctor
of Science Degree from Bulgarian Academy of Sciences in 2008. His initial
research interests were in high performance computing and parallel computing,
high performance linear algebra in particular. Over time they evolved toward
distributed systems and Internet-based computing; in particular, agent systems.
He has published more than 350 research papers and was invited to Program
Committees of over 400 international conferences. He is on editorial boards of
14 journals and a book series.

Received: January 8, 2012; Accepted: June 7, 2012

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1285

