
DOI: 10.2298/CSIS120101030F

Decentralized Management of Building Indoors
through Embedded Software Agents

Giancarlo Fortino1 and Antonio Guerrieri2

DEIS - University of Calabria
Via P. Bucci, cubo 41c, Rende (CS), 87036, Italy

1g.fortino@unical.it,2aguerrieri@deis.unical.it

Abstract. In order to support personalized people comfort and building
energy efficiency as well as safety, emergency, and context-aware infor-
mation exchange scenarios, next-generation buildings will be smart. In
this paper we propose an agent-oriented decentralized and embedded
architecture based on wireless sensor and actuator networks (WSANs)
for enabling efficient and effective management of buildings. The main
objective of the proposed architecture is to fully support distributed and
coordinated sensing and actuation operations. The building management
architecture is implemented at the WSAN side through MAPS (Mobile
Agent Platform for Sun SPOTs), an agent-based framework for program-
ming WSN applications based on the Sun SPOT sensor platform, and at
the base station side through an OSGi-based application. The proposed
agent-oriented architecture is demonstrated in a simple yet effective op-
erating scenario related to monitoring workstation usage in computer lab-
oratories/offices. The high modularity of the proposed architecture allows
for easy adaptation of higher-level application-specific agents that can
therefore exploit the architecture to implement intelligent building man-
agement policies.

Keywords: Smart Buildings, Multi-Agent Systems, Wireless Sensor and
Actuator Networks, Building Management Systems.

1. Introduction

Nowadays, due to advances in communication and computing technologies,
the need to have high comfort levels together with an optimization of the en-
ergy consumption is becoming important for inhabitants of buildings. Moreover,
buildings should also support their inhabitants with automatic emergency and
safety procedures as well as context aware information services. To meet all
these requirements, future buildings have to incorporate diversified forms of in-
telligence [7].

We believe that agent-based computing [20] can be exploited to imple-
ment the concept of intelligent buildings due to the agent features of autonomy,
proactiveness, reactiveness, learnability, mobility and social ability. Specifically
agents can continuously monitor building indoors and their living inhabitants to
gather useful data from people and environment and can cooperatively achieve

Giancarlo Fortino and Antonio Guerrieri

even conflicting specific goals such as personalized people comfort and build-
ing energy efficiency.

A few research efforts based on agents have been to date proposed to
design and implement intelligent building systems [25] [17] [8] [28] [27] [23].
However, none of them provide agents embedded in the sensor and actuator
devices that would introduce intelligence decentralization and improve system
efficiency. This is due to the exploitation of conventional sensing and actua-
tion systems that do not offer distributed computing devices for sensing and
actuation. To overcome this limitation, wireless sensor and actuator networks
(WSAN) [26] can be adopted. WSANs represent a viable and more flexible so-
lution to traditional building monitoring and actuating systems (BMAS), which
require retrofitting the whole building and therefore are difficult to implement in
existing structures. In contrast, WSAN-based solutions for monitoring buildings
and controlling equipment, such as electrical devices, heating, ventilation and
cooling (HVAC), can be installed in existing structures with minimal effort. This
should enable monitoring of structure conditions, and space and energy (elec-
tricity, gas, water) usage while facilitating the design of techniques for intelligent
device actuation.

The implementation of the proposed architecture is based on MAPS (Mobile
Agent Platform for Java Sun SPOTs) [3] at sensor/actuator node side and on
Jade [5] OSGi-based application at coordinator side.

The main contribution of this paper is the definition of A-BMF (Agent based
Building Management Framework), a decentralized and embedded agent ori-
ented architecture for the management of intelligent buildings that is based on
WSANs and overcomes the limitations of the aforementioned solutions [25] [17]
[8] [28] [27] [23]. In particular, the aim of our architecture is to optimize and fully
decentralize the sensing and actuation operations through distributed coopera-
tive agents both embedded in sensor/actuator devices and running on more
capable coordinators (PC, plug computers, PDA, smartphones). This would
enable more effectiveness in programming the sensing and actuation opera-
tions and more efficiency in the management of distributed sensor and actua-
tor nodes. Moreover, the proposed architecture can be easily programmed to
support a wide range of building management applications integrating comfort,
energy efficiency, emergency, safety, and context-aware information exchange
aspects.

The rest of this paper is organized as follows. Section 2 describes ap-
proaches related to our work. In Section 3 the proposed agent-based architec-
ture for building management is defined. Section 4 presents the MAPS-based
implementation of the low-level architecture, specifically the sensor/actuator
agents. Section 5 shows the system GUI and a system deployment for mon-
itoring the workstation usage in computer laboratories. Finally, conclusions are
drawn and directions of future work elucidated.

1332 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

2. Related Work

In [25] the authors present the MASBO (Multi-Agent System for Building cOn-
trol) architecture that aims to provide a set of software agents to support both
on-line and off-line applications for intelligent work environments. MASBO is
used to develop a multi-agent system (MAS) able to tradeoff energy saving
and inhabitants’ preferences where preferences can be learnt and predicted
through an unsupervised online real-time learning algorithm (analyzing inhab-
itants’ behavior). MASBO agents reside on a server and constantly monitor
data from sensors and eventually actuate some commands. MASBO works as
an enhancement to an existing building automation system by adding learning,
reasoning and autonomous capabilities. The responsibility of controlling sen-
sors and actuators, and keeping a requested environmental value constant is
not addressed by MASBO.

In [17] the authors propose a working solution to the problem of thermal
resource distribution in a building using a market-based MAS. Computational
agents representing individual temperature controllers bid to buy or sell cool or
warm air. The agents, running in a monolithic process on a workstation, are
able to distribute the thermal resources so that all the building offices have an
equitable temperature distribution. Temperature sensors and air flow actuators
are all accessible directly through distributed hardware modules via a network
connection.

In [8] the authors describe a MAS that monitors and controls an office build-
ing in order to provide added values like energy saving together with the delivery
of energy. The developed system is distributed in the sense that some agents
are located on PDAs and others run on the Bluetooth access points (worksta-
tions) that communicate with the PDAs. The system makes use of the existing
power lines for communication between the agents and the sensing and actua-
tion system controlling lights, heating, ventilation, etc.

In [28] a conceptual framework, namely Cyber-enabled Efficient Building
Energy Management System (CEBEMS), is presented. Its intent is increasing
energy efficiency, lowering dependence on the energy grid, and providing an
economic incentive for the end user. It enables distributed control methodol-
ogy using MAS for efficient management of both electrical and thermal energy
systems for realizing maximum efficiency energy management. MAS aim to
achieve system-wide objectives, which may not be solved using a single agent,
but by coordination and communication among the agents.

In [27] authors do a demonstration of data gathering from a WSN. In the
system proposed, users can query and view the local data in an ad-hoc man-
ner, and possibly remotely configure and manipulate the data capture process.
For the purposes of this demonstration, authors adopted Agent Factory Micro
Edition (AFME) [22]. The Agents, implemented on AFME, are programmed to
answer users’ requests.

In [23] a simulation of a building environment where agents can manage
the allocation of resources and facilitate the residents’ lives is presented. In
the designed system, sensors deployed in a building send their information to

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1333

Giancarlo Fortino and Antonio Guerrieri

agents. Agents, that reside on workstations, process information and send them
to a fuzzy controller [16] that eventually transmits a proper signal to switches,
valves or other actuators.

Differently from the described approaches, our agent-based architecture
embeds agents both into the wireless sensor and actuator network used as
infrastructure for building monitoring and control and on more capable coor-
dinators. This important feature would provide decentralized intelligence and
improve system efficiency.

Table 1 summarizes the characteristics of the works reported above.

3. Agent-based Architecture

The agent-based architecture (see Fig. 1) of A-BMF for decentralized and em-
bedded building management is composed of a building manager agent (BMA),
which is installed in the control workstation, coordinator agents (CAs), which run
in the basestations, and sensor agents (SAs), which are executed in the sen-
sor/actuator nodes. Specifically, the architecture relies on a multi-basestation
approach to allow for large buildings composed of multiple floors and diversi-
fied environments. Thus, the architecture is purposely hybrid: hierarchical and
peer-to-peer. Interaction between CAs is peer-to-peer whereas interactions be-
tween CAs and their related SAs (or SA cluster) and between BMA and CAs
are usually master/slave. Moreover, SAs of the same cluster coordinate to dy-
namically form up a multi-hop ad-hoc network rooted at the master CA.

Fig. 1. Agent-based architecture for decentralized and embedded management of build-
ings based on wireless sensor and actuator networks.

1334 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

Table 1. Related Work comparison.

 Aim of the work Agents location WSAN support

MASBO [23]
Tradeoff energy saving
and inhabitants’
preferences

Server
NO, but agents can
interface to WSN

Market-based
MAS [15]

Distributing the thermal
resources across a
building

The agents run in a
monolithic process on a
workstation

NO

MAS to
monitor and
control office
building [8]

Providing energy saving
together with the delivery
of energy

Some agents are
located on PDAs and
others run on the
Bluetooth access points.

NO

CEBEMS [26]

Increasing energy
efficiency, lowering
dependence on the
energy grid, and
providing an economic
incentive for the end user

N/A. CEBEMS is still a
conceptual framework

N/A

System of
data
gathering on
AFME [25]

Allowing users to query
and view data from a
WSN

Agents are embedded YES

MAS with
fuzzy
approach
[21]

Simulation of an
environment where
agents can manage the
allocation of resources
and facilitate the
residents’ lives

Workstation N/A

A-BMF

Optimizing and fully
decentralizing the
sensing and actuation
operations through
distributed cooperative
agents

Agents are both
embedded in
sensor/actuator devices
and running on more
capable coordinators

YES, our agent-based
architecture embeds
agents into the WSAN
used as infrastructure
for building monitoring
and control

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1335

Giancarlo Fortino and Antonio Guerrieri

In Fig. 2 the main functionalities of BMA, CA and SA are shown according
to a layered organization that is partially derived from the Building Management
Framework (BMF) [15].

BMA's Layers

Monitoring & Control GUI Goal-directed Behaviors

System Programming

CA Communication

(a)

Request Scheduling

Group Organization

CA's Layers

Inter-CA Coordination BMA Communication

WSAN Management

Heterogeneous Platform Support

(b)

Node Management

WSAN Management Sensing and Actuation Management

Hardware Sensor Platform

SA's Layers

Dynamic Group Management In-node Signal Processing Multi Request Scheduling

(c)

Fig. 2. The layered organization of (a) BMA, (b) CA and (c) SA.

The BMA is the top level agent that manages the distributed agent based
architecture. The BMA includes the following layers:

– CA Communication allows the message based communication between
BMA and the CAs.

– System Programming is the layer which allows to program the distributed
agent network (SAs are reached through their CAs).

– Monitoring & Control GUI provides a GUI through which the building man-
ager can issue requests to configure/program the agent-based building net-
work and visualize its status and the monitored data.

– Goal-directed Behaviors permits implementing specific building monitoring
and control strategies to realize specific applications (energy monitoring,
comfort, etc).

1336 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

The CA is the middle level agent which is able to manage a cluster of SAs
which refers to a given area of the intelligent building. The CA includes the
following layers:

– Heterogeneous Platform Support incorporates a set of adapters that allow
interfacing the system with different type of sensor/actuator platforms. An
adapter is linked to a specific hardware device able to communicate with a
specific sensor platform in the network.

– WSAN Management allows to fully manage a WSAN cluster. This layer
supports packet coding/decoding according to the A-BMF application-level
protocol and packet transmission/reception to/from the WSAN cluster. More-
over, this layer supports device discovery within the cluster.

– Group Organization provides group-based programming of sensors and
actuators, tracking of nodes and groups in the system, and management of
node configurations and group compositions. Node organization in groups
is specifically defined to capture the morphology of buildings. Nodes belong
to groups depending on their physical (location) or logical (operation type)
characteristics.

– Request Scheduling allows the support for higher-level application-specific
requests. Through this layer, a CA can ask for the execution of specific tasks
to single or multiple SAs or groups of SAs. Moreover, this layer keeps track
of the requests submitted to the system, waits for data from the nodes and
passes them to the requesting applications. A request is formalized through
the following tuple: R = <Obj, Act, R, LT>, where Obj is a specific sensor
or actuator belonging to a node, Act is the action to be executed on Obj, R
is the frequency of each executed Act, LT is the length of time over which
these actions are to be reiterated. Moreover, a request can target a single
node or a group of nodes having Obj.

– Inter-CA Coordination offers efficient mechanisms for coordination between
CAs. Specifically, CAs cooperate for submitting queries and retrieving data
spanning multiple SA clusters.

– BMA Communication allows the message based communication between
CA and the reference BMA.

The SA is the low level agent running on sensor/actuator nodes to perform
given sensing/actuating operations. The SA is designed around the following
layers:

– Hardware Sensor Platform allows to access the hardware sensor/actuator
platform. In particular, the layer facilitates the configuration of the platform
specific drivers and the use of the radio.

– WSAN Management manages the node communication with the refer-
ence CA according to the A-BMF application protocol and among the cluster
nodes through the network protocol provided by the node sensor platform.

– Sensing and Actuation Management allows to acquire data from sensors
and execute actions on actuators. In particular, this layer allows to address
different types of sensors/actuators in a platform independent way.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1337

Giancarlo Fortino and Antonio Guerrieri

– Node Management is the core of the SA and allows to coordinate all
the layers for task execution. In particular, it handles events from the lower
layers every time that a network packet arrives or data from sensor/actuator
are available, and from the upper layers every time that data are processed
or a stored request has to be executed.

– Dynamic Group Management provides group management functionali-
ties to the SA. A node can belong to several groups at the same time and
its membership can be dynamically updated on the basis of requests from
CAs.

– In-node Signal Processing allows the SA to execute signal processing
functions on data acquired from sensors [4]. It can compute simple aggre-
gation functions (e.g. mean, min, max, variance, R.M.S.) and more complex
user-defined functions on buffers of acquired data.

– Multi Request Scheduling allows the scheduling of sensing and actuation
requests. In particular, it stores the requests from CAs and schedules them
according to their execution rate.

4. MAPS-Based Implementation

The agent-based building management architecture of A-BMF is currently im-
plemented through MAPS [3], our agent-based framework for developing WSN
applications on the Sun SPOT sensor platform. MAPS has been selected as
one of the most representative frameworks for agent oriented programming of
sensor/actuator nodes [2] [11] [12]. Only two other java-based platforms cur-
rently exist: AFME [22] and MASPOT [19]. The former is based on a more
complex programming model and provides basic operations less efficient than
MAPS. The latter is mainly centered on agent mobility and does not provide a
suitable API for programming complex agent behaviors. Thus MAPS has been
adopted as the one fulfilling the needed requirements of effective agent pro-
gramming and efficient operations. Moreover, currently the mobility feature of
MAPS agents is not used in the current implementation of A-BMF. In this sec-
tion we first provide a brief overview of MAPS (more details can be found in [3],
[21]) and, then, present the MAPS-based implementation of the proposed build-
ing management architecture at sensor-node side, specifically behavior and
event-based interactions of the SA.

4.1. MAPS: a brief overview

MAPS [3] [21] [1] is an innovative Java-based framework specifically developed
on Sun SPOT technology for enabling agent-oriented programming of WSN
applications. It has been defined according to the following requirements:

– Component-based lightweight agent server architecture to avoid heavy con-
currency and agents cooperation models.

– Lightweight agent architecture to efficiently execute and migrate agents.

1338 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

– Minimal core services involving agent migration, agent naming, agent com-
munication, timing and sensor node resources access (sensors, actuators,
flash memory, and radio).

– Plug-in-based architecture extensions through which any other service can
be defined in terms of one or more dynamically installable components im-
plemented as single or cooperating (mobile) agents.

– Use of Java language for defining the mobile agent behavior.

The architecture of MAPS (see Fig. 3) is based on several components inter-
acting through events and offering a set of services to mobile agents, including
message transmission, agent creation, agent cloning, agent migration, timer
handling, and an easy access to the sensor node resources. In particular, the
main components are the following:

Fig. 3. The architecture of MAPS.

– Mobile Agent (MA). MAs are the basic high-level component defined by user
for constituting the agent-based applications.

– Mobile Agent Execution Engine (MAEE). It manages the execution of MAs
by means of an event-based scheduler enabling lightweight concurrency.
MAEE also interacts with the other services-provider components to fulfill
service requests (message transmission, sensor reading, timer setting, etc)
issued by MAs.

– Mobile Agent Migration Manager (MAMM). This component supports agents
migration through the Isolate (de)hibernation feature provided by the Sun

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1339

Giancarlo Fortino and Antonio Guerrieri

SPOT environment. The MAs hibernation and serialization involve data and
execution state whereas the code must already reside at the destination
node (this is a current limitation of the Sun SPOTs which do not support
dynamic class loading and code migration).

– Mobile Agent Communication Channel (MACC). It enables inter-agent com-
munications based on asynchronous messages (unicast or broadcast) sup-
ported by the Radiogram protocol.

– Mobile Agent Naming (MAN). MAN provides agent naming based on prox-
ies for supporting MAMM and MACC in their operations. It also manages
the (dynamic) list of the neighbor sensor nodes which is updated through a
beaconing mechanism based on broadcast messages.

– Timer Manager (TM). It manages the timer service for supporting timing of
MA operations.

– Resource Manager (RM). RM allows access to the resources of the Sun
SPOT node: sensors (3-axial accelerometer, temperature, light), switches,
leds, battery, and flash memory.

The dynamic behavior of a mobile agent (MA) is modeled through a multi-
plane state machine (MPSM). Each plane [6] may represent the behavior of
the MA in a specific role so enabling role-based programming. In particular, a
plane is composed of local variables, local functions, and an automaton whose
transitions are labeled by Event-Condition-Action (ECA) rules E[C]/A, where E
is the event name, [C] is a boolean expression evaluated on global and local
variables, and A is the atomic action. Thus, agents interact through events,
which are asynchronously delivered and managed by the MAEE component.

It is worth noting that the MPSM-based agent behavior programming allows
exploiting the benefits deriving from three main paradigms for WSN program-
ming: event-driven programming, state-based programming and mobile agent-
based programming.

MAPS is also interoperable with the JADE framework [5]. Specifically, a
JADE-MAPS gateway [9] has been developed for allowing JADE agents to in-
teract with MAPS agents and vice versa. While both MAPS and JADE are Java-
based, they use a different communication method. JADE sends messages ac-
cording to the FIPA standards (using the ACL specifications), while MAPS cre-
ates its own messages based on events. Therefore, the JADE-MAPS Gateway
facilitates message exchange between MAPS and JADE agents. This inter-
platform communication infrastructure allows rapid prototyping of WSN-based
distributed applications/systems that use JADE at the basestation/coordinator/
host sides and MAPS at the sensor node side.

4.2. MAPS-based sensor agents

MAPS based SA is compliant with the SA architecture discussed in Section 3.
According to MAPS agent programming, the SA is composed of a behavior
and an interaction protocol based on events. In particular, the behavior defines
the logic of the SA through a set of planes representing its functionalities. The

1340 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

interaction protocol allows to interact with the CA to provide the requested ser-
vices. In the following subsections we first describe the event based interaction
protocol between CA and SA which provide a consistent snapshot of the ser-
vices that an SA can offer to a CA and how such services can be exploited;
then we detail the SA’s behavior that shows the SA’s architecture composed of
management and sensing planes defined as finite state machines.

Event-based interaction protocol. The MAPS-based SA (hereafter simply
named SA) interacts with its cluster CA through events as sketched in the se-
quence diagram of Fig. 4. Once the SA is created, it periodically emits the
BM SA ADVERTISEMENT event until the CA sends a configuring event (group
management or request scheduling). Through the BM GROUP MANAGEMENT
event, the CA manages the membership of target SAs (see Section 3). After the
SA processes the received event, it sends the BM ACK event to the CA. The
BM SENSOR SCHEDULE (or BM ACTUATOR SCHEDULE) event allows to
request a specific sensing (or actuation) operation to target SAs. The SA trans-
mits sensed (processed) data to the CA through the BM DATA event. The CA
can unschedule previously scheduled requests through the BM UNSCHEDULE
event. Finally the CA sends out the
BM SA RESET event to reset target SAs.

Fig. 4. Sequence Diagram of the interactions between CA and SA.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1341

Giancarlo Fortino and Antonio Guerrieri

Tables 4 and 5 in Appendix A report the defined MAPS-based building man-
agement events and the predefined values of their parameters. In particular, an
event is defined by its standard parameters: EventSender ID, EventTarget ID,
Event Type, Event Occurrence. The defined events are of two possible super
types: MSG (sent by CA to SA) and MSG TO BASESTATION (sent by SA to
CA). Both types are further specialized in the defined BM events as reported in
the pairs <MSG TYPE, BM event>of the 3rd column of Table 4 in Appendix A.
Moreover, each event type has its own additional parameters, which are de-
scribed in Table 5 in Appendix A. It is worth noting that the ADDRESSEE value
can be set through the regular expression formalized in Eq. 1 where SA is a
sensor agent of the building management architecture, G is an element from
the set of defined groups, STO is a set theory operator (e.g. union, intersection,
difference) and NOT is the negation. Thus, the addressee of an event can be
either one or more SAs, or SAs belonging to groups or complex compositions
of groups.

SA+|([NOT]G[STO[NOT]G]∗) (1)

Sensor Agent behavior. The SA agent behavior consists of two types of
planes: Manager plane and Request plane. While the Manager plane is created
at the SA creation time and handles all node targeting events, a Request plane
is created by the Manager plane every time that a new request schedule is re-
ceived. This type of plane is removed when it completes its task or due to the
reception of an unschedule event. Agent planes receive events from the MAPS
dispatcher component that is programmed to deliver the events fetched from
the agent queue to the plane in charge to process them according to some dis-
patcher rules (DR). Fig. 5 shows the SA behavior architecture. The dispatcher
rules are reported in Table 2.

Table 2. Dispatcher rules.

Event Plane

BM_SENSOR_SCHEDULE MANAGER

BM_ACTUATOR_SCHEDULE MANAGER

BM_UNSCHEDULE MANAGER

BM_GROUP_MANAGEMENT MANAGER

BM_SA_RESET MANAGER

Event.TMR_EXPIRED <ID, ID_MANAGER_PLANE> MANAGER

Event.TMR_EXPIRED <ID, REQUEST_PLANE_ID> REQUEST

Event.SENSOR_CURRENT_READING <ID, REQUEST_PLANE_ID> REQUEST

The Manager plane is reported in Fig. 6. In particular, after agent creation,
the Manager plane starts a periodic timer to advertise the agent presence along

1342 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

Fig. 5. The SA behavior architecture.

with its sensor/actuator available functions and waits for an incoming event from
the CA. When it receives the first event, the timer is reset. Each received event
is filtered against the current SA’s group membership. If the filtered event is for
the current SA, it is processed according to its type. A more detailed description
of each action of the Manager plane is provided using both a self-explanatory
pseudocode (see Fig. 7) and the MAPS code (intended for MAPS programmers;
see Fig. 17 in the Appendix B).

In Fig. 8 the Sensing Request plane is portrayed. This plane is created every
time that the agent receives a BM SENSOR SCHEDULE event. In particular,
after the Sensing Request plane creation, the plane creates and submits the
MAPS sensing event formalizing the sensing request. A sensing request can
be either one-shot or periodic with a given lifetime. The request is scheduled
until LIFETIME ELAPSED==true after the expiration of the periodic timer driv-
ing the submission of the sensing event. A more detailed description of each
action of the Sensing Request plane is provided using both a self-explanatory
pseudocode (see Fig. 9) and the MAPS code (intended for MAPS programmers;
see Fig. 18 in the Appendix B).

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1343

Giancarlo Fortino and Antonio Guerrieri

Fig. 6. The SA’s Manager plane.

A0: firstProcessedEvent=FALSE;
Start a periodic Event.TMR_EXPIRED to send the BM_SA_ADVERTISEMENT.

A1: Send BM_SA_ADVERTISEMENT to CA
A2: if the MSG is for this SA

firstProcessedEvent=TRUE && resetTimer (ID_TIMER)
A3: msgType = msgEvent.getParam(ParamsLabel.MSG_TYPE)
A4: Create a new Sensor Plane:

PlaneID = ID_REQUEST, the Request as parameter and start it.
A5: Create a new Actuator Plane:

PlaneID = ID_REQUEST, the Request as parameter and start it.
A6: Unschedule the Request deallocating the Plane with ID = ID_REQUEST
A7: Update current SA Group Membership
A8: Reset the SA and deallocate all the Request Planes;

firstProcessedEvent=FALSE
A9: Send BM_ACK to CA

Fig. 7. The SA’s Manager plane pseudocode.

1344 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

Fig. 8. The SA’s Sensing Request plane.

A0: Process Request
A1: Create and submint a Sensing Event on the Sensor Requested
A2: Inizialize and Submit a TMR_EXPIRED Event with the Params PERIOD and LIFETIME;

Set dataToStore
A3: Store sensed data and increase the storedDataCounter
A4: if DATA_TYPE.VALUE == "threshold notification"

Send sensed data to CA if the threshold is verified and reset the
storedDataCounter

else Send sensed data to CA and reset the storedDataCounter
A5: Calculate the SYNTHETIC_DATA_TYPE requested,

if DATA_TYPE.VALUE == "threshold notification"
Send synthetic data to CA if the threshold is verified and reset the

storedDataCounter
else Send synthetic data to CA and reset the storedDataCounter

Fig. 9. The SA’s Sensing Request plane pseudocode.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1345

Giancarlo Fortino and Antonio Guerrieri

5. A system deployment: monitoring workstation usage in
computer laboratories

To show the functionality and effectiveness of the proposed architecture for the
management of building indoors, we present an example of system deploy-
ment for the monitoring of workstation usage in a computer laboratory or in
offices. The wireless sensor network consists of heterogeneous sensor nodes
based on Sun SPOTs that are used to collect information about the ambient
light (through the standard Sun SPOT light sensor), the user presence (through
a Wieye IR sensorboard [10]) and the electricity consumed by the workstation
(through a customization of the ACme electricity sensorboard [18]). Every Sun
SPOT holds a SA able to manage a set of requests while the basestation holds
a CA that allows to manage the SAs. The SAs and CA in the system are shown
in Fig. 10. In particular, while the interaction between SAs and CA is logically a
direct interaction, SAs are organized in a multi-hop clusters which implies that
a message sent by an SA may traverse such multi-hop networks before arriving
at the CA.

It’s worth noting that in the implementation of the case study, as one only SA
cluster was defined, the BMA and CA agents were collapsed in one only agent
with the goal of energy monitoring.

In Fig. 11, the main window of the Building Management GUI is shown. It is
organized in five main sections supporting all the functionalities provided by the
system:

Fig. 10. The application Agents.

– Nodes and Groups Management sections allows to visualize the nodes of
the WSAN and configure groups, respectively. By right clicking on the sen-
sors/groups the user can configure sensor/actuator requests to schedule
on the nodes;

1346 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

Fig. 11. The Building Management GUI.

– Request section allows to list details of scheduled requests, display data
charts related to the scheduled requests, unschedule and re-schedule re-
quests;

– Maps and Graphs section allows visualizing WSAN deployment maps and
displaying charts of the data coming from the sensors (examples of charts
are shown in Fig. 13, 14 and 15;

– Console section displays the real-time log of the activity of the system;
– File and Saving menu section enables to save data from the system in

structured files and load stored files to display them in the GUI.

In Fig. 12, the graphical window for sensor/actuator request scheduling is
shown. The window allows setting the parameter of a new request: name, des-
tination (specific nodes or group composition), execution period, lifetime, one
shot request or unlimited lifetime flags, action type and related device, possi-
ble actuator parameters, requested sensed data possibly filtered by thresholds
and/or synthetic data is requested and its type (average/max/min) and eventual
threshold parameters can be set.

In the experimental system deployment the following requests were set:

– the average of the ambient temperature value (in C) is collected every 60
seconds from node 1;

– the average of the ambient light value (in lux) is collected every 60 seconds
from node 2;

– the mean electricity data (in watt) are gathered every minute from nodes
101 and 102;

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1347

Giancarlo Fortino and Antonio Guerrieri

Fig. 12. The graphical window for sensor/actuator request scheduling.

– the max IR sensor value is sensed every minute on nodes 11 and 12.

The aim of the experiment was the monitoring of two workstations in a com-
puter laboratory of the Technest incubator at University of Calabria to under-
stand their users’ behavior. Several snapshots of a significant monitoring activ-
ity of the duration of 90 min are shown in Fig. 13, 14 and 15.

In particular, Fig. 13 shows the real-time data of the ambient temperature
and the ambient light. It is clear that while the temperature in the laboratory is
almost constant, the light was switched off when the room was empty.

Fig. 14 shows the activity of the worker at the Desk 1. While in the first 15
minutes he was doing some word processing, before living the workstation, he
started an hard processing task to his PC that ended at the minute 80.

Fig. 15 illustrates the activity of the worker at the Desk 2. He was doing some
word processing till the minute 20 and after the minute 65. In the meanwhile
he was not to his desk, but his PC was left on (and with no processing task
executing). Desk 2 monitoring shows how a waste of energy could be detected
using the A-BMF. In particular, the waste detection can be done only after a
setup phase useful to understand the signature of a particular PC activity. An
example of signature extrapolated for the PC at desk 2, on the basis of 50
runs, is shown in Fig. 16 where four different working activities are displayed.
In particular, subsequent the activities are: (i) active doing word processing (ii)
active doing word processing and downloading stuff, (iii) inactive with the screen
switched off and downloading stuff, and (iv) inactive with the screen switched

1348 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

(a)

(b)

Fig. 13. Real-time data of the (a)ambient temperature and (b) ambient light.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1349

Giancarlo Fortino and Antonio Guerrieri

(a)

(b)

Fig. 14. Real-time data of the Desk 1. (a) workstation consumed power and (b) user
presence.

1350 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

(a)

(b)

Fig. 15. Real-time data of the Desk 2. (a) workstation consumed power and (b) user
presence.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1351

Giancarlo Fortino and Antonio Guerrieri

off. Table 3 shows the mean and the standard deviation of the power consumed
for the activities above.

Fig. 16. The signature of the PC at desk 2.

Table 3. Signature characteristics (Mean and Standard Deviation) per activity.

Mean [W] Standard Deviation [W]

Active 43,96 2,48

Active + Download 50,51 2,84

Inactive + Download 41,74 2,24

Inactive 34,02 3,01

6. Conclusions and Future Work

In this paper we have proposed A-BMF, an agent-based architecture for flexible,
efficient and embedded sensing and actuation in buildings. Specifically, the dis-
tributed software architecture is embedded into both WSANs and more capable
computing devices (e.g. PCs, smartphones, plug computers). The proposed
architecture can be seen as basic middleware for developing intelligent build-
ing management systems to achieve the Smart Building concept. Currently the

1352 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

proposed architecture is exploited to monitor the space occupation and energy
expenditure in computer laboratories for students to analyze energy consump-
tion patterns with respect to users’ behavior so as to semi-automatically imple-
ment behavior policies. In the current implementation, BMA and CA are merged
into a component-based application implemented through OSGi [24]. Moreover,
only one cluster can be deployed. On-going work is aimed at completing the
JADE-based implementation of the multi-cluster architecture founded on the
BMA and on multiple coordinated CAs. Future work will be devoted to: (i) the
design of a higher-level agent-based architecture for Smart Buildings atop the
proposed architecture to trade off inhabitants’ personal comfort and building
energy expenditure; (ii) the support of user mobility in buildings based on the
interoperation between body sensor network worn by users and the intelligent
agent based building infrastructure; (iii) the formalization of the A-BMF system
through communicating real time state machine-based formalisms [14] for verifi-
cation of A-BMF-based application scenarios; (iv) the exploitation of streaming
techniques [13] to enhance sensor data collecting at application and network
level.

Acknowledgments. This work has been partially supported by CONET, the Cooperating
Objects Network of Excellence, funded by the European Commission under FP7 with
contract number FP7-2007-2-224053, and by TETRis - TETRA Innovative Open Source
Services, funded by the Italian Government (PON 01-00451).

References

1. Aiello, F., Bellifemine, F.L., Fortino, G., Galzarano, S., Gravina, R.: An
agent-based signal processing in-node environment for real-time human ac-
tivity monitoring based on wireless body sensor networks. Journal of Engi-
neering Applications of Artificial Intelligence 24, 1147–1161 (October 2011),
http://dx.doi.org/10.1016/j.engappai.2011.06.007

2. Aiello, F., Fortino, G., Galzarano, S., Gravina, R., Guerrieri, A.: An analysis of Java-
based mobile agent platforms for Wireless Sensor Networks. Multi-Agent and GRID
Systems 7(6), 243–267 (2011)

3. Aiello, F., Fortino, G., Gravina, R., Guerrieri, A.: A Java-Based Agent Platform for
Programming Wireless Sensor Networks. The Computer Journal 54(3), 439–454
(2010)

4. Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri, A.,
Sgroi, M.: SPINE: a domain-specific framework for rapid prototyping of
WBSN applications. Software Practice & Experience 41, 237–265 (03 2011),
http://dx.doi.org/10.1002/spe.998

5. Bellifemine, F., Rimassa, G.: Developing multi-agent systems with a FIPA-
compliant agent framework. Softw. Pract. Exper. 31, 103–128 (February 2001),
http://dx.doi.org/10.1002/1097-024X(200102)31:2¡103::AID-SPE358¿3.0.CO;2-O

6. Bölöni, L., Jun, K., Palacz, K., Sion, R., Marinescu, D.C.: The Bond Agent Sys-
tem and Applications. In: Proceedings of the Second International Symposium
on Agent Systems and Applications and Fourth International Symposium on Mo-
bile Agents. pp. 99–112. ASA/MA 2000, Springer-Verlag, London, UK, UK (2000),
http://dl.acm.org/citation.cfm?id=647629.732585

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1353

Giancarlo Fortino and Antonio Guerrieri

7. Davidsson, P., Boman, M.: A Multi-Agent System for Controlling Intelligent Build-
ings. In: Proceedings of the Fourth International Conference on MultiAgent Sys-
tems (ICMAS-2000). pp. 377–. IEEE Computer Society, Boston, MA, USA (2000),
http://dl.acm.org/citation.cfm?id=518904.878902

8. Davidsson, P., Boman, M.: Distributed monitoring and control of office buildings by
embedded agents. Information Sciences-Informatics and Computer Science: An In-
ternational Journal - Special issue: Intelligent embedded agents 171, 293–307 (05
2005), http://dl.acm.org/citation.cfm?id=1077829.1077831

9. Domanski, J., Dziadkiewicz, R., Ganzha, M., Gab, A., M.M., M.: Implementing Glid-
erAgent - an agent-based decision support system for glider pilots. In: NATO ASI
Book, vol. to appear. IOS press (2012)

10. EasySen LLC: WiEye - Sensor board for wireless surveillance and security (2011),
[Online]. Available: http://www.easysen.com/WiEye.htm (current December 2011)

11. Essaaidi, M., Fortino, G.: Wireless Sensor Networks and Software Agents. In Soft-
ware Agents, Agent Systems and their Applications (M. Essaidi, M. Paprizicky and
M. Ganzha, Eds.), Information and Communication Security Vol. 32., Chapter 3. IOS
press., vol. 32 (2012)

12. Fortino, G., Galzarano, S.: On the development of mobile agent systems for wire-
less sensor networks: issues and solutions. In Multiagent Systems and Applications:
Practice and Experience. Maria Ganzha and Lakhmi Jain Eds. Studies in Computa-
tional Intelligence, Springer-Verlag (2012)

13. Fortino, G., Nigro, L.: Development of virtual data acquisition systems based on
multimedia internetworking. Computer Standards & Interfaces 21, 429–440 (1999)

14. Fortino, G., Nigro, L.: A toolset in Java2 for modelling, prototyping and implementing
communicating real-time state machines. Microprocessors and Microsystems 23,
573–586 (2000)

15. Guerrieri, A., Fortino, G., Ruzzelli, A., O’Hare, G.: A WSN-based Building Man-
agement Framework to Support Energy-Saving Applications in Buildings. In Ad-
vancements in Distributed Computing and Internet Technologies: Trends and Is-
sues, Chapter 12. Hershey, PA, USA: IGI Global (2011)

16. Hagras, H., Callaghan, V., Colley, M., Clarke, G.: A hierarchical fuzzy-
genetic multi-agent architecture for intelligent buildings online learning, adap-
tation and control. Inf. Sci. Inf. Comput. Sci. 150, 33–57 (3 2003),
http://dl.acm.org/citation.cfm?id=763284.763288

17. Huberman, B.A., Clearwater, S.H.: A Multi-Agent System for Controlling Building En-
vironments. In: Lesser, V.R., Gasser, L. (eds.) Proceedings of the International Con-
ference on Multiagent Systems (ICMAS-95). pp. 171–176. The MIT Press (1995)

18. Jiang, X., Dawson-Haggerty, S., Dutta, P., Culler, D.: Design and implemen-
tation of a high-fidelity AC metering network. In: Proceedings of the 2009
International Conference on Information Processing in Sensor Networks. pp.
253–264. IPSN ’09, IEEE Computer Society, Washington, DC, USA (2009),
http://dl.acm.org/citation.cfm?id=1602165.1602189

19. Lopes, R., Assis, F., Montez, C.: MASPOT: A Mobile Agent System for Sun SPOT.
In: Proceedings of the 2011 Tenth International Symposium on Autonomous Decen-
tralized Systems. pp. 25–31. ISADS ’11, IEEE Computer Society, Washington, DC,
USA (2011), http://dx.doi.org/10.1109/ISADS.2011.10

20. Luck, M., McBurney, P., Preist, C.: A Manifesto for Agent Technology: Towards Next
Generation Computing. Autonomous Agents and Multi-Agent Systems 9, 203–252
(11 2004)

21. Mobile Agent Platform for Sun SPOT: MAPS (2011), [Online]. Available:
http://maps.deis.unical.it (current December 2011)

1354 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

22. Muldoon, C., O’Hare, G.M.P., Collier, R., O’Grady, M.J.: Agent Factory Micro Edi-
tion: A Framework for Ambient Applications. In: Proceedings of Intelligent Agents in
Computing Systems Workshop (held in Conjunction with International Conference
on Computational Science (ICCS)) Reading, UK. Lecture Notes in Computer Sci-
ence (LNCS). pp. 727–734. Springer-Verlag Publishers (2006)

23. Naji, H., Meybodi, M., Falatouri, T.: Intelligent building management systems using
multi agents: Fuzzy approach. International Journal of Computer Applications 14(6),
9–14 (02 2011), published by Foundation of Computer Science

24. OSGi Alliance: Open System Gateway Initiative (OSGi), documents and software
(2011), [Online]. Available: http://www.osgi.org (current December 2011)

25. Qiao, B., Liu, K., Guy, C.: A Multi-Agent System for Building Control. In: Pro-
ceedings of the IEEE/WIC/ACM international conference on Intelligent Agent
Technology. pp. 653–659. IAT ’06, IEEE Computer Society, Hong Kong (2006),
http://dx.doi.org/10.1109/IAT.2006.17

26. Stankovic, J.: When sensor and actuator cover the world. ETRI Journal 30(5), 627–
633 (2008)

27. Tynan, R., Muldoon, C., O’Grady, M.J., O’Hare, G.M.P.: A mobile agent ap-
proach to opportunistic harvesting in wireless sensor networks. In: Proceed-
ings of the 7th international joint conference on Autonomous agents and multi-
agent systems: demo papers. pp. 1691–1692. AAMAS ’08, International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC (2008),
http://dl.acm.org/citation.cfm?id=1402744.1402768

28. Zhao, P., Simoes, M., Suryanarayanan, S.: A conceptual scheme for cyber-physical
systems based energy management in building structures. In: Proceedings of the
9th IEEE/IAS International Conference on Industry Applications (INDUSCON). pp.
1–6. Sao Paulo, Brazil (11 2010)

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1355

Giancarlo Fortino and Antonio Guerrieri

Appendix

A. Building Management Events

Table 4. Defined building management events.

1356 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

Table 5. Additional parameters of the building management events.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1357

Giancarlo Fortino and Antonio Guerrieri

B. SA’s MAPS actions

A0: addDispatcherRule(msgTypeList());
firstProcessedEvent=FALSE;
Event timer = new Event(agent.getId(), agent.getId(), Event.TMR_EXPIRED,

Event.NOW);
timerID = agent.setTimer(true, advertisementTime(), timer);
addDispatcherRule(timer);

A1: Event msg = new Event(agent.getId(), agent.getCAId(), Event.MSG_TO_BASESTATION,
Event.NOW);

msg.setParam(ParamsLabel.MSG_TYPE, BM_SA_ADVERTISEMENT);
setAdvertisementParams(msg);
agent.send(agent.getId(), agent.getCAId(), msg, true);

A2: if(isMsgForCurrSA(msgEvent.getParam(ParamsLabel.ADDRESSEE),
msgEvent.getParam(ParamsLabel.ADDRESSEE_TYPE)){

firstProcessedEvent=TRUE;
removeDispatcherRule(timer);
agent.resetTimer(agent.getId(), timerID);

}
A3: msgType = msgEvent.getParam(ParamsLabel.MSG_TYPE);
A4: plane = createSensorPlane(msgEvent.getParam(ParamsLabel.REQUEST_ID),

msgEvent);
A5: plane = createActuatorPlane(msgEvent.getParam(ParamsLabel.REQUEST_ID),

msgEvent);
A6: agent.removePlane(msgEvent.getParam(ParamsLabel.REQUEST_ID));
A7: updateMembership(msgEvent);
A8: Iterator i = agent.getPlaneList();

while(i.hasNext()){
plane = (Plane)i.next();
if(plane.getID() != this.getID())

agent.removePlane(plane.getID());
}
firstProcessedEvent=FALSE;
timer = new Event(agent.getId(), agent.getId(), Event.TMR_EXPIRED, Event.NOW);
timerID = agent.setTimer(true, advertisementTime(), timer);
addDispatcherRule(timer);

A9: Event msg = new Event(agent.getId(), agent.getCAId(), Event.MSG_TO_BASESTATION,
Event.NOW);

msg.setParam(ParamsLabel.MSG_TYPE, BM_ACK);
setAckParams(msg);
agent.send(agent.getId(), agent.getCAId(), msg, true);

Fig. 17. The MAPS actions of the SA’s Manager plane.

1358 ComSIS Vol. 9, No. 3, Special Issue, September 2012

Decentralized Management of Building Indoors through Embedded SW Agents

A0: storedDataCounter = 0;
isOneShotRequest = isOneShot(request);

A1: Event sensing = new Event(agent.getId(), agent.getId(),
request.getParam(ParamsLabel.SENSOR_TYPE), Event.NOW);

agent.sense(sensing);
addDispatcherRule(sensing);

A2: Event timer = new Event(agent.getId(), agent.getId(), Event.TMR_EXPIRED,
Event.NOW);

period = getPeriodTimer(request);
lifetime = getLifetimeTimer(request);
timer.setParam(ParamsLabel.LIFETIME_ELAPSED, "false");
timerID = agent.setTimer(true, period, lifetime, timer);
addDispatcherRule(timer);
dataToStore = getDataToStore(request);

A3: storeData(event.getParam(SENSED_DATA));
storedDataCounter++;

A4: if(request.getParam(ParamsLabel.DATA_TYPE) != "THRESHOLD_NOTIFICATION" ||
isThresholdChecked(request, getStoredData())){
Event msg = new Event(agent.getId(), agent.getCAId(),

Event.MSG_TO_BASESTATION, Event.NOW);
msg.setParam(ParamsLabel.MSG_TYPE, BM_DATA);
setDataParams(msg, getStoredData());
agent.send(agent.getId(), agent.getCAId(), msg, true);

}
storedDataCounter = 0;

A5: syntheticData = calculateSyntheticData(getStoredData(),
request.getParam(ParamsLabel.SYNTHETIC_DATA_TYPE));

if(request.getParam(ParamsLabel.DATA_TYPE) != "THRESHOLD_NOTIFICATION" ||
isThresholdChecked (request.getParams(), syntheticData)){
Event msg = new Event(agent.getId(), agent.getCAId(),

Event.MSG_TO_BASESTATION, Event.NOW);
msg.setParam(ParamsLabel.MSG_TYPE, BM_DATA);
setDataParams(msg, syntheticData);
agent.send(agent.getId(), agent.getCAId(), msg, true);

}
storedDataCounter = 0;

Fig. 18. The MAPS actions of the SA’s Sensing Request plane.

Giancarlo Fortino is an Associate Professor of computer engineering at the
Department of Electronics, Informatics, and Systems of the University of Cal-
abria, Italy. His research interests include distributed computing, wireless sen-
sor networks, agent-based computing, and real-time systems. He is author of
more than 170 papers in international journal, books and conference proceed-
ings. He received a Laurea degree and a PhD in Computer Engineering from
the University of Calabria in 1995 and 2000, respectively.

Antonio Guerrieri is a research fellow in Computer Engineering at the Univer-
sity of Calabria. His research interests include high-level programming methods
for wireless sensor networks with specific focus on methodologies and frame-
works for building sensor networks. He is author of several papers in interna-
tional journal, books and conference proceedings. He received his Bachelor,
Master and PhD in Computer Engineering from the University of Calabria in
2003, 2008, and 2012 respectively.

Received: January 1, 2012; Accepted: May 4, 2012

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1359

