
Computer Science and Information Systems 11(3):905–924 DOI: 10.2298/CSIS130921056H

A True Random-Number Encryption Method Employing

Block Cipher and PRNG

Yi-Li Huang, Fang-Yie Leu, Jian-Hong Chen, William Cheng-Chung Chu

Department of Computer Science, Tunghai University,
No. 1727, Section 4, Taiwan Boulevard, Taichung City, Taiwan

{yifung, leufy, g01350027, cchu}@thu.edu.tw

Abstract. In January 1999, distributed.net collaborated with the Electronic

Frontier Foundation to break a DES (i.e., Data Encryption Standard) key,

spending 22 hours and 15 minutes, and implying that the DES is no longer a

secure encryption method. In this paper, we propose a more secure one, called the

True Random Number Encryption Method (TRNEM for short), which employs

current time, true random numbers and system security codes as parameters of the

encryption process to increase the security level of a system. The same plaintext

file encrypted by the TRNEM at different time points generates different

ciphertext files. So these files are difficult to be cracked. We also analyze the

security of the DES, AES (i.e., Advanced Encryption Standard) and TRNEM, and

explain why the TRNEM can effectively defend some specific attacks, and why it

is safer than the DES and AES.

Keywords: DES, AES, true random number, SSC, block cipher, wrapped

ciphertext file

1. Introduction

Due to the popularity of computer systems and network services, the Internet-access

security and information security have been a part of the focuses of computer research

since when accessing the Internet, users may anytime anywhere face different kinds of

attacks [1]. Thus, protecting important data stored in a computer or a cloud system and

messages delivered in a network system is a challenge. Data Encryption Standard (DES)

[2] and Advanced Encryption Standard (AES) [3,4] were then developed. However the

DES has been cracked and the AES may someday be solved, e.g., by differential attack

[5] or linear attack [6]. On the other hand, security data is often encrypted by random

numbers which play a critical role in information security services, e.g., when

employing an one-way hash function [7] to generate message digests, encrypting

messages [8], and signing an electronic document with a digital signature [9,10].

Unfortunately, true random numbers are difficult to obtain since it is hard for us to

design themin a deterministic way. However, human activities and the information

having been collected in a website as well as their description own the characteristics

similar to those of a true random number since before reading them, we do not know

what has been collected and how they are described. These data often continuously and

randomly vary at different time. In fact, we can randomly select a short fragment of the

data as true random numbers from a randomly chosen website and use the segment to

mailto:%7d@thu.edu.tw

906 Yi-Li Huang et al.

encrypt plaintext. In this study, we develop a data protection mechanism, named True

Random Numbers Encryption Method (TRNEM for short), which encrypting plaintext

by employing true random numbers is a secure encryption approach which is difficult to

be cracked by using brute force attacks and ciphertext analyses.

The rest of this paper is organized as follows. Section 2 briefly describes the related

studies of this paper, including AES, and DES, and their vulnerabilities. Section 3

introduces the encryption/decryption process of the TRNEM. The security and

performance of the TRNEM and the comparison between the TRNEM and the AES are

presented in Section 4. Section 5 concludes this paper and outlines our future studies.

2. Common Block Cipher

Currently, the most common block cipher modes are the DES and AES.

2.1. Data Encryption Standard (DES)

DES [2] is a symmetric block cipher algorithm in which the encryption and decryption

details are almost the same. The length of a key is 56 bits (the key is typically expressed

as a 64-bit number, but the first eight bits are used for parity check). The DES encrypts

a 64-bit plaintext block into a 64-bit ciphertext block. Its key generation process can be

mainly divided into two steps, the initial permutation and the inverse permutation.

In the initial permutation step, the 64-bit input block is permuted to generate two

outputs L0 and R0, each of which is 32 bits long. After 16 times of iteration, L0 and R0,

respectively, become L16 and R16, which are then input to the inverse permutation

process to recover these bitsto their original sequence. The result is the corresponding

ciphertext block. DES [11] is unsafe because a brute force attack may succeed.

Currently, one of its threats is the linear cryptanalysis [12] which collected 243 known

plaintexts. The cracking time complexity ranges between 2
39

 and 2
43

[13]. But the

complexity can be reduced to 1/4 [14] with the help of a chosen-plaintext attack.

Three effective DES attacks, include differential cryptanalysis [15], linear

cryptanalysis [12] and Davies' attack [16], which can break the 16 rounds of DES with

the time complexity lower than that of a brute-force method.

2.2. Advanced Encryption Standard (AES)

AES [17] algorithm was developed based on bit permutation and substitution. It re-

arranges the sequence of the original data, and substitutes a data unit by another. As an

iterative and symmetric-key block cipher technique with 128, 192, or 256 bits as its key

length, AES encrypts a data block with 10 rounds of duplication and transformation.

Each round comprises the SubBytes, ShiftRows, MixColumns and AddRoundKey steps,

except the final round in which the MixColumns is substituted by an AddRoundKey.

Generally, in the AddRoundKey step, each byte of the data is bitwise-xored with a

round key.

A True Random-Number Encryption Method Employing 907

In the SubBytes step, each byte is substituted by another one following the content of

a predefined lookup table. The ShiftRows rotates a row of a state where a state is an

AES calculation on a 4×4 column-major order matrix of bytes. The initial value of this

matrix is a plaintext block. In the MixColumns step, a column-wise linear

transformation is performed by multiplying a constant matrix and the state matrix to

produce a new state matrix.

In 2009, the side-channel attack [18,19] successfully cracked an easy version of the

AES. But the National Security Agency (NSA) reviewed all the AES finalists, and

claimed that all of them were secure enough for U.S. Government non-classified data.

But the weak version that has been successfully cracked and the number of encryption

loop of this version are almost the same as those of original version. Cryptographers are

worrying about the security of the AES. If the penetrating capabilities of some well-

known attack are improved, this block encryption system may someday be cracked

again.

2.3 Block Cipher Mode of Operation

An operation mode is mainly used to encrypt and authenticate delivered messages. An

operational model defines the process of encrypting a data block, often based on a given

initialization vector (IV for short) as an additional parameter to further enhance the

security of the encrypted data.

If different IVs are given, the same plaintext will generate different ciphertext, even

though the plaintext is encrypted by using the same key. The purpose is to avoid

regenerating the same ciphertext.

The Cipher Block Chaining (CBC), the Propagating Cipher Block Chaining (PCBC),

Cipher feedback (CFB), Output feedback (OFB) and Counter (CTR) are block cipher

standards having been recognized by the National Institute of Standards and

Technology (NIST). With the CBC mode, as shown in the following two statements, a

plaintext block Pi is XORed with the ciphertext generated in the previous

encryption round. The XORed result and the encryption key K are then input to the

Block-Cipher-Encryption function to produce the ciphertext where is the IV of the

CBC mode.

With the PCBC mode, as illustrated in the following two statements, a plaintext block

Piis XORed with . The XORed result and the encryption key K are then

input to the Block-Cipher-Encryption function to produce the ciphertext where

 is the IV of the PCBC mode.

908 Yi-Li Huang et al.

The following two statements show the encryption process of the CFB mode. The

ciphertext generated in the previous round and the encryption K are input to the Block-

Cipher-Encryption function. The result is then XORed with plaintext Pi to yield the

ciphertext where is the IV of the CFB mode.

In the OFB mode, Oi-1 and the encryption key K are input to the Block-Cipher-

Encryption function to produce Oi. Oiis then XORed with plaintext Pi to produce the

ciphertext Ciwhere O0 is the IV.

Similar to that of the OFB mode, the CTR mode ciphers a plaintext block with a stream-

cipher method. It generates the next key-stream block by using a counter which is often

a function of time with a very long repeating cycle. During encryption, the encryption

key K and the counter are input to the Block-Cipher-Encryption function. The result is

then XORed with plaintext Pi to produce the ciphertext Ci. After an encryption round,

the counter value is increased by one. The new value is used to encrypt the next

plaintext block.

Although these modes provide a security system with data integrity and

confidentiality, they are still vulnerable to known plaintext-ciphertext cryptanalysis

attacks.

3. The Proposed Method

In this section, we first define the parameters and codes used by the TRNEM.

3.1. The Parameters

The parameters are as follows.

File name: which is the name of the file being encrypted. Its length is 16 characters. If

originally the length is longer than 16, we keep the first 16 characters and truncate the

remaining ones. However, if the length is shorter than 16, we extend it by duplicating

the file name n times until the length is equal to or longer than 16, n>1, and then extract

the first 16 characters.

Filename_ext: which isthe filename extension of the file. Its length is also 16 characters.

If originally it is longer than 16, we extral the first 16 and truncate the remaining ones.

If the length is shorter than 16, we extend it with the same method as that used to extend

its file name. However, if the length is zero, we put 16 *s as the filename_ext.

SSC: which stands for system security code.SSC has 16 members where SSC(i) is the i
th

A True Random-Number Encryption Method Employing 909

system security code, 1≦i≦16, and the length of SSC(i) is 128 bits.

△h：which is a variable of 11 bits long for indicating the length of a pseudo random

number sequence (PRNS), i.e., 1≦△h≦2047.

K△h：which is an encryption key of 128 bits long. It is generated by the concatenation

of 12 △hs, but discarding the last 4 bits.

KCT: which is a current-time encryption key defined as a bit sequence obtained by

concatenating the following items, including △h, and current values of the system

clock which contains nanosecond, second, minute, hour, and nanosecond of the clock,

i.e., KCT=△h||nanosecond||second||minute|| hour||nanosecond ||△h , where “||” denotes

concatenation. △h consists of 4 digits, nanosecond is 9 digits long, each of the

remaining items is 2 digits in length and each digit is 4 bits long, i.e., |KCT| =128 bits (=

4+9+2+2+2+9+4=32 digits).

WI (Web-Index): We randomly select an URL as the WI from those dynamically

crawled webpages (named crawled files), 1≦WI≦1023.

Sd (Start-distance): which isthe start point of the encrypting segment extracted from the

WI
th

 crawled file. The start point is the Sd
th

 character of the file, 1≦Sd≦1023.

TRNS: which stands for True Random Number Sequence (TRNS). It is the segment

extracted from the Sd
th

character of the WI
th

 web’s content.

△L: which is the length of TRNS, 1024≦△L≦2047.

RIGy(X): which is the value of the y right-most bits of the key X, i.e., if X=x[1] x[2]…

x[|X|], RIGy(X)= x[|X|-(y-1)]~x[|X|], where x[i] is the i
th

 bit of X, i=1,2,…|X|, and y=8,

128 or 256, e.g., when y=256, RIG256(X)=x[|X|-255] ~x[|X|], and when y=8,

RIG8(X)=x[|X|-7]~x[|X|]. If X is a character string, we treat it as a long bit string by

sequentially substituting these characters by their ASCII codes, e.g., if X=abc, 616263

will be the corresponding bit string of 24 bits long.

LEFy(X): which is the value of the y left-most bits of X, LEFy(X)=x[1]~x[y]. For

example, when y=128, LEF128(X)=x[1]~x[128], and when y=8, LEF8(X)= x[1]~x[8].

3.2. The Equations used to Generate Encryption Keys

The equations employed in this study are as follows.

△h = [(+ RIG20 (file name)) * (+

RIG20(filename_ext)) + (+ LEF20(file name)) *

 (+LEF20(filename_ext))] mod 2047 +1 (1)

which randomly varies each time when it is invoked. It is the first parameter adopted by

the TRNEM.

910 Yi-Li Huang et al.

DA = HMAC((1)⊕KCT|| (2)⊕KCT|| (3)+2 || (4)+2

 (5)⊕KCT) (2)

which randomly varies each time when it is invoked. It is the first dynamic key

employed by the TRNEM.

DB = HMAC((6)⊕DA || (7)⊕DA || (8)+2KCT || (9) +2KCT,

 DA+2) (3)

which randomly varieseach time when it is generated. It is the second dynamic key

employed by TRNEM.Eqs. (2) and (3), that respectively generate dynamic keys DA and

DB, together are called Equation-group 1.

CDA = [(((10) ⊕DA)+2 SSC(11)) +2 (K△h⊕ (12))] ⊕((13) +2K△h) (4)

 CDB = [(((14) ⊕DB) +2 (15)) +2 (DA⊕K△h)] ⊕ (16) +2 DA) (5)

Eqs. (4) and (5), that respectively produce the encrypted dynamic keys CDA and CDB,

together are called Equation-group 2.

△L = [LEF12((2)) * RIG12(DA) + LEF12((3)) * RIG12(DB) + (LEF12(K△

h)+ LEF12(DA) +LEF12(DB)) * LEF12(SSC(4))] mod 1024 + 1024 (6)

WI = [LEF12(SSC(5)) * LEF12(DA) + LEF12(SSC(6)) * LEF12(DB) + (LEF12(K△h)

 + RIG12(DA) + RIG12(DB)) * LEF12(SSC(7))] mod 1023 +1 (7)

Sd = [LEF12(SSC(8)) * LEF12(DA) + LEF12(SSC(9)) * LEF12(DB) + (RIG12(K△h)
2
+

 RIG12(DA)
2
+ RIG12(DB)

2
) * LEF12(SSC(10))] mod 1023 +1 (8)

Pk1= HMAC(SSC(11) +2 DA || SSC(12) +2 DA || SSC(13) ⊕DB || SSC(14) ⊕DB,

 (SSC(15) +2 DB) ⊕DA) (9)

which as a pseudorandom key is the first pointing key employed by the TRNEM to

generate the PRNS1, PRNS2 and CTRNS. Eqs. (6) ~ (9), that respectively generate △L,

WI, Sd and Pk1, together are called Equation-group 3.

),(strkE : An encryption function defined as:

),(strkE = k⊕s1|| k⊕s2|| k⊕s3||…|| k⊕sn, (10)

where 1 2 3... nstr s s s s is a string.

TRNS(j) = HMAC(E(SSC(j), TRNS) || E(SSC(17-j), TRNS), SSC(j+7)+2DB), 1≦j≦4

 (11)

A True Random-Number Encryption Method Employing 911

△t = (RIG12(DA)
3
+ RIG12(DB)

3
 + LEF12(DA)

3
 + LEF12(DB)

3
+ RIG12(TRNS(1))

3
+

 LEF12(TRNS(1))
3
) mod 1023 +1 (12)

which as a pesudorandom parameter is the length of PRNS2. △t together with △h are

adopted to protect the CTRNS and ciphertext in the wrapped ciphertext file.

Pk2 = HMAC(TRNS(2) ⊕DA || TRNS(3) ⊕DB || TRNS(4) +2 DA, TRNS(1) ⊕DB) (13)

which as a pseudorandom key is the second pointing key employed by the TRNEM to

generate the ciphertext.

Eqs. (10) ~ (13), that respectively produce),(strkE , TRNS(1) ~ TRNS(4), △t and Pk2,

together are called Equation-group 4.

3.3. The TRNEM Encryption Process

Fig. 1 illustratively summarizes the encryption flow of the TRNEM. The details are as

follows.

Step 1: Generating △h and K△h. The TRNEM’s encryption process invokes the non-

invertible △h generation equation defined above to read the file name of the file being

encrypted. The file name, filename extension and SSCs are the parameters used to

produce △h and K△h.

Step 2: Generating dynamic keys DA and DB. The TRNEM derives KCT from △h and

current time (CT), and invokes Equation-group 1 which uses K△h, KCT and SSCs as its

parameters to produce dynamic keys DA and DB.

Step 3: Encrypting dynamic keys. The TRNEM invokes Equation-group 2 which

consisting of two invertible equations defined above employs the generated DA, DB,

SSCs and K△h as the parameters to produce CDA and CDB so that the TRNEM can

securely store CDA and CDB into the wrapped ciphertext file and decrypt DA and DB

from CDA and CDB carried in the received wrapped ciphertext file.

Step 4: Generating △L, WI, Sd and Pk1. The TRNEM invokes Equation-group 3,

consisting of four non-invertible equations defined above, to respectively produce △L,

WI, Sd and Pk1 by employing the generated DA, DB, SSCs and K △ h as input

parameters.

Step 5: Generating TRNS(1) ~ TRNS(4), △t, and Pk2. The TRNEM randomly reads data

of △L bytes from the chosen webpage indexed by WI and the first character is the Sd
th

byte of the webpage. These data are our TRNS. The TRNEM invokes Equation-group 4

which consisting of some non-invertible equations defined above in turn invokes the

generation equations of the DA, DB, SSCs and TRNS to produce TRNS(1) ~ TRNS(4), △

t and Pk2.

912 Yi-Li Huang et al.

Function group

(Non-invertible)

SSC

Filename extension

File name

△h

Step 1. Generating △h

Step 2. Generating dynamic keys

Step 3. Encrypting dynamic keys

Step 4. Generating △L,

Web-Index, Start-distance,Pk1

Step 5. Generating TRNS

Step 6-1. Generating PRNS1 and PRNS2

Step 6-2. Generating CTRNS

Step 6-3. Generating CTRNS

K△h

Step 6. Generating PRNS1, PRNS2, CTRNS, and

Ciphertext

Function group 1

(Non-invertible)

SSC

K△h

KCT

DA

DB

Function group 2

(Invertible)

SSC

K△h

DA,DB

CDA

CDB

SSC

K△h

DA, DB Function group 3

(Non-invertible)

△L

Web-Index

Start-distance

Pk1

Function group

(Non-invertible)

Web-Index

Start-distance

△L

DA, DB

SSC

TRNS

 TRNS(1)

~TRNS(4)

△t

Pk2

PRNG

△h

kP1

KCT

PRNS1 ||

PRNS2

△t

Block cipher system

Pk1

CTRNS
TRNS

Block cipher system Ciphertext

Plaintext

Pk2

Fig. 1. The encryption flow of the TRNEM

Step 6: Generating PRNS1, PRNS2, CTRNS and ciphertext.

Step 6-1: Generating PRNS1 and PRNS2. The TRNEM grabs the time parameters from

system clock to produce a new KCT. After that, KCT, △h, △t and Pk1are input to the

pseudo random number generator (PRNG for short) to produce PRNS1 and PRNS2.

A True Random-Number Encryption Method Employing 913

Step 6-2: Generating CTRNS. The CTRNS is produced by the adopted block cipher

system (e.g., AES) with the TRNS as the plaintext and key Pk1 as an input parameter.

Step 6-3: Encrypting plaintext (generating ciphertext). A plaintext to be encrypted and

key Pk2 are input to the adopted block cipher system to produce the corresponding

ciphertext.

Step 7: Generating a wrapped ciphertext file. The TRNEM concatenates PRNS1, CDA,

CDB, CTRNS, the ciphertext generated in Step 6 and PRNS2 to produce a wrapped

ciphertext file, the format of which is shown in Fig. 2.

PRNS1

C

D

A

C

D

B

Ciphertext PRNS2

△h Length of File

CTRNS

△L △t

Fig. 2. The format of the wrapped ciphertext file generated by the TRNEM

3.4. The TRNEM Decryption Process

Fig. 3 illustrates the decryption process of the TRNEM. The details are described below.

Step 1: Calculating △h and removing PRNS1 from the received wrapped ciphertext file.

To decrypt the ciphertext, a user needs to invoke the △h generation equation, which in

turn reads the file name and filename extension of the designated file to produce △h,

with which to delete PRNS1 from the wrapped ciphertext file. It further generates K△h.

Step 2: Retrieving and calculating DA and DB. Reads CDA and CDB from the wrapped

ciphertext file and decrypts them by using the following two decryption equations, i.e.,

Eqs. (14) and (15), to obtain the dynamic keys DA and DB.

DA = [CDA⊕(SSC(13)+2K△h)]－2(K△h⊕SSC(12))－2 SSC(11) ⊕SSC(10) (14)

 where －2 is the inverse operation of +2 [20].

DB = [CDB⊕(SSC(16)+2DA)]－2(DA⊕K△h))－2 SSC(15) ⊕SSC(14) (15)

Step 3: Calculating △L and retrieving CTRNS

(1) Invoking Eq. (6) which employs SSCs, K△h, DA and DB as its parameters to

calculate △L.

(2) Retrieving CTRNS from the wrapped ciphertext file based on the calculated △L

since CTRNS is △L in length.

914 Yi-Li Huang et al.

C

D

A

C

D

B

Ciphertext PRNS2

Length of File

CTRNS

△L △t

Calculating △ h, K△ h and removing PRNS1

Step 2

Step 3-(2)

Ciphertext PRNS2

Length of File

CTRNS

△L △t

C

D

A

C

D

B
Step 3-(1)

DA,DB

CTRNS

△L

Step 4-(1)

Pk1

block cipher system

(Ex:AES)
TRNS

Step 4-(2)

Step 5

removing PRNS2

Ciphertext

Length of File

Step 6-(1)

Pk2

block cipher system

(Ex:AES)

Step 6-(2)

Plaintext

Length of File

PRNS1

C

D

A

C

D

B

Ciphertext PRNS2

△h Length of File

CTRNS

△L △t

Fig. 3. The decryption flow of the TRNEM

Step 4: Retrieving TRNS. Retrieve TRNS by inputting CTRNS and Pk1 to the adopted

block cipher system.

(1) Producing Pk1 by invoking Eq. (9) which employsDA, DB and SSCs as its

parameters.

(2) Invoking the adopted block cipher system to decrypt the CTRNS retrieved from the

wrapped ciphertext file with Pk1so as to produce TRNS.

Step 5: Retrieving △t and removing PRNS2.

(1) Producing TRNS(1) ~ TRNS(4) by invoking Eqs. (10) and (11) which employ SSCs

and TRNS as their parameters.

(2) Producing △t by invoking Eq. (12) which utilizes DA, DB and TRNS(1) as its

parameters.

(3) Removing PRNS2 from the wrapped ciphertext file.

A True Random-Number Encryption Method Employing 915

Step 6: Generating Pk2 and decrypting the ciphertext.

(1) Invoking Eq. (13) which uses TRNS(1)~TRNS(4), DA and DB as its parameters to

produce Pk2.

(2) Decrypting the plaintext from the ciphertext by inputting Pk2 and the ciphertext to

the adopted block cipher system so as to revert the plaintext.

3.5. The Features and Advantanges of the TRNEM

The TRNEM has five features, including

(1) employing filename, filename extension, system security codes and a non-invertible

equation to generate △h, making △h be one with high security;

(2) utilizing current time to produce dynamic keys DA and DB which are different

when they are generated at different time points since current time continuously

varies;

(3) using the DA and DB to fetch the true random numbers, with which to encrypt the

plaintext so as to enhance the security of the ciphertyext;

(4) employing scalable parameters △ h, △ L and △ t, with which to construct a

wrapped ciphertext file. The purpose is enhancing the security of the ciphertext file;

(5) the CDA, CDB and CTRNS are embedded in the wrapped ciphertext file to

effevtively protect the ciphertext.

Beside the mentioned security features, based on the Interent as its data pool, the

TRNEM creates a true random number sequence to encrypt plaintext so that the

ciphertext has a very high degree of security. Furthermore, the ciphertext is embedded

in the position located between PRNS1 and PRNS2. Hackers cannot directly obtain the

(plaintext, ciphertext) pairs from the wrapped ciphertext file, thus highly enhancing the

security of the TRNEM.

4. Security and Performance Analysis

In this section, we analyze the security levels of different TRNEM parameters and

generated data, including △ h, dynamic keys DA and DB, the TRNS, a wrapped

ciphertext file, and Pk2. We also evaluate the security and performance of the TRNEM.

4.1. Security of △h

There are three major reasons to say that △h possess high security. According to Eq.

(1), without the 16 system security codes SSC(1) – SSC(16), hackers cannot correctly

calculate △h, even though they have caught the file name and filename extension. Also,

the value generated for each term contained in Eq. (1) is larger than 2
20

 which is very

larger than the upper limit of △h, i.e., 2047. After that, the value generated before the

modulus operation is reduced to △h through the non-invertible modulus equation,

916 Yi-Li Huang et al.

implying that △h has high randomness and security. Furthermore, the △h is an internal

variable of the TRNEM. Hackers cannot derive it from the ciphertext and solve it.

Authough, hackers can try a lot of file names and filename extensions to respectively

substitute for the original file name and filename extension contained in the encryption

expression, attempting to analyze the possible △h. However, the length of the wrapped

ciphertext file is △h+32+△L+|the plaintext| + △t bytes, in which 32 is the length of

DA+DB, and △L and △t randomly change at each encryption, even the file name,

filename extension and plaintext remain unchanged. △h is well protected due to the

dynamic values of △L and △t. Now, we dare to say that △h and the protected system

are very safe.

4.2. Security of Dynamic Keys DA and DB

There are two methods to obtain DA. First, hackers may directly generate DA by

employing Eq. (2). However, SSC(1) ~ SSC(5), K△h and KCT are unknown to hackers

and KCT continuously changes at each encryption. That means hackers cannot directly

generate DA by employing Eq. (2). Second, hackers may crack CDA to obtain DA.

However, according to Eq. (4), they need SSC(10)~SSC(13) and K△h. But these

parameters are unknown to hackers. Furthermore, CDA is embedded in the wrapped

ciphertext file. Hackers need △h to correctly fetch it. But △h is unknown to hackers.

Thus, DA is secure. Similarly, to derive DB from CDB, hackers need SSC(14) ~

SSC(16), K△h and DA which are unknown to hackers, i.e., DB is secure.

4.3. Security of the TRNS

The TRNEM collects a webpage based on a randomly chosen WI, and accesses the

content of the webpage from the position indicated by the Sd to the position pointed to

by Sd +△L. In other words, |TRNS|=△L. But the characteristics and contents of

different pages vary with time, and the page contents may be changed frequently. Under

this circumstance, extracting web contents from a randomly chosen webpage can make

a number sequence, i.e., the TRNS, truly random.

Hackers may obtain TRNS by decrypting CTRNS embedded in the wrapped

ciphertext file. However, to fetch the CTRNS, parameters △h, △L, length of the

plaintext and △t are required. But, hackers cannot obtain them from the wrapped

ciphertext file. That is, hackers cannot correctly fetch CTRNS from this wrapped

ciphertext file. Furthermore, if CTRNS is known by hackers, they still cannot decrypt

CTRNS to obtain TRNS since PK1 is unknown to them. So, TRNS is secure.

4.4. Security of a Wrapped Ciphertext File

This system adopts a wrapping ciphertext approach, in which the ciphertext as shown in

Fig. 2 is wrapped by PRNS1 of length △h, CTRNS of length △L, and PRNS2 of length

A True Random-Number Encryption Method Employing 917

△t. Parameters △L and △t are different at each encryption even though the plaintext is

the same. Hackers cannot obtain △h, △L and △t to unwrap the ciphertext, i.e., hackers

cannot collect (plaintext, ciphertext) pairs when plaintext is known. They need to crack

△ h before solving other parameters, meaning that the ciphertext file is securely

protected by the TRNEM.

4.5. Security of the Pk2

Pk2 as a pseudorandom key is the second pointing key employed by the TRNEM to

generate the ciphertext. The security of the ciphertext strongly depends on the security

of Pk2 and the block cipher system. In the following, we would like to identify the

security level of Pk2. Theorem 1 proves that its security level is the same as that when it

is solved by using a blind guess method.

Theorem 1. If the key length of the TRNEM is n bits, then the probability of solving

the correct value of Pk2 from the wrapped ciphertext file is 1/ 2n .

Proof. Pk2 as an internal pseudorandom key used by the TRNEM does not appear in the

wrapped ciphertext file. Hackers cannot directly break it. Two methodscan be used to

break Pk2, excluding the blind guess approach. The first is that,according to Eq. (13),

i.e., Pk2 = HMAC(TRNS(2)⊕DA || TRNS(3)⊕DB || TRNS(4) +2 DA, TRNS(1)⊕DB),

only the one who knowsDA, DB, TRNS(1) ~ TRNS(3) can correctly generate Pk2.

However, the dynamic keys DA and DB are secure and the true random number

sequences, i.e., TRNS(1) ~ TRNS(3), derived fromTRNS and DB are secure, too, based

on the abovementioned description. The dynamic keys DA and DB, which are functions

of KCT, vary randomly each time when it is generated, implying that the generated

messages, TRNS and hence, TRNS(1) ~ TRNS(3) change randomly each time when they

are produced so that Pk2is secure.

The second method is breaking the block cipher system to obtain plaintext from the

ciphertext. However, the ciphertext embedded in the position located between PRNS1

and PRNS2 is secure, according to that described in section 4.4. That is, hackers cannot

break Pk2 from the ciphertext. In the worst case, if the ciphertext is known by the

hackers, they need to break the block cipher system. But this is not an easy work since

hackers require a massive amount of (plaintext, ciphertext) pairs given the same parent

key. Hence they still cannot break the block cipher system to obtain Pk2.

There are no useful method to obtain Pk2 other than the blind guess approach.

Therefore, the probability of solving the correct value ofPk2 from the wrapped

ciphertext is 1/ 2n . Q.E.D.

4.6. Security of the TRNEM

Due to involving current time and TRNS, the encryption results generated on the same

plaintext at different time points vary, implying that TRNEM can effectively prevent

those linear cryptanalysis attacks [21,22]. In the TRNEM, the mechanism that wraps a

918 Yi-Li Huang et al.

ciphertext file can effectively defend the known plaintext attacks because hackers

cannot correctly collect different (plaintext, ciphertext) pairs.

In fact, the TRNEM integrates time variables, i.e., the current time and TRNS. So the

wrapped-ciphertext-file mechanism can effectively prevent the protected system from

brute force attacks.

4.7. Generation Times of Parameters

The TRNEM generates ciphertext by using a block cipher system (e.g., AES or DES).

To generate a wrapped ciphertext file, we produce several parameters introduced above.

Table 1 lists the times required to produce these parameters. We also used these

parameters to produce the PRNS1, PRNS2, CDA, CDB and CTRNS. Table 2 lists the

times required to produce them and the wrapped ciphertext file.

Table 1. The times required to produce different required parameters

Parameter Parameter generation time (ms)

Eq. (1):△h 0.01948

Eq. (2):DA 0.30646

Eq. (3):DB 0.27196

Eq. (4):CDA 0.23230

Eq. (5):CDB 0.23624

Eq. (6):△L 0.00963

Eq. (7):WI 0.00958

Eq. (8):Sd 0.01020

Eq. (9):Pk1 0.42009

Eq. (11):TRNS(1) 15.06665

Eq. (11):TRNS(2) 14.96699

Eq. (11):TRNS(3) 15.41611

Eq. (11):TRNS(4) 15.52798

Eq. (12):△t 0.00820

Eq. (13):Pk2 0.28322

Total 62.78509

Table 2. The time required to produce the wrapped ciphertext file

Item Generation time (ms)

PRNS1||PRNS2(length of△h+△t) 20

CDA 0.2323

CDB 0.23624

CTRNS(length of△L) 13

Ciphertext The same as the time required by AES or DES

No matter what size of the file to be encrypted is, the times the TRNEM spent to

generate PRNS1, PRNS2, CDA, CDB and CTRNS are themselves the same. Compared

with other block cipher techniques, it only takes a very short extra time to encrypt a file.

But the security level on the contrary dramatically increases.

A True Random-Number Encryption Method Employing 919

Since the lengths of PRNS1||PRNS2 (i.e., △h+△t) and CTRNS (i.e., △L) are not

fixed, we individually chose the max lengths of them to calculate their generation times.

Ciphertext is encrypted by block ciphering. Its generation time is the same as those of

the adopted block cipher system, e.g., AES and DES. The extra time required by the

TRNEM is 95.78529 ms.

The difference between the decryption process and the encryption process of the

TRNEM is that when decrypting the ciphertext file, DA and DB are acquired by

invoking Eqs. (4) and (5), which further invoke the invertible equations to generate

CDA and CDB where CDA and CDB are retrieved from the wrapped ciphertext file.

TRNS is decrypted by inputting CTRNS and Pk1 to the adopted block cipher system

where CTRNS is also retrieved from the wrapped file. Since the formulas used to

generate other parameters for decryption are the same as those when encrypting the

plaintext file, the times required to produce △h, △L, Pk1, TRNS(1), TRNS(2), TRNS(3),

TRNS(4), △t and Pk2 are then individually the same as those when encrypting the file.

Table 3 lists the times required to produce parameters for decrypting CTRNS, and Table

4 shows the ciphertext decryption time.

Table 3. The times required to produce different parameters for decrypting the wrapped

ciphertext file

Parameter Parameter generation time (ms)

Eq. (1):△h 0.01948

Eq. (4):CDA Reads CDA from the wrapped file

Eq. (5):CDB Reads CDB from the wrapped file

Eq. (14):DA 0.19569

Eq. (15):DB 0.19926

Eq. (6):△L 0.00963

Eq. (9):Pk1 0.42009

Eq. (11):TRNS(1) 15.06665

Eq. (11):TRNS(2) 14.96699

Eq. (11):TRNS(3) 15.41611

Eq. (11):TRNS(4) 15.52798

Eq. (12):△t 0.0082

Eq. (13):Pk2 0.28322

Total 62.1133

Table 4. The times required to decrypt the CTRNS and the wrapped ciphertext file

Item Generation time (ms)

TRNS 13

plaintext The same as the time required by AES or DES

Table 5 lists the computational efforts in terms of different numbers of operations

employed by the encryption/ decryption processes of the TRNEM.

920 Yi-Li Huang et al.

Table 5. All computational efforts in terms of different numbers of operations employed by the

encryption/ decryption processes of the TRNEM

TRNEM Encryption Decryption

Eq. (1):△h 18+s + 2*s + 1 mod 18+s + 2*s + 1 mod

Eq. (2):DA 3⊕s (128 bits) + 2+2s (128 bits)

+ 1HMAC

does not generate

Eq. (3):DB 2⊕s (128 bits) + 3+2s(128 bits)

+ 1HMAC

does not generate

Eq. (4):CDA 3⊕s (128 bits) + 3+2s(128 bits) does not generate

Eq. (5):CDB 3⊕s (128 bits) + 3+2s(128 bits) does not generate

Eq. (6):△L 3*s + 4+s + 1 mod 3*s + 4+s + 1 mod

Eq. (7):WI 3*s + 4+s + 1 mod does not generate

Eq. (8):Sd 6*s + 4+s + 1 mod does not generate

Eq. (9): Pk1 3⊕s (128 bits) + 3+2s (128 bits)

+ 1HMAC

3 ⊕ s (128 bits) +

3+2s(128 bits) +

1HMAC

Eq. (11):

TRNS(1)

2E(k,str) + 1+2s (128bits) +

1HMAC

2E(k,str) + 1+2s (128bits)

+ 1HMAC

Eq. (11):

TRNS(2)

2E(k,str) + 1+2s (128bits) +

1HMAC

2E(k,str) + 1+2s (128bits)

+ 1HMAC

Eq. (11):

TRNS(3)

2E(k,str) + 1+2s (128bits) +

1HMAC

2E(k,str) + 1+2s (128bits)

+ 1HMAC

Eq. (11):

TRNS(4)

2E(k,str) + 1+2s (128bits) +

1HMAC

2E(k,str) + 1+2s (128bits)

+ 1HMAC

Eq. (12):△t 18*s + 5+2s + 1mod 18*s + 5+2s + 1mod

Eq. (13): Pk2 3⊕s (128 bits) + 1+2s (128 bits)

+ 1HMAC

3⊕ s (128 bits) + 1+2s

(128 bits) + 1HMAC

Eq. (14): DA does not generate 3⊕ s (128 bits) + 1+2s

(128 bits) + 2-2s (128bit)

Eq. (15): DB does not generate 3⊕ s (128 bits) + 1+2s

(128 bits) + 2-2s (128bit)

CTRNS/TRNS The same as the time of AES or

DES

The same as the time of

AES or DES

Ciphertext/

plaintext

The same as the time of AES or

DES

The same as the time of

AES or DES

4.8. Performance Analysis

Table 6 summarizes the computational efforts required by the DES, AES, and TRNEM

to encrypt and decrypt a data file.

A True Random-Number Encryption Method Employing 921

Table 6. The summary of the computational efforts required by the DES, AES and TRNEM to

encrypt and decrypt a data file.

Scheme Encryption Decryption

DES (64-

bit block)

[23,24]

16 ⊕s (32 bits) + 16 ⊕s (48

bits) + 1 IP (64 bits) + 1 IP-1

(64 bits) + 128 S-Box (6 bits)

+ 16 Expansions (48 bits) + 16

Permutations (32 bits)

The number of operations is the

same as that of the encryption

process.

AES

(128-bit

block,

128-bit

key) [25]

(AddRoundKey)

176 ⊕s (8 bits)

The number of operations is the

same as the sum of the numbers

of those operations employed by

the encryption process for the

three stages, including

AddRoundKey, SubBytes, and

ShiftRows

(SubBytes)

160 Substitutions (8 bit) [26]

(ShiftRows)

30 ShiftRows (128 bit)

(MixColumns)

36 Rijndael columns mixing

[26] (128 bits)

(MixColumns)

36 Rijndael columns mixing [27]

(128 bits).

(Generally, the operations of a

decryption process are often more

complex than those of the

corresponding encryption

process.)

TRNEM

30+s + 32*s + 17⊕s (128 bits)

+ 24+2s (128 bits) + 8 E(k,str)

+ 8 HMAC + 5 mod +

2*(176 ⊕ s (8 bits) +160

Substitutions (8 bit)+ 30

ShiftRows +36 Rijndael

columns mixing) in which the

last term 2*(176 ⊕s …) is the

time required to produce

CTRNS from TRNS and

generate ciphertext from

plaintext

22+s + 23*s + 12⊕s (128 bits) +

15+2s (128 bits) + 4-2s(128bit) + 8

E(k,str) + 6 HMAC + 3 mod

+2*(176 ⊕ s (8 bits) +160

Substitutions (8 bit)+ 30

ShiftRows +36 Rijndael columns

mixing) in which the last term

2*(176 ⊕ s …) is the time

required to produce TRNS from

CTRNS and generate plaintext

from ciphertext

The following analyses show that TRNEM is more secure than the AES. First, the

plaintext is encrypted by the pseudorandom key PK2 when the TRNEM employs the

adopted block cipher system. If the block cipher system is the AES, then the TRNEM is

still more secure than it since, by Theorem 1, PK2 varies at each encryption, whereas the

parent key adopted by the AES is fixed for encrypying a file.Second, the ciphertext of

the TRNEM is embedded in a wrapped ciphertext file. It is not easy for hackers to

correctly fetch the ciphertext and analyze it. But AES does not have this protection

mechanism.

922 Yi-Li Huang et al.

Third, the AES suffers brute force attacks, e.g., the known plaintext/ciphertext attack

[28], chosen plaintext attack, such as differential cryptanalysis attack [30], and linear

cryptanalysis attack [21,22] since the AES is an combinatorial-logic style encryption

method [29]. However, in the TRNEM, when a plaintext block is encrypted at different

time points, different current time keyKCTsand hence different other keys, including

DA, DB, Pk1, TRNS(1)~TRNS(4) and PK2, are produced, thus resulting in diffenent

wrapped ciphertext files. The value ofKCT randomly changes and has no regular rule.

Hence, the following keys generated, including DA, DB, Pk1, TRNS(1) ~ TRNS(4) and

PK2, also randomly vary. Therefore, they can effectively defend the abovementioned

attacks. In summary,KCTand TRNSare the two keys making the TRNEM more secure

than the AES.

As shown in Fig. 2, due to concatenating PRNS1, CDA, CDB, CTRNS and PRNS2,

and the lengths of them are, respectively, △h, |CDA|, |CDB|, △L and △t. Therefore, the

data transmission efficiency of the TRNEM is

| |

| |

ciphertext

h CDA CDB L t ciphertext

5. Conclusions and Future Work

This system utilizes a wrapping ciphertext approach, which prevents hackers from

identifying the correct position of ciphertext. So the hackers cannot easily crack the

protected ciphertext. Additionally, the TRNEM encrypts plaintext by using TRNS,

which is highly random by randomly choosing a webpage and randomly accessing its

content △h in length. Moreover, even though given the same plaintext, the TRNEM

generates different ciphertext at different time points. This can effectively prevent

hackers from issuing known plaintext/ciphertext attacks. So we dare to say that the

TRNEM is very secure.

However, a portable encryption/decryption system, like DES and AES, does not

create system parameters in it. To develop an algorithm, with which the system security

codes in the TRNEM can be generated by the input password or parent key, is necessary

and important. Furthermore, to enhance the performance of the TRNEM, the block

cipher system adopted by the TRNEM does not need to be DEA or AES. To develop a

secure and efficient encryption/decryption method, we plan to utilize the keys generated

by the TRNEM, e.g.,K△h, DA, DB, PK1, PK2 and SSCs, as the parameters to establish a

new block cipher system, which is then substituted for the AES or DES to perform the

block ciphering for the TRNEM. These constitute our further studies.

Acknowledgments. The work was partially supported by TungHai University under the project

GREENs and the National Science Council, Taiwan under Grants NSC 102-2221-E-029-003-

MY3, NSC 101-2221-E-029-003-MY3 and NSC 100-2221-E-029-018.

A True Random-Number Encryption Method Employing 923

References

1. Wiki, Computer insecurity, http://en.wikipedia.org/wiki/Computer_insecurity

2. Category, G.M.:The PPP DES Encryption Protocol. RFC 2419,September 1998, Version 2

(DESE-bis)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES The Advanced Encryption Standard.

New York, USA, Springer-Verlag.(2002)

4. Prodanović, R., Simić, D.: Holistic Approach to Wep Protocol in Securing Wireless Network

Infrastructure. Computer Science and Information Systems, vol. 3, issue 2, 97-113.(2006)

5. Bahrak, B., Aref, M.R.: Impossible Differential Attack on Seven-round AES-128. Published

in IET Information Security, vol. 2, Issue 2, 28 – 32. (2008)

6. Wiki, Linear cryptanalysis, http://en.wikipedia.org/wiki/Linear_cryptanalysis

7. Li, P., Sui, Y., Yang, H., Li, P.: The Parallel Computation in One-Way Hash Function

Designing. International Conference on Computer, Mechatronics, Control and Electronic

Engineering, Conference, vol. 1, 189 - 192. (2010)

8. Wang, M., Zhu, G., Zhang, X.: General Survey on Massive Data Encryption.International

Conference on Computing Technology and Information Management, vol. 1, 150- 155.(2012)

9. Kaur, R., Kaur, A.: Digital signature. International Conference on Computing Sciences, 295-

301. (2012)

10. Živković, Z.V., Stanojević, M.J.: Simulation Analysis of Protected B2B e-commerce

Processes. Computer Science and Information Systems, vol. 3, issue 1, 77-91. (2006)

11. Wiki, DES, http//en.wikipedia.org/wiki/Data_Encryption_Standard

12. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Standard. In

Advances in Cryptology CRYPTO'94, Lecture Notes in Computer Science 839, Springer

Verlag, 1-11. (1994)

13. Junod, P.: On the complexity of Matsui’s attack. Selected Areas in Cryptography, Lecture

Notes in Computer Science 2259, 199-211. (2001)

14. Knudsen, L.R., Mathiassen, J.E.: A Choice Plaintext Linear Attack. DES Fast Software

Encryption, 62-272. (2000)

15. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard -

Advances in Cryptology.The Annual International Cryptology Conference, CRYPTO '92,

487-496. (1992)

16. Biham, E., Biryukov, A.: An Improvement of Davies' attack on DES. Journal of Cryptology,

vol. 10, no. 3, 195-206. (1997)

17. National Institute of Standards and Technology, Advanced Encryption Standard, NIST FIPS

PUB 197.(2001)

18. Bernstei, D.J.: Cache-timing Attacks on AES. Citeseer. 2005.04.

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

19. Tromer, E., Osvik, D.A., Shamir, A.: Efficient Cache Attacks on AES, and Countermeasures.

Journal of Cryptology, vol. 23, Issue 1, 37-71.(2010)

20. Huang, Y.L., Leu, F.Y., Wei, K.C.: A Secure Communication over Wireless Environments

by using a Data Connection Core. Mathematical and Computer Modeling, vol. 58, issues 5–6,

1459–1474. (2013)

21. Matsui, M.: Linear cryptanalysis method for DES cipher, in Advances in cryptography -

Eurocrypt 1993. Springer-Verlog, Berlin, 386-397.(1993)

22. Biham, E.: On Matsui's Linear Cryptanalaysis. Springer-Verlag 1998, 341-344.(1998)

23. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Chapman & Hall/CRC

Press.(2008)

24. Bellare, M., Rogaway, P.: Introduction to Modern Cryptography, Chapter 3, May 11, 2005.

http://digidownload.libero.it/persiahp/crittografia/2005_Introduction_to_Modern_Cryptograp

hy.pdf

25. Federal Information Processing Standards Publication 197: Announcing the Advanced

Encryption Standard (AES).(2001)

924 Yi-Li Huang et al.

26. Cui L., Cao, Y.: A New S-Box Structure Named Affine-Power-Affine. International Journal

of Innovative Computing, Information and Control, vol. 3, no. 3, 751-759. (2007)

27. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. The First Advanced Encryption Standard

Candidate Conference, NIST, 1999.

28. Wiki, Known-plaintext attack, http://en.wikipedia.org/wiki/Known-plaintext_attack

29. Qaosar,M., Ahmad, S.: A Combinational Logic Approach by using HDL to Implement DES

Algorithm. Canadian Journal on Electrical and Electronics Engineering, vol. 3, no. 7, 384-

389. (2012)

30. Biham, E., Shamir, A.: Differential Cryptanalysis of the Full 16-round DES. In E. F. Brickell,

editor, Advanced in Cryptology-Crypto’92, vol. 740 of Lectures Notes in Computer Science,

487-496. (1992)

Yi-Li Huang received his master degrees from National Central University of Physics,

Taiwan, in 1983. His research interests include security of network and wireless

communication, solar active-tracking system, pseudo random number generator design

and file protection theory. He is currently a senior instructor of Tunghai University,

Taiwan, and director of information security laboratory of the University.

Fang-Yie Leu received his B.S., M.S. and Ph.D. degrees from National Taiwan

University of Science and Technology, Taiwan, in 1983, 1986 and 1991, respectively,

and another M.S. degree from Knowledge Systems Institute, USA, in 1990. His

research interests include wireless communication, network security, Grid applications

and Chinese natural language processing. He is currently a full professor of Tunghai

University, Taiwan, the director of database and network security laboratory of the

University, the chair of MCNCS and CWECS workshops, and the editorial board

member of several international journals. He is also a member of IEEE Computer

Society.

Jiang-Hong Chen graduated from Computer Science Department, Tunghai University,

Taiwan, in 2012. He is now a master student of this department. His research interests

include wireless communication and network security.

William C. Chu, the Director of Software Engineering and Technologies Center of

Tunghai University, a professor of the Department of Computer Science, he had served

as the Dean of Engineering College at Tunghai University, Taiwan. From 2008 to 2011,

Dean of Research and Development office at Tunghai University from 2004 to 2007,

Taiwan. In 1992, he was also a visiting scholar at Stanford University. His current

research interests include software engineering, embedded systems, and E-learning. Dr.

Chu received his MS and PhD degrees from Northwestern University in Evanston

Illinois, in 1987 and 1989, respectively, both in computer science.

Received: September 21, 2013; Accepted: January 21, 2014.

