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Abstract. In January 1999, distributed.net collaborated with the Electronic 

Frontier Foundation to break a DES (i.e., Data Encryption Standard) key, 

spending  22 hours and 15 minutes, and implying that the DES is no longer a 

secure encryption method. In this paper, we propose a more secure one, called the 

True Random Number Encryption Method (TRNEM for short), which employs 

current time, true random numbers and system security codes as parameters of the 

encryption process to increase the security level of a system. The same plaintext 

file encrypted by the TRNEM at different time points generates different 

ciphertext files. So these files are difficult to be cracked. We also analyze the 

security of the DES, AES (i.e., Advanced Encryption Standard) and TRNEM, and 

explain why the TRNEM can effectively defend some specific attacks, and why it 

is safer than the DES and AES. 
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1. Introduction 

Due to the popularity of computer systems and network services, the Internet-access 

security and information security have been a part of the focuses of computer research 

since when accessing the Internet, users may anytime anywhere face different kinds of 

attacks [1]. Thus, protecting important data stored in a computer or a cloud system and 

messages delivered in a network system is a challenge. Data Encryption Standard (DES) 

[2] and Advanced Encryption Standard (AES) [3,4] were then developed. However the 

DES has been cracked and the AES may someday be solved, e.g., by differential attack 

[5] or linear attack [6]. On the other hand, security data is often encrypted by random 

numbers which play a critical role in information security services, e.g., when 

employing an one-way hash function [7] to generate message digests, encrypting 

messages [8], and signing an electronic document with a digital signature [9,10]. 

Unfortunately, true random numbers are difficult to obtain since it is hard for us to 

design themin a deterministic way. However, human activities and the information 

having been collected in a website as well as  their description own the characteristics 

similar to those of a true random number since before reading them, we do not know 

what has been collected and how they are described. These data often continuously and 

randomly vary at different time. In fact, we can randomly select a short fragment of the 

data as true random numbers from a randomly chosen website and use the segment to 
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encrypt plaintext. In this study, we develop a data protection mechanism, named True 

Random Numbers Encryption Method (TRNEM for short), which encrypting plaintext 

by employing true random numbers is a secure encryption approach which is difficult to 

be cracked by using brute force attacks and ciphertext analyses.  

The rest of this paper is organized as follows. Section 2 briefly describes the related 

studies of this paper, including AES, and DES, and their vulnerabilities. Section 3 

introduces the encryption/decryption process of the TRNEM. The security and 

performance of the TRNEM and the comparison between the TRNEM and the AES are 

presented in Section 4. Section 5 concludes this paper and outlines our future studies. 

2. Common Block Cipher 

Currently, the most common block cipher modes are the DES and AES. 

2.1. Data Encryption Standard (DES) 

DES [2] is a symmetric block cipher algorithm in which the encryption and decryption 

details are almost the same. The length of a key is 56 bits (the key is typically expressed 

as a 64-bit number, but the first eight bits are used for parity check). The DES encrypts 

a 64-bit plaintext block into a 64-bit ciphertext block. Its key generation process can be 

mainly divided into two steps, the initial permutation and the inverse permutation. 

In the initial permutation step, the 64-bit input block is permuted to generate two 

outputs L0 and R0, each of which is 32 bits long. After 16 times of iteration, L0 and R0, 

respectively, become L16 and R16, which are then input to the inverse permutation 

process to recover these bitsto their original sequence. The result is the corresponding 

ciphertext block. DES [11] is unsafe because a brute force attack may succeed. 

Currently, one of its threats is the linear cryptanalysis [12] which collected 243 known 

plaintexts. The cracking time complexity ranges between 2
39

 and 2
43 

[13]. But the 

complexity can be reduced to 1/4 [14] with the help of a chosen-plaintext attack. 

Three effective DES attacks, include differential cryptanalysis [15], linear 

cryptanalysis [12] and Davies' attack [16], which can break the 16 rounds of DES with 

the time complexity lower than that of a brute-force method. 

2.2. Advanced Encryption Standard (AES) 

AES [17] algorithm was developed based on bit permutation and substitution. It re-

arranges the sequence of the original data, and substitutes a data unit by another. As an 

iterative and symmetric-key block cipher technique with 128, 192, or 256 bits as its key 

length, AES encrypts a data block with 10 rounds of duplication and transformation. 

Each round comprises the SubBytes, ShiftRows, MixColumns and AddRoundKey steps, 

except the final round in which the MixColumns is substituted by an AddRoundKey. 

Generally, in the AddRoundKey step, each byte of the data is bitwise-xored with a 

round key. 
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In the SubBytes step, each byte is substituted by another one following the content of 

a predefined lookup table. The ShiftRows rotates a row of a state where a state is an 

AES calculation on a 4×4 column-major order matrix of bytes. The initial value of this 

matrix is a plaintext block. In the MixColumns step, a column-wise linear 

transformation is performed by multiplying a constant matrix and the state matrix to 

produce a new state matrix. 

In 2009, the side-channel attack [18,19] successfully cracked an easy version of the 

AES. But the National Security Agency (NSA) reviewed all the AES finalists, and 

claimed that all of them were secure enough for U.S. Government non-classified data. 

But the weak version that has been successfully cracked and the number of encryption 

loop of this version are almost the same as those of original version. Cryptographers are 

worrying about the security of the AES. If the penetrating capabilities of some well-

known attack are improved, this block encryption system may someday be cracked 

again. 

2.3 Block Cipher Mode of Operation 

An operation mode is mainly used to encrypt and authenticate delivered messages. An 

operational model defines the process of encrypting a data block, often based on a given 

initialization vector (IV for short) as an additional parameter to further enhance the 

security of the encrypted data. 

If different IVs are given, the same plaintext will generate different ciphertext, even 

though the plaintext is encrypted by using the same key. The purpose is to avoid 

regenerating the same ciphertext. 

The Cipher Block Chaining (CBC), the Propagating Cipher Block Chaining (PCBC), 

Cipher feedback (CFB), Output feedback (OFB) and Counter (CTR) are block cipher 

standards having been recognized by the National Institute of Standards and 

Technology (NIST). With the CBC mode, as shown in the following two statements, a 

plaintext block Pi is XORed with the ciphertext generated in the previous 

encryption round. The XORed result and the encryption key K are then input to the 

Block-Cipher-Encryption function to produce the ciphertext  where  is the IV of the 

CBC mode. 

 

 

With the PCBC mode, as illustrated in the following two statements, a plaintext block 

Piis XORed with . The XORed result and the encryption key K are then 

input to the Block-Cipher-Encryption function to produce the ciphertext where 

 is the IV of the PCBC mode. 
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The following two statements show the encryption process of the CFB mode. The 

ciphertext generated in the previous round and the encryption K are input to the Block-

Cipher-Encryption function. The result is then XORed with plaintext Pi to yield the 

ciphertext  where  is the IV of the CFB mode. 

 

 

In the OFB mode, Oi-1 and the encryption key K are input to the Block-Cipher-

Encryption function to produce Oi. Oiis then XORed with plaintext Pi to produce the 

ciphertext Ciwhere O0 is the IV. 

 

 

Similar to that of the OFB mode, the CTR mode ciphers a plaintext block with a stream-

cipher method. It generates the next key-stream block by using a counter which is often 

a function of time with a very long repeating cycle. During encryption, the encryption 

key K and the counter are input to the Block-Cipher-Encryption function. The result is 

then XORed with plaintext Pi to produce the ciphertext Ci. After an encryption round, 

the counter value is increased by one. The new value is used to encrypt the next 

plaintext block. 

Although these modes provide a security system with data integrity and 

confidentiality, they are still vulnerable to known plaintext-ciphertext cryptanalysis 

attacks. 

3. The Proposed Method 

In this section, we first define the parameters and codes used by the TRNEM. 

3.1. The Parameters 

The parameters are as follows. 

File name: which is the name of the file being encrypted. Its length is 16 characters. If 

originally the length is longer than 16, we keep the first 16 characters and truncate the 

remaining ones. However, if the length is shorter than 16, we extend it by duplicating 

the file name n times until the length is equal to or longer than 16, n>1, and then extract 

the first 16 characters. 

Filename_ext: which isthe filename extension of the file. Its length is also 16 characters. 

If originally it is longer than 16, we extral the first 16 and truncate the remaining ones. 

If the length is shorter than 16, we extend it with the same method as that used to extend 

its file name. However, if the length is zero, we put 16 *s as the filename_ext. 

SSC: which stands for system security code.SSC has 16 members where SSC(i) is the i
th 
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system security code, 1≦i≦16, and the length of SSC(i) is 128 bits. 

△h：which is a variable of 11 bits long for indicating the length of a pseudo random 

number sequence (PRNS), i.e., 1≦△h≦2047. 

K△h：which is an encryption key of 128 bits long. It is generated by the concatenation 

of 12 △hs, but discarding the last 4 bits. 

KCT: which is a current-time encryption key defined as a bit sequence obtained by 

concatenating the following items, including △h, and current values of the system 

clock which contains nanosecond, second, minute, hour, and nanosecond of the clock, 

i.e., KCT=△h||nanosecond||second||minute|| hour||nanosecond ||△h , where “||” denotes 

concatenation. △h consists of 4 digits, nanosecond is 9 digits long,  each of the 

remaining items is 2 digits in length and each digit is 4 bits long, i.e., |KCT| =128 bits (= 

4+9+2+2+2+9+4=32 digits). 

WI (Web-Index): We randomly select an URL as the WI from those dynamically 

crawled webpages (named crawled files), 1≦WI≦1023. 

Sd (Start-distance): which isthe start point of the encrypting segment extracted from the 

WI
th

 crawled file. The start point is the Sd
th

 character of the file, 1≦Sd≦1023. 

TRNS: which stands for True Random Number Sequence (TRNS). It is the segment 

extracted from the Sd
th 

character of the WI
th

 web’s content. 

△L: which is the length of TRNS, 1024≦△L≦2047. 

RIGy(X): which is the value of the y right-most bits of the key X, i.e., if X=x[1] x[2]… 

x[|X|], RIGy(X)= x[|X|-(y-1)]~x[|X|], where x[i] is the i
th

 bit of X, i=1,2,…|X|, and y=8, 

128 or 256, e.g., when y=256, RIG256(X)=x[|X|-255] ~x[|X|], and when y=8, 

RIG8(X)=x[|X|-7]~x[|X|]. If X is a character string, we treat it as a long bit string by 

sequentially substituting these characters by their ASCII codes, e.g., if X=abc, 616263 

will be the corresponding bit string of 24 bits long. 

LEFy(X): which is the value of the y left-most bits of X, LEFy(X)=x[1]~x[y]. For 

example, when y=128, LEF128(X)=x[1]~x[128], and when y=8, LEF8(X)= x[1]~x[8]. 

3.2. The Equations used to Generate Encryption Keys 

The equations employed in this study are as follows. 

 

△h = [( + RIG20 (file name)) * ( + 

RIG20(filename_ext)) + ( + LEF20(file name)) *        

                   ( +LEF20(filename_ext))]  mod 2047 +1              (1) 

 

which randomly varies each time when it is invoked. It is the first parameter adopted by 

the TRNEM. 
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DA = HMAC( (1)⊕KCT|| (2)⊕KCT|| (3)+2 || (4)+2  

                                                         (5)⊕KCT)                                                 (2) 

 

which randomly varies each time when it is invoked. It is the first dynamic key 

employed by the TRNEM. 

 

DB = HMAC( (6)⊕DA || (7)⊕DA || (8)+2KCT || (9) +2KCT,  

                                                            DA+2 )                                                  (3) 

 

which randomly varieseach time when it is generated. It is the second dynamic key 

employed by TRNEM.Eqs. (2) and (3), that respectively generate dynamic keys DA and 

DB, together are called Equation-group 1. 

 

CDA = [(( (10) ⊕DA)+2 SSC(11)) +2 (K△h⊕  (12))] ⊕( (13) +2K△h)    (4) 

 

    CDB = [(( (14) ⊕DB) +2 (15)) +2 (DA⊕K△h)] ⊕ (16) +2 DA)      (5) 

 

Eqs. (4) and (5), that respectively produce the encrypted dynamic keys CDA and CDB, 

together are called Equation-group 2. 

 

△L = [LEF12( (2)) * RIG12(DA) + LEF12( (3)) * RIG12(DB) + (LEF12(K△  

h)+ LEF12(DA) +LEF12(DB)) * LEF12(SSC(4))] mod 1024 + 1024          (6) 

 

WI = [LEF12(SSC(5)) * LEF12(DA) + LEF12(SSC(6)) * LEF12(DB) + (LEF12(K△h)        

           + RIG12(DA) + RIG12(DB)) * LEF12(SSC(7))] mod 1023 +1                 (7) 

 

Sd = [LEF12(SSC(8)) * LEF12(DA) + LEF12(SSC(9)) * LEF12(DB) + (RIG12(K△h)
2
+  

            RIG12(DA)
2
+ RIG12(DB)

2
) * LEF12(SSC(10))] mod 1023 +1               (8) 

 

Pk1= HMAC(SSC(11) +2 DA || SSC(12) +2 DA || SSC(13) ⊕DB || SSC(14) ⊕DB,                                 

                                             (SSC(15) +2 DB) ⊕DA)                                           (9) 

 

which as a pseudorandom key is the first pointing key employed by the TRNEM to 

generate the PRNS1, PRNS2 and CTRNS. Eqs. (6) ~ (9), that respectively generate △L, 

WI, Sd and Pk1, together are called Equation-group 3. 

),( strkE : An encryption function defined as: 

 

                               ),( strkE = k⊕s1|| k⊕s2|| k⊕s3||…|| k⊕sn,                             (10) 

 

where 1 2 3... nstr s s s s is a string. 

 

TRNS(j) = HMAC(E(SSC(j), TRNS) || E(SSC(17-j), TRNS), SSC(j+7)+2DB), 1≦j≦4 

     (11) 

 



A True Random-Number Encryption Method Employing           911 

 

 

△t = (RIG12(DA)
3 
+ RIG12(DB)

3 
 + LEF12(DA)

3
 + LEF12(DB)

3
+ RIG12(TRNS(1))

3 
+    

                                   LEF12(TRNS(1))
3
) mod 1023 +1                                               (12) 

 

which as a pesudorandom parameter is the length of PRNS2. △t together with △h are 

adopted to protect the CTRNS and ciphertext in the wrapped ciphertext file. 

 

Pk2 = HMAC(TRNS(2) ⊕DA ||  TRNS(3) ⊕DB || TRNS(4) +2 DA, TRNS(1) ⊕DB)  (13) 

 

which as a pseudorandom key is the second pointing key employed by the TRNEM to 

generate the ciphertext. 

Eqs. (10) ~ (13), that respectively produce ),( strkE , TRNS(1) ~ TRNS(4), △t and Pk2, 

together are called Equation-group 4. 

3.3. The TRNEM Encryption Process 

Fig. 1 illustratively summarizes the encryption flow of the TRNEM. The details are as 

follows. 

Step 1: Generating △h and K△h. The TRNEM’s encryption process invokes the non-

invertible △h generation equation defined above to read the file name of the file being 

encrypted. The file name, filename extension and SSCs are the parameters used to 

produce △h and K△h. 

Step 2: Generating dynamic keys DA and DB. The TRNEM derives KCT from △h and 

current time (CT), and invokes Equation-group 1 which uses K△h, KCT and SSCs as its 

parameters to produce dynamic keys DA and DB. 

Step 3: Encrypting dynamic keys. The TRNEM invokes Equation-group 2 which 

consisting of two invertible equations defined above employs the generated DA, DB, 

SSCs and K△h as the parameters to produce CDA and CDB so that the TRNEM can 

securely store CDA and CDB into the wrapped ciphertext file and decrypt DA and DB 

from CDA and CDB carried in the received wrapped ciphertext file. 

Step 4: Generating △L, WI, Sd and Pk1. The TRNEM invokes Equation-group 3, 

consisting of four non-invertible equations defined above, to respectively produce △L, 

WI, Sd and Pk1 by employing the generated DA, DB, SSCs and K △ h as input 

parameters. 

Step 5: Generating TRNS(1) ~ TRNS(4), △t, and Pk2. The TRNEM randomly reads data 

of △L bytes from the chosen webpage indexed by WI and the first character is the Sd
th

 

byte of the webpage. These data are our TRNS. The TRNEM invokes Equation-group 4 

which consisting of some non-invertible equations defined above in turn invokes the 

generation equations of the DA, DB, SSCs and TRNS to produce TRNS(1) ~ TRNS(4), △

t and Pk2.  
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Plaintext

Pk2

 

Fig. 1. The encryption flow of the TRNEM 

 

Step 6: Generating PRNS1, PRNS2, CTRNS and ciphertext. 

Step 6-1: Generating PRNS1 and PRNS2. The TRNEM grabs the time parameters from 

system clock to produce a new KCT. After that, KCT, △h, △t and Pk1are input to the 

pseudo random number generator (PRNG for short) to produce PRNS1 and PRNS2. 
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Step 6-2: Generating CTRNS. The CTRNS is produced by the adopted block cipher 

system (e.g., AES) with the TRNS as the plaintext and key Pk1 as an input parameter. 

Step 6-3: Encrypting plaintext (generating ciphertext). A plaintext to be encrypted and 

key Pk2 are input to the adopted block cipher system to produce the corresponding 

ciphertext. 

Step 7: Generating a wrapped ciphertext file. The TRNEM concatenates PRNS1, CDA, 

CDB, CTRNS, the ciphertext generated in Step 6 and PRNS2 to produce a wrapped 

ciphertext file, the format of which is shown in Fig. 2. 

 

PRNS1

C

D

A

C

D

B

Ciphertext PRNS2

△h Length of File

CTRNS

△L △t

 

Fig. 2. The format of the wrapped ciphertext file generated by the TRNEM 

3.4. The TRNEM Decryption Process 

Fig. 3 illustrates the decryption process of the TRNEM. The details are described below. 

Step 1: Calculating △h and removing PRNS1 from the received wrapped ciphertext file. 

To decrypt the ciphertext, a user needs to invoke the △h generation equation, which in 

turn reads the file name and filename extension of the designated file to produce △h, 

with which to delete PRNS1 from the wrapped ciphertext file. It further generates K△h. 

Step 2: Retrieving and calculating DA and DB. Reads CDA and CDB from the wrapped 

ciphertext file and decrypts them by using the following two decryption equations, i.e., 

Eqs. (14) and (15), to obtain the dynamic keys DA and DB. 

 

DA = [CDA⊕(SSC(13)+2K△h)]－2(K△h⊕SSC(12))－2 SSC(11) ⊕SSC(10)       (14) 

 

 where －2 is the inverse operation of +2 [20]. 

 

DB = [CDB⊕(SSC(16)+2DA)]－2(DA⊕K△h))－2 SSC(15) ⊕SSC(14)     (15) 

 

Step 3: Calculating △L and retrieving CTRNS 

(1) Invoking Eq. (6) which employs SSCs, K△h, DA and DB as its parameters to 

calculate △L. 

(2) Retrieving CTRNS from the wrapped ciphertext file based on the calculated △L 

since CTRNS is △L in length. 
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Fig. 3. The decryption flow of the TRNEM 

 

Step 4: Retrieving TRNS. Retrieve TRNS by inputting CTRNS and Pk1 to the adopted 

block cipher system. 

(1) Producing Pk1 by invoking Eq. (9) which employsDA, DB and SSCs as its 

parameters. 

(2) Invoking the adopted block cipher system to decrypt the CTRNS retrieved from the 

wrapped ciphertext file with Pk1so as to produce TRNS. 

Step 5: Retrieving △t and removing PRNS2. 

(1) Producing TRNS(1) ~ TRNS(4) by invoking Eqs. (10) and (11) which employ SSCs 

and TRNS as their parameters. 

(2) Producing △t by invoking Eq. (12) which utilizes DA, DB and TRNS(1) as its 

parameters. 

(3) Removing PRNS2 from the wrapped ciphertext file. 
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Step 6: Generating Pk2 and decrypting the ciphertext. 

(1) Invoking Eq. (13) which uses TRNS(1)~TRNS(4), DA and DB as its  parameters to 

produce Pk2. 

(2) Decrypting the plaintext from the ciphertext by inputting Pk2 and the ciphertext to 

the adopted block cipher system so as to revert the plaintext. 

3.5. The Features and Advantanges of the TRNEM 

The TRNEM has five features, including 

(1) employing filename, filename extension, system security codes and a non-invertible 

equation to generate △h, making △h be one with high security;  

(2) utilizing current time to produce dynamic keys DA and DB which are different 

when they are generated at different time points since current time continuously 

varies;  

(3) using the DA and DB to fetch the true random numbers, with which to encrypt the 

plaintext so as to enhance the security of the ciphertyext;  

(4) employing scalable parameters △ h, △ L and △ t, with which to construct a 

wrapped ciphertext file. The purpose is enhancing the security of the ciphertext file;  

(5) the CDA, CDB and CTRNS are embedded in the wrapped ciphertext file to 

effevtively protect the ciphertext.  

Beside the mentioned security features, based on the Interent as its data pool, the 

TRNEM creates a true random number sequence to encrypt plaintext so that the 

ciphertext has a very high degree of security. Furthermore, the ciphertext is embedded 

in the position located between PRNS1 and PRNS2. Hackers cannot directly obtain the 

(plaintext, ciphertext) pairs from the wrapped ciphertext file, thus highly enhancing the 

security of the TRNEM. 

4. Security and Performance Analysis 

In this section, we analyze the security levels of different TRNEM parameters and 

generated data, including △ h, dynamic keys DA and DB, the TRNS, a wrapped 

ciphertext file, and Pk2. We also evaluate the security and performance of the TRNEM. 

4.1. Security of △h 

There are three major reasons to say that △h possess high security. According to Eq. 

(1), without the 16 system security codes SSC(1) – SSC(16), hackers cannot correctly 

calculate △h, even though they have caught the file name and filename extension. Also, 

the value generated for each term contained in Eq. (1) is larger than 2
20

 which is very 

larger than the upper limit of △h, i.e., 2047. After that, the value generated before the 

modulus operation is reduced to △h through the non-invertible modulus equation, 
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implying that △h has high randomness and security. Furthermore, the △h is an internal 

variable of the TRNEM. Hackers cannot derive it from the ciphertext and solve it. 

Authough, hackers can try a lot of file names and filename extensions to respectively 

substitute for the original file name and filename extension contained in the encryption 

expression, attempting to analyze the possible △h. However, the length of the wrapped 

ciphertext file is △h+32+△L+|the plaintext| + △t bytes, in which 32 is the length of 

DA+DB, and △L and △t randomly change at each encryption, even the file name, 

filename extension and plaintext remain unchanged. △h is well protected due to the 

dynamic values of △L and △t. Now, we dare to say that △h and the protected system 

are very safe. 

4.2. Security of Dynamic Keys DA and DB 

There are two methods to obtain DA. First, hackers may directly generate DA by 

employing Eq. (2). However, SSC(1) ~ SSC(5), K△h and KCT are unknown to hackers 

and KCT continuously changes at each encryption. That means hackers cannot directly 

generate DA by employing Eq. (2). Second, hackers may crack CDA to obtain DA. 

However, according to Eq. (4), they need SSC(10)~SSC(13) and K△h. But these 

parameters are unknown to hackers. Furthermore, CDA is embedded in the wrapped 

ciphertext file. Hackers need △h to correctly fetch it. But △h is unknown to hackers. 

Thus, DA is secure. Similarly, to derive DB from CDB, hackers need SSC(14) ~ 

SSC(16), K△h and DA which are unknown to hackers, i.e., DB is secure. 

4.3. Security of the TRNS 

The TRNEM collects a webpage based on a randomly chosen WI, and accesses the 

content of the webpage from the position indicated by the Sd to the position pointed to 

by Sd +△L. In other words, |TRNS|=△L. But the characteristics and contents of 

different pages vary with time, and the page contents may be changed frequently. Under 

this circumstance, extracting web contents from a randomly chosen webpage can make 

a number sequence, i.e., the TRNS, truly random. 

Hackers may obtain TRNS by decrypting CTRNS embedded in the wrapped 

ciphertext file. However, to fetch the CTRNS, parameters △h, △L, length of the 

plaintext and △t are required. But, hackers cannot obtain them from the wrapped 

ciphertext file. That is, hackers cannot correctly fetch CTRNS from this wrapped 

ciphertext file. Furthermore, if CTRNS is known by hackers, they still cannot decrypt 

CTRNS to obtain TRNS since PK1 is unknown to them. So, TRNS is secure. 

4.4. Security of a Wrapped Ciphertext File 

This system adopts a wrapping ciphertext approach, in which the ciphertext as shown in 

Fig. 2 is wrapped by PRNS1 of length △h, CTRNS of length △L, and PRNS2 of length 
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△t. Parameters △L and △t are different at each encryption even though the plaintext is 

the same. Hackers cannot obtain △h, △L and △t to unwrap the ciphertext, i.e., hackers 

cannot collect (plaintext, ciphertext) pairs when plaintext is known. They need to crack 

△ h before solving other parameters, meaning that the ciphertext file is securely 

protected by the TRNEM. 

4.5. Security of the Pk2 

Pk2 as a pseudorandom key is the second pointing key employed by the TRNEM to 

generate the ciphertext. The security of the ciphertext strongly depends on the security 

of Pk2 and the block cipher system. In the following, we would like to identify the 

security level of Pk2. Theorem 1 proves that its security level is the same as that when it 

is solved by using a blind guess method.  

 

Theorem 1. If the key length of the TRNEM is n bits, then the probability of solving 

the correct value of Pk2 from the wrapped ciphertext file is 1/ 2n .  

 

Proof. Pk2 as an internal pseudorandom key used by the TRNEM does not appear in the 

wrapped ciphertext file. Hackers cannot directly break it. Two methodscan be used to 

break Pk2, excluding the blind guess approach. The first is that,according to Eq. (13), 

i.e., Pk2 = HMAC(TRNS(2)⊕DA || TRNS(3)⊕DB || TRNS(4) +2 DA, TRNS(1)⊕DB), 

only the one who knowsDA, DB, TRNS(1) ~ TRNS(3) can correctly generate Pk2. 

However, the dynamic keys DA and DB are secure and the true random number 

sequences, i.e., TRNS(1) ~ TRNS(3), derived fromTRNS and DB are secure, too, based 

on the abovementioned description. The dynamic keys DA and DB, which are functions 

of KCT, vary randomly each time when it is generated, implying that the generated 

messages, TRNS and hence, TRNS(1) ~ TRNS(3) change randomly each time when they 

are produced so that Pk2is secure.  

The second method is breaking the block cipher system to obtain plaintext from the 

ciphertext. However, the ciphertext embedded in the position located between PRNS1 

and PRNS2 is secure, according to that described in section 4.4. That is, hackers cannot 

break Pk2 from the ciphertext. In the worst case, if the ciphertext is known by the 

hackers, they need to break the block cipher system. But this is not an easy work since 

hackers require a massive amount of (plaintext, ciphertext) pairs given the same parent 

key. Hence they still cannot break the block cipher system to obtain Pk2.  

There are no useful method to obtain Pk2 other than the blind guess approach. 

Therefore, the probability of solving the correct value ofPk2 from the wrapped 

ciphertext is 1/ 2n . Q.E.D. 

4.6. Security of the TRNEM 

Due to involving current time and TRNS, the encryption results generated on the same 

plaintext at different time points vary, implying that TRNEM can effectively prevent 

those linear cryptanalysis attacks [21,22]. In the TRNEM, the mechanism that wraps a 
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ciphertext file can effectively defend the known plaintext attacks because hackers 

cannot correctly collect different (plaintext, ciphertext) pairs. 

In fact, the TRNEM integrates time variables, i.e., the current time and TRNS. So the 

wrapped-ciphertext-file mechanism can effectively prevent the protected system from 

brute force attacks. 

4.7. Generation Times of Parameters 

The TRNEM generates ciphertext by using a block cipher system (e.g., AES or DES). 

To generate a wrapped ciphertext file, we produce several parameters introduced above. 

Table 1 lists the times required to produce these parameters. We also used these 

parameters to produce the PRNS1, PRNS2, CDA, CDB and CTRNS. Table 2 lists the 

times required to produce them and the wrapped ciphertext file. 

Table 1. The times required to produce different required parameters 

Parameter Parameter generation time (ms) 

Eq. (1):△h 0.01948 

Eq. (2):DA 0.30646 

Eq. (3):DB 0.27196 

Eq. (4):CDA 0.23230 

Eq. (5):CDB 0.23624 

Eq. (6):△L 0.00963 

Eq. (7):WI 0.00958 

Eq. (8):Sd 0.01020 

Eq. (9):Pk1 0.42009 

Eq. (11):TRNS(1) 15.06665 

Eq. (11):TRNS(2) 14.96699 

Eq. (11):TRNS(3) 15.41611 

Eq. (11):TRNS(4) 15.52798 

Eq. (12):△t 0.00820 

Eq. (13):Pk2 0.28322 

Total 62.78509 

Table 2. The time required to produce the wrapped ciphertext file 

Item Generation time (ms) 

PRNS1||PRNS2(length of△h+△t) 20 

CDA 0.2323 

CDB 0.23624 

CTRNS(length of△L) 13 

Ciphertext The same as the time required by AES or DES 

 

No matter what size of the file to be encrypted is, the times the TRNEM spent to 

generate PRNS1, PRNS2, CDA, CDB and CTRNS are themselves the same. Compared 

with other block cipher techniques, it only takes a very short extra time to encrypt a file. 

But the security level on the contrary dramatically increases. 



A True Random-Number Encryption Method Employing           919 

 

 

Since the lengths of PRNS1||PRNS2 (i.e., △h+△t) and CTRNS (i.e., △L) are not 

fixed, we individually chose the max lengths of them to calculate their generation times. 

Ciphertext is encrypted by block ciphering. Its generation time is the same as those of 

the adopted block cipher system, e.g., AES and DES. The extra time required by the 

TRNEM is 95.78529 ms. 

The difference between the decryption process and the encryption process of the 

TRNEM is that when decrypting the ciphertext file, DA and DB are acquired by 

invoking Eqs. (4) and (5), which further invoke the invertible equations to generate 

CDA and CDB where CDA and CDB are retrieved from the wrapped ciphertext file. 

TRNS is decrypted by inputting CTRNS and Pk1 to the adopted block cipher system 

where CTRNS is also retrieved from the wrapped file. Since the formulas used to 

generate other parameters for decryption are the same as those when encrypting the 

plaintext file, the times required to produce △h, △L, Pk1, TRNS(1), TRNS(2), TRNS(3), 

TRNS(4), △t and Pk2 are then individually the same as those when encrypting the file. 

Table 3 lists the times required to produce parameters for decrypting CTRNS, and Table 

4 shows the ciphertext decryption time. 

 

Table 3. The times required to produce different parameters for decrypting the wrapped 

ciphertext file 

Parameter Parameter generation time (ms) 

Eq. (1):△h 0.01948 

Eq. (4):CDA Reads CDA from the wrapped file 

Eq. (5):CDB Reads CDB from the wrapped file 

Eq. (14):DA 0.19569 

Eq. (15):DB 0.19926 

Eq. (6):△L 0.00963 

Eq. (9):Pk1 0.42009 

Eq. (11):TRNS(1) 15.06665 

Eq. (11):TRNS(2) 14.96699 

Eq. (11):TRNS(3) 15.41611 

Eq. (11):TRNS(4) 15.52798 

Eq. (12):△t 0.0082 

Eq. (13):Pk2 0.28322 

Total           62.1133 

Table 4. The times required to decrypt the CTRNS and the wrapped ciphertext file 

Item Generation time (ms) 

TRNS 13 

plaintext The same as the time required by AES or DES 

 

Table 5 lists the computational efforts in terms of different numbers of operations 

employed by the encryption/ decryption processes of the TRNEM. 
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Table 5. All computational efforts in terms of different numbers of operations employed by the 

encryption/ decryption processes of the TRNEM 

TRNEM Encryption  Decryption  

Eq. (1):△h 18+s  +  2*s  + 1 mod  18+s  +  2*s  + 1 mod  

Eq. (2):DA 3⊕s (128 bits) + 2+2s (128 bits) 

+ 1HMAC                

does not generate 

Eq. (3):DB 2⊕s (128 bits) + 3+2s(128 bits) 

+ 1HMAC                           

does not generate 

Eq. (4):CDA 3⊕s (128 bits)  + 3+2s(128 bits) does not generate 

Eq. (5):CDB 3⊕s (128 bits) + 3+2s(128 bits) does not generate 

Eq. (6):△L 3*s  +  4+s  +  1 mod 3*s  +  4+s  +  1 mod                                

Eq. (7):WI 3*s  +  4+s  +  1 mod does not generate 

Eq. (8):Sd 6*s  +  4+s  +  1 mod does not generate 

Eq. (9): Pk1 3⊕s (128 bits)  +  3+2s (128 bits)  

+  1HMAC                   

3 ⊕ s (128 bits)  +  

3+2s(128 bits)  +  

1HMAC 

Eq. (11): 

TRNS(1) 

2E(k,str)  +  1+2s (128bits) +  

1HMAC 

2E(k,str) + 1+2s (128bits) 

+  1HMAC 

Eq. (11): 

TRNS(2) 

2E(k,str)  +  1+2s (128bits) +  

1HMAC 

2E(k,str) + 1+2s (128bits) 

+  1HMAC 

Eq. (11): 

TRNS(3) 

2E(k,str)  +  1+2s (128bits) +  

1HMAC 

2E(k,str) + 1+2s (128bits) 

+  1HMAC 

Eq. (11): 

TRNS(4) 

2E(k,str)  +  1+2s (128bits) +  

1HMAC 

2E(k,str) + 1+2s (128bits) 

+  1HMAC 

Eq. (12):△t 18*s  +  5+2s  +  1mod     18*s  +  5+2s  +  1mod 

Eq. (13): Pk2  3⊕s (128 bits)  +  1+2s (128 bits)  

+  1HMAC 

3⊕ s (128 bits) + 1+2s 

(128 bits)  +  1HMAC 

Eq. (14): DA does not generate 3⊕ s (128 bits) + 1+2s 

(128 bits) + 2-2s (128bit) 

Eq. (15): DB does not generate 3⊕ s (128 bits) + 1+2s 

(128 bits) + 2-2s (128bit) 

CTRNS/TRNS The same as the time of AES or 

DES 

The same as the time of 

AES or DES 

Ciphertext/ 

plaintext 

The same as the time of AES or 

DES 

The same as the time of 

AES or DES 

 

4.8. Performance Analysis 

Table 6 summarizes the computational efforts required by the DES, AES, and TRNEM 

to encrypt and decrypt a data file. 
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Table 6. The summary of the computational efforts required by the DES, AES and TRNEM to 

encrypt and decrypt a data file. 

Scheme       Encryption                    Decryption                       

DES (64-

bit block) 

[23,24] 

16 ⊕s (32 bits) + 16 ⊕s (48 

bits) + 1 IP (64 bits) + 1 IP-1 

(64 bits ) + 128 S-Box (6 bits) 

+ 16 Expansions (48 bits) + 16 

Permutations (32 bits) 

The number of operations is the 

same as that of the encryption 

process. 

 

AES 

(128-bit 

block, 

128-bit 

key) [25] 

 

(AddRoundKey) 

176 ⊕s (8 bits) 

 

The number of operations is the 

same as the sum of the numbers 

of those operations employed by 

the encryption process for the 

three stages, including 

AddRoundKey, SubBytes, and 

ShiftRows 

(SubBytes) 

160 Substitutions (8 bit) [26] 

(ShiftRows) 

30 ShiftRows (128 bit) 

(MixColumns) 

36 Rijndael columns mixing 

[26] (128 bits) 

(MixColumns) 

36 Rijndael columns mixing [27] 

(128 bits). 

(Generally, the operations of a 

decryption process are often more 

complex than those of the 

corresponding encryption 

process.)         

 

TRNEM 

 

30+s + 32*s + 17⊕s (128 bits) 

+ 24+2s (128 bits) + 8 E(k,str) 

+ 8 HMAC + 5 mod +         

2*(176 ⊕ s (8 bits) +160 

Substitutions (8 bit)+ 30 

ShiftRows +36 Rijndael 

columns mixing ) in which the 

last term 2*(176 ⊕s …) is the 

time required to produce 

CTRNS from TRNS and 

generate ciphertext from 

plaintext 

 

22+s + 23*s + 12⊕s (128 bits) + 

15+2s (128 bits) + 4-2s(128bit) + 8 

E(k,str) + 6 HMAC + 3 mod 

+2*(176 ⊕ s (8 bits) +160 

Substitutions (8 bit)+ 30 

ShiftRows +36 Rijndael columns 

mixing ) in which the last term 

2*(176 ⊕ s …) is the time 

required to produce TRNS from 

CTRNS and generate plaintext 

from ciphertext 

 

The following analyses show that TRNEM is more secure than the AES. First, the 

plaintext is encrypted by the pseudorandom key PK2 when the TRNEM employs the 

adopted block cipher system. If the block cipher system is the AES, then the TRNEM is 

still more secure than it since, by Theorem 1, PK2 varies at each encryption, whereas the 

parent key adopted by the AES is fixed for encrypying a file.Second, the ciphertext of 

the TRNEM is embedded in a wrapped ciphertext file. It is not easy for hackers to 

correctly fetch the ciphertext and analyze it. But AES does not have this protection 

mechanism. 
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Third, the AES suffers brute force attacks, e.g., the known plaintext/ciphertext attack 

[28], chosen plaintext attack, such as differential cryptanalysis attack [30], and linear 

cryptanalysis attack [21,22] since the AES is an combinatorial-logic style encryption 

method [29]. However, in the TRNEM, when a plaintext block is encrypted at different 

time points, different current time keyKCTsand hence different other keys, including 

DA, DB, Pk1, TRNS(1)~TRNS(4) and PK2, are produced, thus resulting in diffenent 

wrapped ciphertext files. The value ofKCT randomly changes and has no regular rule. 

Hence, the following keys generated, including DA, DB, Pk1, TRNS(1) ~ TRNS(4) and 

PK2, also randomly vary. Therefore, they can effectively defend the abovementioned 

attacks. In summary,KCTand TRNSare the two keys making the TRNEM more secure 

than the AES.  

As shown in Fig. 2, due to concatenating PRNS1, CDA, CDB, CTRNS and PRNS2, 

and the lengths of them are, respectively, △h, |CDA|, |CDB|, △L and △t. Therefore, the 

data transmission efficiency of the TRNEM is  

 

| |

| |

ciphertext

h CDA CDB L t ciphertext      
 

5. Conclusions and Future Work 

This system utilizes a wrapping ciphertext approach, which prevents hackers from 

identifying the correct position of ciphertext. So the hackers cannot easily crack the 

protected ciphertext. Additionally, the TRNEM encrypts plaintext by using TRNS, 

which is highly random by randomly choosing a webpage and randomly accessing its 

content △h in length. Moreover, even though given the same plaintext, the TRNEM 

generates different ciphertext at different time points. This can effectively prevent 

hackers from issuing known plaintext/ciphertext attacks. So we dare to say that the 

TRNEM is very secure. 

However, a portable encryption/decryption system, like DES and AES, does not 

create system parameters in it. To develop an algorithm, with which the system security 

codes in the TRNEM can be generated by the input password or parent key, is necessary 

and important. Furthermore, to enhance the performance of the TRNEM, the block 

cipher system adopted by the TRNEM does not need to be DEA or AES. To develop a 

secure and efficient encryption/decryption method, we plan to utilize the keys generated 

by the TRNEM, e.g.,K△h, DA, DB, PK1, PK2 and SSCs, as the parameters to establish a 

new block cipher system, which is then substituted for the AES or DES to perform the 

block ciphering for the TRNEM. These constitute our further studies. 
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