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Abstract. In the past decades, cooperative communications schemes have gained 

significant attention in wireless networks. The cooperative scheme leads to longer 

transmission time which can considerably degrade the system performance. We 

evaluate the saturation throughput and saturation delay of the Markov chain 

model with direct/cooperative schemes to support QoS in WLANs. Simulation 

results show that differentiating the contention window size is better than 

differentiating the arbitration interframe space in terms of throughput and delay. 

Keywords: cooperative scheme, throughput, delay, Markov chain model, QoS, 

WLANs 

1. Introduction 

In recent years, the cooperative communications market is experiencing an explosive 

growth. With the introduction of relays, an auxiliary channel, the relay channel to the 

direct channel between the source and destination can be generated. That is, the relays 

help forwarding the signal from the source to the destination [1]. As a result, spatial 

diversity which ameliorates the frame error rate is generated via the help of relay 

channel. On the other hand, cooperative scheme leads to longer transmission time which 

can considerably degrade the system performance. There have been many performance 

analyses of the cooperative communication systems. Yan Zhu et al [2] showed the 

effectiveness of utilizing collaborative relays in a large-scale network is penalized by the 

elevated level of interference. G. Jakllar et al [3] showed that virtual multiple-input 

single-output (MISO) transmissions can improve the performance and be robustness to 

link failures due to mobility and interference and the advantage of using virtual antenna 

arrays is it does not require and additional hardware. Zhiguo Ding et al [4] proposed a 

spectrally efficient strategy for cooperative multiple access systems in multiple-users 

environment and it can achieve more robust performance than the direction 
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transmission. K. Lee et al [5] focused on the concept of power consumption and 

examined the performance of heterogeneous cooperative networks with the source that 

do not act as relays and relays that are dedicated to relaying functions with concern 

about power consumption. Most of research mainly focused on the designs of 

cooperative protocol schemes and how to gain benefits of spatial diversity based on 

information theory. In order to evaluate the system performance, a suitable analytic 

model that combines the traditional direction transmission and the cooperative 

transmission from the medium access control (MAC) perspectives should be exploited 

and with the population of multimedia applications, including the transport of voice, 

audio and video over WLANs, there is a clear need to support quality of service (QoS) 

guarantees. In this paper, we utilize the Markov chain model with direct/cooperative 

transmission scheme to support QoS guarantees from the MAC perspectives to analyze 

the saturation throughput and saturation delay.  

The rest of this paper is organized as follows. An overview of the system model is 

depicted in Section II. The performance analysis of the model is depicted in the Section 

III. The simulation results are shown in Section IV.  Finally, Section V gives the 

conclusions. 

2. The System Model 

To analyze the performance of the Markov chain model, we follow the considerations of 

[11]. We assume a fixed number Ni of contending stations in the network and a given 

station in the priority i class (i = 0, 1, ... , n-1). Let b(i, t) be the stochastic process 

representing the backoff timer of a given station at slot time t (note that the backoff 

timer is stopped when the station senses that channel is busy). The value of the backoff 

timer is uniformly chosen in the range (0, Wi,j-1) and depends on the station’s backoff 

stage j. For convenience, we define that  

 

 

(1) 

 

where CWi,min is the minimum contention widow for the priority i class and CWi,max is the 

maximum contention widow for the priority i class, and m is the maximum backoff 

stage. Moreover, let s(i, t) be the stochastic process representing the backoff stage j of 

the station at time t. On this condition, we can describe the state of each station in the 

priority i class is as {i, j, k}, where j stands for the backoff stage and k stands for the 

backoff timer. 

There is another state in our model, additional idle state, denoted by {i, -1}. The 

backoff procedure is activated whenever a station has a frame to transmit and senses the 

channel is busy or whenever the transmitting station infers a failed transmission. If the 

station verifies its current transmission is successful and senses the channel is idle for 

arbitration inter-frame spacing in priority i class (AIFS[i]) duration, it enters into the {i, 

−1} state. If the station is at {i, -1} state, whenever it senses the channel is idle for 

AIFS[i] duration, it transmits its frame without entering the backoff procedure. 
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The state transition diagram of the Markov chain model in the priority i class shown 

in Fig. 1 has the following transition probabilities: 

The station transmits its frame without entering the backoff procedure if it senses that 

its previous transmission was successful and the channel is idle for AIFS[i] duration. 

 

                           (2) 

 

The station defers the transmission of a new frame and enters stage 0 of the backoff 

procedure if it detects a collision occurred or it senses the channel is busy. 

 

                                                  (3) 

 

The backoff timer is stopped when the station senses that channel is busy.  

 

(4) 

 

The backoff timer decreases when the station senses that the channel is idle. 

 

(5) 

 

The station chooses a backoff delay of stage 0 if its current transmission was 

successful and it senses that the channel is busy when it tries to transmit a new frame. 

                                

 

 

                  (6) 

 

 

 

Where ℓ is the backoff stage to distinguish the strategy adopting cooperative 

transmission, the parameters Pi,dir is the probabilities in the priority i class for receiving 

incorrect frame at the destination via the traditional direction transmission, Pi,b is the 

probability that the station in the priority i class senses that the channel is busy. 

The station enters into the {i, -1} state if it verifies its current transmission is 

successful and senses the channel is idle for AIFS[i] duration. 

 

 

                  (7) 

                   

 

The station choices a backoff delay of next stage j after an unsuccessful transmission 

at stage j−1. 

 

 

                  (8) 
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When the station has reached the last stage of backoff procedure, it would drop the 

current frame and enter {i, 0, k} state if it detects its current transmission is still failed 

and the channel is busy during an AIFS[i] duration. 

 

(9) 

 

When the station has reached the last stage of backoff procedure, it would drop the 

current frame and enter {i, −1} state if it detects its current transmission is still failed 

and the channel is idle for AIFS[i] duration. 

 

(10) 
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Fig. 1.  Markov chain model with direct/cooperative strategy for the priority i 

 

The parameters Pi,dir and Pi,coop are the probabilities in the priority i class for 

receiving incorrect frame at the destination via the traditional direction transmission and 

the cooperative transmission, respectively. Note that the unsuccessful reception of 

frames at the destination is considered to result from either the frame collision or the 

channel noise. Thus, the parameters Pi,dir and Pi,coop can be expressed as 
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where Pi,c is the probability that the transmitted frame collides for the priority i class. 

FERdir and FERcoop are the frame error rates at the destination via the traditional 

direction transmission and the cooperative transmission, respectively. 

We have to calculate the probability that a station in the priority i class is at state 

{i,j,k}. 

Let                                           be the stationary distribution of the Markov chain [6]. 

In steady-state we have following relations: 
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Let τi be the probability that a station in the priority i class transmits its frame during 

a slot time. A station in the priority i class transmits its frame when its backoff timer 

reaches zero, regardless of the backoff stage, i.e. the station is at any of the bi,j,0 states or 

at the bi,− 1 state. Therefore, we have 
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Let Ni (i = 0, 1, ..., n− 1) denote the number of station in the priority i class and Pt 

denote the probability that there is at least one transmission in a slot time, i.e., there is at 

least one station transmits during a slot time. Therefore, we have 

           

                 

(16) 

  

Let Pi,s denote the probability that the transmission is successful during a slot time for 

the priority i class, i.e., a transmission is assumed to be successful when only one station 

transmits. So we have  
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Let Pi,b be the probability that the station in the priority i class senses that the channel 

is busy when it is trying to decrease its backoff timer in a slot time. The probability Pi,b 

that the station in the priority i class senses that the channel is busy is given by 

                    

                (18) 

 

Moreover, let us introduce the parameter Pi,r that is the probability for the priority i 

class of the traditional direction transmission considering at least one transmission 

happens. Thus, we have 
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3. Performance Analysis 

In this section, the purpose of our analysis is to evaluate the saturation throughput and 

the delay performances of Markov chain model with traditional direction and 

cooperative transmission strategies. Based on the previous description, we can derive 

the close forms for system performance metrics of saturation throughput and delay. 

3.1. Throughput Analysis 

Let Si denote the normalized saturation throughput of a given priority i class [7]. We can 

express it as (20). The parameter E[TP,i] is the average duration of transmitting payload 

information successfully in a slot time for the priority i class, which is derived as 
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The parameters of above equations can be obtained as follows. σ is the size of a slot 

time. As mentioned before, FERdir and FERcoop are the frame error rates at the 

destination via the traditional direction transmission and the cooperative transmission, 

respectively.       and         are the average durations for the priority i class that the 

channel is captured with a successful transmission via the traditional direction 

transmission and the cooperative transmission, respectively. Similarly,         and        

are the average duration for the priority i class that the channel is captured with a 

collision. Note that the average time to detect the error frame is considered the same as 

that to receive the frame successfully. The values of the above durations depend on the 

channel access method and are defined as follows. 
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access delay (due to backoff, collisions, etc.) and the transmission delay [8]. Let Xi be 

the random variable representing the total number of backoff slots for the priority i class 

without considering the case that the backoff timer is stopped when the channel is 

sensed busy. The probability that the frame in the priority i class is successfully 

transmitted at the (j+1)th transmission and the average number of backoff slots that the 

station needs to transmit a frame successfully at the jth retry is              . Thus, we have 

 

 

         (27) 

    

 

where Pi,suce is the probability for receiving correct frame at the destination for the 

priority i class which can be derived as 

 

(28) 

 

The probability that channel is sensed idle is (1–Pi,b). Let Fi be the random variable 
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priority i class. Thus, we can regard E[Xi] and E[Fi] as the total number idle and busy 

slots that the frame encounters during backoff procedure , respectively. We have 
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Let E[BDi] denote the average backoff delay that the station in the priority i class 
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As mentioned before, the saturation delay includes the interframe spaces, the channel 

access delay and the transmission delay. Thus, the delay for the priority i class can be 

derived as  

 

         

 (34) 

 

 

To is the duration that a station has to wait when its frame transmission collides before 

sensing the channel again.  

3.3. Cost Function Analysis 

The optimal performance is achieving by maximizing the throughput and minimizing the 

delay. There is always a tradeoff between throughput and delay [9].  Thus, we introduce 

the concept of cost function C [10] that is the tradeoff between throughput and delay to 

determine the cooperative transmission strategy. The larger value of cost function means 

that the system performance is better because the throughput is higher and delay is 

smaller. The cost function is defined as the ratio of the saturation throughput (S) to the 

saturation delay (D), which can be derived as 
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4. Numerical Results 
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Fig. 2. Throughput with RTS/CTS mechanism (FERdir = 0.9) 

 

 

Fig. 3. Throughput with RTS/CTS mechanism (FERdir = 0.6) 

The delay performances under different channel conditions are depicted in Fig. 4 to 

Fig. 5. After every busy channel period, each station has to wait for the duration equal to 

its AIFS value. If the AIFS values are different, there is a time in which the stations with 

shorter AIFS values (the higher-priority) may access the channel, while the stations with 

longer AIFS values (lower-priority) are prevented from accessing the channel. Thus, the 

delay of AC_0 is higher than that of AC_1 because the value of AIFS[AC_0] is larger. 

The delay of AC_3 class is higher than that of AC_2 class because the parameter Pi,b of 

the AC_3 class is much higher than that of AC_2 (about 1.6 times). Hence, the backoff 

delay (i.e., E[BDi]) that the station in the priority AC_3 class experiences before 

accessing the channel is longer than the priority AC_2. 
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Fig. 4.  Delay with RTS/CTS mechanism (FERdir = 0.9) 

 

Fig. 5.  Delay with RTS/CTS mechanism (FERdir = 0.6) 

The cost function performances under different channel conditions are depicted in 

Fig. 6 to Fig. 7. We know that the EDCA mechanism provides the different priorities for 

differentiate services by using different backoff parameters and AIFS values. Thus, we 

can adjust the parameters to provide the different priorities with differentiated services 

to get better cost function. 
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Fig. 6. Cost function with RTS/CTS mechanism (FERdir = 0.9) 

 

 

 

Fig. 7.  Cost function with RTS/CTS mechanism (FERdir = 0.6). 
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5. Conclusions 

In this paper, the Markov chain model with traditional direction and cooperative 

transmission strategies is proposed to analyze saturation throughput and saturation 

delay. In general, cooperative communication can reduce the frame error rate; while the 

rerouting delay due to the additional signal transmitted from the relay to the destination 

can considerably degrade the system performance. To obtain optimal performance, the 

cost function is introduced to tradeoff the system performance to determine the strategy 

for adopting the cooperative transmission. 

The theoretical analysis of this paper is very general, and we did not consider the 

multi-rate transmission for the QoS requirements. We can extend the model to support a 

multi-rate transmission and derive the numerical analysis in the future. 
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