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Abstract. In this paper, the two-dimensional cutting problem with defects is 

discussed. The objective is to cut some rectangles in a given shape and direction 

without overlapping the defects from the rectangular plate and maximize some 

profit associated. An Improved Heuristic-Dynamic Program (IHDP) is presented 

to solve the problem. In this algorithm, the discrete set contains not only the 

solution of one-dimensional knapsack problem with small rectangular block width 

and height, but also the cutting positions of one unit outside four boundaries of 

each defect. In addition, the denormalization recursive method is used to further 

decompose the sub problem with defects. The algorithm computes thousands of 

typical instances. The computational experimental results show that IHDP obtains 

most of the optimal solution of these instances, and its computation time is less 

than that of the latest literature algorithms. 

Keywords: Guillotine, Two-dimension cutting problem, Dynamic programming, 

Defect, NP-hard. 

1. Introduction 

The two-dimensional cutting problem with defects is a research hotspot of 

combinatorial optimization. In the industrial manufactural area, many 2D cutting 

problems will encounter defects. For example, in the furniture industry, the wood panels 

may contain damaged areas which cannot be used for furniture panel surfaces. In the 

steel industry, some coils may contain defects that cannot be used as construction 

materials. Natural products such as leather usually have cut marks, so the defective parts 

can hardly be used on the surface of goods. In the literatures, the existing algorithms [1-

2] for defect free problems are relatively extensive, and the research on multiple defects 

and guillotine cut has attracted more and more attention in recent years.  

Experts have proposed many algorithms on the two-dimensional cutting problem 

without defect. In the latest literature, Wang et al. (2017) [2] propose a heuristic search 

algorithm based on grouping rules, which designs the key complement of the large and 

small parts division strategy and the quick recommendation of the block. Song et al. 

(2010) [3] propose a heuristic algorithm based on dynamic programming, which uses a 

subset of all possible cutting pattern and is an incomplete algorithm. Wuttke and 

Heese(2017) [4] propose a sequential heuristic with feedback loop and formulate the 
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sequencing problem as a mixed integer program in the two-dimension cutting problem. 

They use real data to test their heuristic and illustrate its applicability to a problem of 

realistic size. Yoon et al. (2013) [5] propose an improved version of the cutting problem 

for solving standard two-dimensional cutting problem, and their algorithm removes the 

dominated patterns efficiently and avoids duplicated patterns. Herz (1972) [6] uses a 

discretization set of all necessary cutting positions to propose an accurate recursive 

process. Beasley (1985) [7] shows how to improve the performance of the recursive 

process Herz’s discretization sets and introduces a heuristic correction of the algorithm 

which limits the number of cuts in the discretization sets.  

Now there have been more and more literatures on the issue of the two-dimensional 

cutting problem with defects. Carnieri et al. (1993) [8] propose a heuristic dynamic 

programming algorithm including branch and bound search, but they only study the 

two-dimensional cutting problem with one defect. Vianna and Arenales (2006) [9] re-

examine this problem by providing an AND/OR-based branch-qualification algorithm 

that further introduce a heuristic search that combines depth-first search and depth-

limiting and hill-climbing strategies. Neidlein and Wäscher (2008) [10] reduce the size 

of discretization sets in the algorithm proposed by Vianna and Arenales (2006) [9], 

however, their algorithms do not obtain optimal solutions. Afsharian et al. (2014) [11] 

modify the predecessor's heuristic dynamic programming algorithm to solve the 

problem with 4 defects. Their discretization sets size are cumbersome, which means the 

computational efficiency is not high. Martin M. et al. (2019) [12] propose a compact 

integer linear programming (ILP) model for the problem based on the discretization of 

the defective object and develop a Benders decomposition algorithm and a constraint-

programming (CP) based algorithm as solution methods. For the non-guillotine cutting 

problem, Gonçalves and Wäscher (2020) [13] combine a MIP model with a new hybrid 

algorithm to solve it and Birgin et al. (2020) [14] propose a mixed integer linear 

programing model for the problem with usable leftovers. Velasco and Eduardo (2019) 

[15] study the constrained two-dimensional guillotine cutting problem for obtaining 

upper bounds. Russo et al. (2020) [16] review the best exact and heuristic solutions for 

C2DC and reviewed and classified the available upper bound. Wu et al. (2019) [17] 

discuss the same problem but They don't publish the source of their data.  

In this paper, inspired by the previous algorithms [7,11], an improved heuristic 

dynamic programming algorithm is proposed to solve the problem with multiple defects 

in the way of guillotine cut. The algorithm reduces the discretization sets size of 

Afsharian et al. (2014) [11]. However, the cut positions at one unit from the four 

boundaries of the defect are added to the new discrete set. The computational results 

show that the algorithm improves the computational efficiency on thousands of typical 

instances. 

Section 2 of the paper presents a description of the problem. Section 3 gives a 

detailed description of the algorithm and prove two important theorems about the 

complexity of the algorithm. Section 4 gives the calculation results of thousands of 

typical examples, and compares the algorithm in this paper with the best algorithm at 

present. Section 5 draws the conclusion. 
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2. Problem Description 

For the convenience of later description, table 1 shows a list of the symbols with their 

meanings to be used. 

Table 1. The list of the symbols with their meanings 

sym

bol 
meaning sym

bol 
meaning 

    the width of the large object     the height of the large object 

   
  the width of  -th

 small rectangular block    
  the height of  -th small rectangular block 

   the j
-th

 defect    
the number of cuts of  -th

 small rectangular 

block 
   

  the width of j-th defect    
  the height of j

-th
 defect 

  
  the x-axis of j

-th
 defect   

  the y-axis of j
-th

 defect 

   the vertical cutting position    the horizontal cutting position 

  
     the vertical discretization set of the C-block   

     the horizontal discretization set of the C-

block 
  

     the vertical discretization set of the D-block   
     the horizontal discretization set of the D-

block 
   the value of  -th

 small rectangular block   

 

Let   different types of small rectangular blocks             , each associated with 

an integer width   
 , an integer height   

  and the profit value    , must be cut from a 

single rectangular large object with a width of    and a height of    to maximize the 

total value of the small rectangular blocks produced by the cutting process. The solution 

of the problem is a cutting pattern, a form of small rectangular blocks produced from 

large object and a description of the layout in which the small rectangular blocks are 

arranged on large object. In this layout, all small rectangular blocks must be arranged 

parallel to the large object which is called a feasible solution of the problem. To 

establish the Cartesian coordinate system, let the bottom-left vertex of the large object 

be at the origin, the x-axis and y-axis be coincident with the wide and high edges of the 

object respectively. So, the large object can be represented by            . For the 

issues to be considered, the following constraints should be met: 

 The number of each type of small rectangular block cut is unlimited, that is      ; 
 When cutting any small rectangular blocks, the given length and width orientation 

must be maintained, and 90 ° rotation is not allowed; 

 Every cutting action must be guillotine mode, i.e., each cutting action exactly divides 

the current sheet into two parts (see Fig. 1); 

 Every small rectangular block cut from the large object can not contain any defects, 

and its lower left coordinate shall be    
    

  , that is     
       

      
  

     
 , it must meet the requirements:    

    
    

         
    

  

  
         

    
    

         
    

    
  . 

The cutting problem solved in this paper requires that all of the above constraints to 

be satisfied, that is, it is a two-dimensional, unconstrained, guillotine, single large object 

cutting patterns problem with defects (2D_UG_SLOPP_D). 2D_UG_SLOPP_D is 

generalization of 2D_UG_SLOPP. 

Let P be a feasible solution of the problem and                  be the amount 

of the  -th small rectangular block cut from the large object in  , then              is 

use to describe the feasible cutting pattern in this paper. The goal of the problem is to 
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maximize the value of the small blocks cut from the large object, and the object function 

of the problem can be expressed as follows: 

     
             

 

   

                               

                                                 

                                                        

 

A defect is actually an irregular figure. Considering the cutting method here, it is 

appropriate to use rectangular area to express defects. Let n defects be in the large 

object, the j
th

 defect               have a width w
d
,j and a height h

d
,j, and its bottom-

left vertex on the large plate be    
    

  , then     can be represented by    
    

    
    

   

(see Fig. 2). 

 

Fig. 2. The defects on the large object and their representation 

3. Algorithm Description 

The algorithm in this paper is called an improved heuristic dynamic programming 

algorithm (IHDP). It combines quasi human idea with dynamic programming algorithm. 

Using dynamic programming algorithm to solve 2D_UG_SLOPP_D, the resulting 
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(a)  A guillotine cutting mode (b) A Non-guillotine cutting mode 

Fig. 1. Two cutting modes: guillotine and non-guillotine 
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subproblem is either 2D_UG_SLOPP_D or 2D_UG_SLOPP. Adopting different 

methods to solve these two different problems is the critical improvement of this 

algorithm. 

3.1. Basic definition 

For the convenience of the following description, here are two important definitions.  

Definition 1 (sub-block). In the guillotine mode, multiple rectangles which are 

neither the small rectangular blocks nor the wastes are formed after the large plate is cut 

several times. These rectangles are called sub-block. In this paper, the large object is 

regarded as the largest sub-block, and a sub-block corresponds to a sub-problem and 

vice versa. 

Let the coordinates of a sub-block be (ox, oy), the width and the height of it be x and 

y respectively, then the sub-block is represented by R=(ox, oy, x, y). 

According to this definition, two sub-blocks R1=(ox1, oy1, x, y) and R2=(ox2, oy2, x, y) 

with different coordinates in the sub-block are different sub-problems, even if they have 

the same size. For a vertical cut (parallel to the y-axis) on the sub-block R1=(ox1, oy1, x, 

y) at the cut position zx, two smaller sub-blocks are (ox1, oy1, zx, y) and (ox1+zx, oy1, x-zx, 

y). Similarly, for a horizontal cut (parallel to the x-axis) at the cut position zy on R2, two 

sub-blocks (ox2, oy2, x, zy) and (ox2, oy2+zy, x, y-zy) are also formed (see Fig. 3).  

 

Fig. 3. The guillotine cut on the sub-block (vertical or horizontal) results in two smaller sub-

blocks 

Definition 2 (C-block and D-block). For a sub-block R=(ox, oy, x, y), if it contains a 

defect or overlap with any defect, it is called a D-block; otherwise it is called a C-block.  

3.2. Discretization Sets 

The cutting position set on the sub-block is a discretization set. If the sub-block is a C-

block, the discretization sets [8] are defined by the equations (2), (3), and (4). 

Otherwise, the discretization sets are defined by the equations (5), (6), and (7). Z+ 

belongs to a positive integer set. 

X W0 
O 

ox1 

oy1 

H0 

Y 

X W0 
O 

Y 

ox2 

oy2 

y 

x 

zx 

x 

y 

zy 

ox1+zx 

oy2+zy 

R1 R2 

(a)  a vertical cut on a sub-block  (b)  a horizontal cut on a sub-block  
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Discretization sets of C-blocks. If a sub-block is a C-block, the discretization sets 

defined by the equations (2), (3), and (4) are quite same with the discretization sets 

proposed by Afsharian et al. [11]. They are established by the solution of a one-

dimensional knapsack problem with the width and height of the small rectangular 

blocks. Let   
     and   

     denote the vertical discretization set and the horizontal 

discretization set of sub-blocks respectively, they are described as follows: 

           
                 

 

 

   

                                               

          
                 

 

 

   

                                                  

                       
    

                 
    

                                        

Discretization sets of D-blocks. If a sub-block is a D-block, the discretization sets 

defined by the equations (5), (6), and (7). These discretization sets add the cutting 

position of one unit outside four boundaries of each defect into    
     and   

    . 

They reduce the discretization sets proposed by Afsharian et al. [11]. 

       
       

      
           

                
    

        

                           
                

      
       

      
           

                
    

        

                         
                 

                       
    

                 
    

                                        

3.3. Dynamic programming 

This algorithm is an improved heuristic algorithm based on dynamic programming. For 

subproblems without defects (C-block), IHDP uses the method of Herz (1972) [6] and 

Beasley (1985) [7] to construct recursive function F (x, y) for solving it. In this paper, 

the upper bound of discretization set is extended to x - w0/2，y - h0/2. For the sub-

problem with defects (D-block), IHDP adopts a denormalization recursive function 

F(ox, oy, x, y) which is different against Afsharian et al. [11] to deal with it. 

Furthermore, the cutting positions of one unit outside four boundaries of each defect are 

added into the discretization sets.  

It is easy to get a lower bound of the objective function of C-blocks which can be got 

by the function       . Every time, the sub-blocks are divided into the same type small 

rectangular blocks, and the lower bound is the maximum value of m cutting pattern. The 

functions F (x, y) and        are as follows: 
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Where, if             , then F(x, y)=0. Due to the appearance of the repeated 

cutting pattern, the discretization set of vertical (or horizontal) in (9) is limited to half 

the width (height) of the sub-block. In addition, Beasley (1985) [7] has proved that a 

kind of normalized cutting pattern will not result in the optimization of the solution of 

the recursive equation to solve the C-block. This pattern is to arrange the waste at the 

bottom left of the C-block (see Fig. 4), which is implemented with the two 

functions       and       introduced in the above recursive function. These two 

functions are described as follows: 

 

                                     
                                   (10)   

                                   
                                      (11) 

        represents the cut position nearest to the sub-block width  , and correspondingly, 

     is the cut position nearest to the sub-block height  . 

Fig. 4. Normalized and Non-normalized cutting pattern (shaded parts are scrap) 

Based on the above recursive function, we design the following Solver to solve the 

subproblem C-block. 

Here is the description of the Solver： 

Solver: Algorithm for solving 2D_UG_SLOPP 

   Input： Subproblem  R=(x, y),   
    ,   

     

   Output：Cutting Pattern recorded as F(x, y)  

1  If (R=(x, y) has been solved)    Then 

2    Return F(x, y); 

3    Else If (x<w0 or y<h0) 

4      Return 0; 

5      Else 

6        F*(x, y)=0; 

7        For(zx  
    , 1≤zx≤x/2)   

8          F*(x, y) ← max(Solver(R=(zx, y)) + Solver (R=(p(x-zx), y)), F*(x, y)); 

9          End for 

1 
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4 

(a)  Normalized cutting pattern 
(b) Non-normalized cutting pattern 
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Obviously, because the original problem 2D_UG_SLOPP_D has defects, and the 

Solver is only called in the process of solving the original problem, which means that 

neither the x nor y in the subproblem R=(x, y) is known in the original problem, the 

input here is not the initial value of the problem. 

The equation (12) is used to determine the recursive function of the optimal cutting 

pattern with the D-block R=(ox, oy, x, y):   

             

 
 
 
 
 
 

 
 
 
 
 
                                                              

   

 
 
 
 

 
 
 

                                        

                                   

                                         

                                   

     
          

      

                 
                 

 
 
 

 
 
 

                            

              

Where, if               then F(ox, oy, x, y).  

The algorithm in this paper adopts denormalization strategy to solve the problem 

2D_UG_SLOPP_D. In fact, the locations of the defects on D-block are uncertain, which 

means that this kind of normalization treatment may waste some plates, thus reducing 

the chance of obtaining the optimal solution. For example, if the defect is located in the 

lower left corner of a D-block, the more the upper right area of the block is used, the 

better the solution is possible. Based on all these favorable practices, we develop the 

advanced algorithm of predecessors [9, 10, 18] and get the improved heuristic dynamic 

programming algorithm IHDP.  

Here is the description of the IHDP： 

IHDP：Algorithm for solving 2D_UG_SLOPP_D  

   Input：Subpoblem R=(ox, oy, x, y),    
    ,    

    , Defects set {d1, d2, …, dn} 

   Output：Cutting pattern，Recorded as F(ox, oy, x, y)  

1  If (R=(ox, oy, x, y) has been solved)   Then  
2    Return F(ox, oy, x, y); 

3    Else If (x<w0 or y<h0) 

4      Return F(ox, oy, x, y)=0; 

5      Else If (R=(ox, oy, x, y) is C-block) 

6         Return F(x, y)=Solver(R=(x, y)); 

7         Else    // R=(ox, oy, x, y) is D-block 

8           F*(ox, oy, x, y)=0; 

9           For(zx   
    , 1≤zx≤x-1) 

10            F(1)(ox, oy, x, y)=IHDP(R=(ox, oy, zx, y)+IHDP(R=(ox+zx, oy, x-zx, y); 

11            F(2)(ox, oy, x, y)=IHDP(R=(ox, oy, x-zx, y)+IHDP(R=(ox+x-zx, oy, zx, y); 
12            F*(ox, oy, x, y)← max(F(1)(ox, oy, x, y), F(2)(ox, oy, x, y), F*(ox, oy, x, y)); 

10        F**(x, y)=0; 

11      For(zy  
    , 1≤zy≤y/2) 

12        F**(x, y) ← max(Solver(R=(x, zy)) + Solver (R=(x, q(y-zy))), F
**(x, y)); 

13         End for 

14      Return F(x, y)=max( (x, y), F*(x, y), F**(x, y)) 

15    End if 

16  End if 
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13         End for 

14         F**(ox, oy, x, y)=0; 

15         For(zy   
    , 1≤zy≤y-1) 

16            F(3)(ox, oy, x, y)=IHDP(R=(ox, oy, x, zy)+IHDP(R= (ox, oy+zy, x, y-zy); 

17            F(4)(ox, oy, x, y)=IHDP(R=(ox, oy, x, y-zy) +IHDP(R= (ox, oy+y-zy, x, zy); 
18            F**(ox, oy, x, y) ← max(F(3)(ox, oy, x, y), F(4)(ox, oy, x, y), F**(ox, oy, x, y)); 

19          End for 

20          Return F(ox, oy, x, y)= max(F*(ox, oy, x, y), F**(ox, oy, x, y)); 

21       End if 

22     End if 

23   End if 

 

IHDP is implemented to solve the original problem 2D_UG_SLOPP_D and the 

subproblems with defects. Only when the subproblem is of type 2D_UG_ SLOPP, the 

Solver is called in line 6 to solve it. So, the initial values of the algorithm are R0 = (0, 

0, W0, H0),    
  (W0),    

  H0) and all the defects d1, d2, …, dn. 

3.4. Algorithm complexity 

In this section, we study the computational aspects of the algorithm. We analyze the 

time complexity in the worst case and get an estimation of pseudo polynomials. 

Theorem 1 The time complexity in the worst case of the improved heuristic dynamic 

programming for solving the 2D_UG_SLOPP_D is: 

                       
          

           
          

                                                

 Proof For a given single large object         , the recursive function requires 

     
          

       operations for each iteration. Therefore, the calculation 

involves a total of time complexity as equation (13). 

Theorem 2 Let            
   and          

            . And let    
                              , then: 

                              
              

 

  

   

                                                                                              

                             
              

 

  

   

                                                                                                

                               
  

        

        
                                                                                                        

Proof By definition, each element in   
      is a viable combination of the length 

of a small rectangular block      
  

     
  
        calculates the same structure of the 

number of terms in the polynomial. In order to obtain      
  

   , in the above 

polynomial,   must take 1 to  . That's because if     , then there is     
  

      . 
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And      
  

     
  
            

   
   . Add the above function (14) to the left and right 

edges of defects; similarly, the same is true for the function (15). 

4. Calculation results and analysis 

The algorithm used in this paper is implemented in the C/C++ programming language. 

The configuration of the computer used is: processor--Intel(R), Core (TM) i7cpu 

@360HZ, RAM 8GB, 64bit operator.  

Three typical classes examples are included in this experiment. The first class is 14 

instances in which 8 instances proposed by Carnieri et al. (1993) [8] include a single 

defect and 6 instances proposed by Vianna and Arenales (2006) [9] include multiple 

defects. The original object’s width W0 = 200, height H0 = 100, and 5 types of small 

rectangular blocks. The other two classes are generated by Neidlein’s [18] instance 

generator. One class of them has already been generated and adopted both by both 

Afsharian et al. [11] and by Martin et al. [12]. Another class is generated by ourselves, 

and the seed values of random numbers are 3, 7 and 11, respectively. 

In this paper, five other typical algorithms are selected to compare their effectiveness 

and efficiency with IHDP. The objective function values (OFV) obtained by all these 

algorithms is the important index. Furthermore, according to the literature [18], the 

algorithm DPC (dynamic programming with complete discretization set) is 

implemented. Another index, GAP = (OFVDPC-OFVIHDP)/ (OFVDPC + 10
-10

)*100, is 

used to present these algorithms’ performance. 

4.1. International Samples 

In Table 2, The algorithm is compared with other three algorithms. Neidlein et al. 

(2008) [10] only computes the instances with a single defect and obtains the optimal 

solutions of 5 out of 8 instances. Vianna and Arenales [9] gets an optimal solution of the 

instance with multiple defects, however, it does not public their computation time. Both 

Afsharian et al. [11] and IHDP obtain the 14 optimal solutions in a short time.  

Table 2. Operation results and comparison of four algorithms 

Ins. 

IHDP 
Afsharian 
etc.(2014) 

Vianna etc.(2006) Neidlein etc.(2008) 

OFV 
Comp. 

Time(s) 
OFV 

Comp. 

Time(s) 
OFV 

Comp. 

Time(s) 
OFV 

Comp. 

Time(s) 

A1 166 0.86 166 18.86 166 4.61 166 0.52 
A2 166 0.67 166 16.43 160 3.57 160 0.77 

A3 166 0.74 166 16.47 162 4.40 162 1.77 

A4 164 0.25 164 18.25 160 3.15 160 0.27 
A5 164 0.31 164 76.96 164 13.51 164 4.11 

A6 164 0.47 164 0.90 164 1.32 164 1.44 

A7 158 0.21 158 0.81 158 12.47 158 1.07 
A8 154 0.13 154 1.21 154 8.07 154 0.50 

A9 160 0.87 160 14.32 153 - - - 

A10 158 0.49 158 2.22 148 - - - 
A11 151 6.29 151 26.78 143 - - - 
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A12 156 119.30 156 1126.44 150 - - - 

A13 150 2.19 150 9.06 142 - - - 
A14 160 0.09 160 1.00 160 - - - 

Note: Bold type in the table represents the optimal solution 

 

In addition, the optimal layout the two instances A11 and A12 which have 4 and 5 

defects respectively are given below (see Fig. 5-6). 
 

Fig. 5. A11 cutting pattern result                        Fig. 6. A12 cutting pattern result 

4.2. Randomly generated instances 

These examples are set by the instance generator procedure of Neidlein and Wäscher 

(2016) [18]. With respect to the size of the large plate, it is distinguished between two 

categories of problem instances, i.e., quadratic and non-quadratic. In small category, the 

size of the large object is fixed to 5,625 square units, and the size of the large object is 

fixed to 22,500 square units in medium category. Furthermore, the two different shapes 

of the large plate considered for each category are quadratic (75, 75) and non-quadratic 

(112, 50) for the small category and quadratic (150, 150) and non-quadratic (225, 100) 

for medium category, respectively. The number of types of small rectangles is set to 5. 

10, 15, 20 and 25. The type width and height of the small rectangular block are 

uniformly obtained from              and             ,respectively, where   in 

all categories is 6, 8, and 10. The defect is set to 1~4, and 15 examples of each defect 

are averaged for a group. The width and height of the defect are uniformly obtained 

from the ranges              and             , respectively. The position of each 

defect is represented by the position of the defect in the lower left corner of the large 

rectangular block, generated using a uniform distribution in the range of           

and          , and then these values are rounded. So, the instances number of each 

size category are 2×5×3×15×4=1800. 

Instances in the literatures. The instances in Table 3 and Table 4 are generated by Afs

-harian et al. (2014) [11] without providing the value of their random seed, however, the

 data can be obtained from the following website: www. dep.ufscar.br/docentes/munari/

cuttingpacking/. 

In Table 3, the other three algorithms are the best ones we have got. As a complete 

DP (Dynamic programming takes every integer both in [1, W0] and in [1, H0] as cutting 

point) [18], DPC does obtain the optimal solutions of all instances in guillotine manner. 

IHDP obtains the optimal solution of all cases, however, DPD and B&BC get the 

optimal solutions of one group and ten groups of instances, respectively. However, The 

http://www.dep.ufscar.br/docentes/munari/cuttingpacking/
http://www.dep.ufscar.br/docentes/munari/cuttingpacking/


728           Aihua Yin et al. 

Gap of B&BC on the average of 30 groups is more than twice that of DPD, so the 

stability of the latter is better than the former. B&BC takes far more time than the other 

three algorithms. 

In Table 4, Martin et al. [12] doesn’t show the calculation details of the 30 group 

instances, so the computation results of DPC, DPD and IHDP are compared. None of 

the optimal solutions of these instances are obtained by DPD. However, IHDP gets 26 

out of 30 groups optimal solutions of the instances, and the four GAPs are very close to 

0.00. Here, although the computation time difference among them is not very big, IHDP 

takes more time than DPD, but less than DPC. 

New randomly generated instances. In order to further test the performance of IHDP, t

he generator of Neidlein et al. (2016) [18] is used to generate new data. Table 5 and Tab

le 6 are instances of small and medium scale, and the value of their random number seed

=3. Table 7 and Table 8 are small scale instances, and the value of their random number 

seed=7, 11, respectively (randomly selected from the uniform distribution of [1, 12]). B

ecause these are new data, only DPC and IHDP are used for comparison.  

Table 5 shows the computation results of small-scale instances. Both IHDP and DPC 

get the optimal solution of all cases, but IHDP takes almost a tenth of DPC. Table 6 

shows the computation results of the medium scale case. IHDP does not get the optimal 

solution on five groups of instances. However, the result of IHDP is very close to the 

optimal solution, and its final average Gap is still 0.000. Moreover, it takes less than 

half the computing time of DPC. 

Both in Table 7 and Table 8, 1800 small scale instances are generated by seed values 

of 7 and 11, respectively. In Table 7, IHDP obtains the optimal solutions of 28 out of 30 

groups of the instances, but the GAP is only 0.2%. In Table 8, IHDP obtains all the 

optimal solution of the instances. In both cases, IHDP takes about half as long as DPC.  

According to the results shown in Tables 3 to 8 above, IHDP performs stablely on the 

instances generated by both ourselves and Afsharian et al. [11], and it is an effective and 

efficient algorithm to solve the original problem 2D_UG_SLOPP_D in guillotine mode.  

5. Conclusion 

In this paper, the smaller discretization sets are constructed to solve the two-dimensional 

cutting problem with defects in guillotine manner. Especially, an improved heuristic-

dynamic programming algorithm is proposed, which adapts two different methods to for 

the subproblems 2D_UG_SLOPP_D and 2D_UG_SLOPP, respectively. Almost all the 

optimal solutions of over ten thousand typical instances are obtained. An important 

theorem on its complexity of the algorithm is proved. Future research could focus on 

solving the larger scale instance or on modifying the discretization set definition or on 

solving different type of cutting problem such as involving the constraints of the largest 

number of each type of the small rectangular block. 
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Table 3. Four algorithms comparison on the small size 1800 instances of Afsharian et al.[11] 

instances m   
DPC DPD B&BC IHDP 

OFV time(s) OFV time(s) GAP(%) OFV time(s) GAP(%) OFV time(s) GAP(%) 

1 5 6 3694.31 11.45 3694.31 3.52 0.00 3694.31 0.05 0.00 3694.31 0.41 0.00 

2 10 6 4256.01 12.12 4229.85 4.52 0.61 4256.01 15.20 0.00 4256.01 2.50 0.00 

3 15 6 4566.10 13.33 4540.38 5.36 0.56 4566.10 1.57 0.00 4566.10 3.92 0.00 

4 20 6 4615.43 13.09 4593.41 5.76 0.48 4605.70 42.80 0.21 4615.43 5.32 0.00 

5 25 6 4694.01 13.89 4674.66 6.19 0.41 4691.43 56.70 0.05 4694.01 6.31 0.00 

6 5 8 3683.23 11.14 3638.03 2.86 1.23 3683.23 0.87 0.00 3683.23 0.60 0.00 

7 10 8 4386.16 12.94 4375.50 4.74 0.24 4372.03 62.00 0.32 4386.16 3.20 0.00 

8 15 8 4613.23 14.07 4585.26 6.09 0.61 4604.15 78.03 0.19 4613.23 5.26 0.00 
9 20 8 4883.78 14.69 4876.38 6.27 0.15 4850.66 150.20 0.67 4883.78 6.83 0.00 

10 25 8 4835.60 14.48 4826.93 7.76 0.18 4792.66 91.92 0.88 4835.60 7.49 0.00 

11 5 10 4083.56 12.71 4055.10 3.18 0.70 4001.58 16.56 2.00 4083.56 1.11 0.00 
12 10 10 4710.91 14.60 4686.56 5.69 0.52 4637.40 107.65 1.56 4710.91 5.39 0.00 

13 15 10 4845.16 14.78 4826.68 6.74 0.38 4678.93 122.56 3.43 4845.16 6.25 0.00 

14 20 10 4928.65 15.25 4920.95 9.35 0.16 4629.06 155.83 6.07 4928.65 8.20 0.00 
15 25 10 4968.50 16.13 4960.23 10.71 0.17 4783.45 217.93 3.72 4968.50 9.44 0.00 

16 5 6 3530.41 10.74 3480.63 2.61 1.41 3530.41 0.03 0.00 3530.41 0.26 0.00 

17 10 6 4339.18 11.53 4305.43 4.31 0.78 4339.18 20.38 0.00 4339.18 2.45 0.00 
18 15 6 4495.20 14.54 4470.76 4.31 0.54 4495.20 13.40 0.00 4495.20 4.05 0.00 

19 20 6 4618.16 14.66 4607.75 5.80 0.23 4611.68 59.53 0.14 4618.16 5.77 0.00 

20 25 6 4686.21 15.42 4679.73 6.78 0.14 4671.68 82.28 0.30 4686.21 6.75 0.00 
21 5 8 3829.66 13.69 3752.31 2.03 2.02 3829.66 7.83 0.00 3829.66 0.68 0.00 

22 10 8 4536.90 15.30 4523.00 4.56 0.31 4536.90 26.33 0.00 4536.90 4.02 0.00 

23 15 8 4792.70 14.54 4766.90 5.65 0.54 4770.53 130.25 0.46 4792.70 6.10 0.00 
24 20 8 4706.16 15.16 4685.91 5.92 0.43 4681.53 74.36 0.52 4706.16 6.78 0.00 

25 25 8 4791.00 15.66 4772.01 8.09 0.40 4715.31 121.96 1.57 4791.00 7.92 0.00 

26 5 10 4138.25 13.43 4076.48 3.63 1.49 4138.25 11.50 0.00 4138.25 0.99 0.00 
27 10 10 4396.10 15.29 4357.55 4.53 0.88 4374.31 70.63 0.49 4396.10 3.94 0.00 

28 15 10 4688.12 15.95 4661.92 5.70 0.56 4590.73 149.97 2.07 4688.12 6.31 0.00 

29 20 10 4895.85 16.14 4891.43 8.71 0.09 4705.36 154.61 3.89 4895.85 8.40 0.00 
30 25 10 4988.35 16.20 4975.15 9.31 0.26 4856.01 206.26 2.65 4988.35 8.92 0.00 

Average   4506.56 14.10 4483.04 5.69 0.52 4456.45 74.97 1.11 4506.56 4.85 0.00 
Note: Bold type in the table represents the optimal solution 
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Table 4. Comparewith DPC on the medium size 1800 instances of Afsharian et al.[11] 

instances m   
DPC  DPD  IHDP 

OFV time(s)  OFV time(s) GAP(%)  OFV time(s) GAP(%) 

1 5 6 14794.82 209.58  14546.66 24.723 1.677   14794.82 7.89 0.000 

2 10 6 15772.18 202.97  15544.76 35.661 1.442   15772.18 42.14 0.000 

3 15 6 17356.57 146.04  17263.78 35.827 0.535   17356.57 77.21 0.000 

4 20 6 18256.58 160.21  18128.60 58.636 0.701   18256.58 138.48 0.000 

5 25 6 18824.05 172.32  18716.65 69.199 0.571   18701.42 163.10 0.007 

6 5 8 14384.88 183.29  14276.08 27.278 0.756   14384.88 4.94 0.000 

7 10 8 17780.28 280.81  17632.83 40.890 0.829   17780.28 74.94 0.000 

8 15 8 18747.35 182.60  18615.33 72.122 0.704   18747.35 136.41 0.000 
9 20 8 19315.80 193.07  19193.25 73.607 0.634   19315.80 185.78 0.000 

10 25 8 19530.53 189.00  19435.88 131.198 0.485   19530.53 184.81 0.000 

11 5 10 15174.78 237.29  15067.86 24.038 0.705   15174.78 9.19 0.000 
12 10 10 18839.87 184.59  18775.98 63.492 0.339   18839.87 116.96 0.000 

13 15 10 18747.58 192.31  18685.03 71.939 0.334   18611.28 153.12 0.007 

14 20 10 19438.30 193.51  19372.35 99.747 0.339   19438.30 187.32 0.000 
15 25 10 19822.68 217.56  19724.56 137.128 0.495   19822.68 216.96 0.000 

16 5 6 13611.92 100.51  13420.90 21.29 1.403   13611.92 6.08 0.000 

17 10 6 16938.10 152.79  16709.06 43.03 1.352   16938.10 84.64 0.000 
18 15 6 17203.60 151.04  17058.16 45.42 0.845   17203.60 96.32 0.000 

19 20 6 18606.00 181.05  18475.80 62.96 0.700   18606.00 141.73 0.000 

20 25 6 18708.25 194.25  18591.30 74.73 0.625   18708.25 190.35 0.000 

21 5 8 15217.80 128.29  15024.26 23.33 1.272   15217.80 15.61 0.000 

22 10 8 17720.82 177.21  17541.91 53.70 1.010   17720.82 163.48 0.000 
23 15 8 18620.30 196.23  18491.06 63.04 0.694   18518.05 143.48 0.005 

24 20 8 18999.55 212.83  18814.46 84.30 0.974   18999.55 210.44 0.000 

25 25 8 19382.40 225.39  19215.23 109.88 0.862   19382.40 217.22 0.000 

26 5 10 15542.52 138.11  15248.20 35.21 1.894   15542.52 31.84 0.000 

27 10 10 17366.72 179.47  17191.66 47.83 1.008   17366.72 106.46 0.000 
28 15 10 18913.72 203.36  18733.61 92.64 0.952   18913.72 192.05 0.000 

29 20 10 19632.15 220.12  19537.85 131.77 0.480   19513.54 220.01 0.006 

30 25 10 19707.63 233.18  19561.21 122.08 0.743   19707.63 230.33 0.000 

Average   17765.26 187.97  17619.81 65.89 0.845  17749.26 124.98 0.001 

Note: Bold type in the table represents the non-optimal solution 
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Table 5. Compare with DPC on the small size 1800 new instances (seed=3) 

instances m   
DPC  IHDP 

OFV time(s)  OFV time(s) GAP(%) 

1 5 6 3825.80 9.82   3825.80 0.15 0.00 

2 10 6 4381.25 12.16   4381.25 0.62 0.00 
3 15 6 4567.50 12.53   4567.50 0.78 0.00 

4 20 6 4726.13 12.66   4726.13 1.47 0.00 

5 25 6 4842.80 12.19   4842.80 1.55 0.00 

6 5 8 3997.50 10.76   3997.50 0.19 0.00 

7 10 8 4630.67 12.94   4630.67 1.03 0.00 
8 15 8 4793.17 13.18   4793.17 1.30 0.00 

9 20 8 4863.02 14.21   4863.02 1.71 0.00 

10 25 8 5047.80 14.21   5047.80 2.05 0.00 
11 5 10 4166.97 11.44   4166.97 0.24 0.00 

12 10 10 4707.54 13.31   4707.54 1.17 0.00 

13 15 10 4864.12 13.45   4864.12 1.45 0.00 
14 20 10 4981.47 14.16   4981.47 2.08 0.00 

15 25 10 5099.68 14.56   5099.68 2.61 0.00 

16 5 6 3700.47 11.51   3700.47 0.13 0.00 
17 10 6 4366.59 13.13   4366.59 0.57 0.00 

18 15 6 4504.84 12.93   4504.84 0.88 0.00 

19 20 6 4600.78 13.74   4600.78 0.89 0.00 

20 25 6 4697.32 13.88   4697.32 1.43 0.00 

21 5 8 3838.69 10.56   3838.69 0.15 0.00 
22 10 8 4560.90 13.47   4560.90 0.75 0.00 

23 15 8 4769.70 13.89   4769.70 1.21 0.00 

24 20 8 4826.15 14.88   4826.15 1.67 0.00 
25 25 8 4944.00 14.69   4944.00 2.05 0.00 

26 5 10 4033.33 11.52   4033.33 0.15 0.00 

27 10 10 4562.67 14.69   4562.67 0.89 0.00 
28 15 10 4781.54 15.20   4781.54 1.60 0.00 

29 20 10 4959.79 14.43   4959.79 2..06 0.00 

30 25 10 5014.05 15.24   5014.05 2.31 0.00 

Average   4588.54 13.18  4588.54 1.10 0.00 

Table 6. Compare with DPC on the medium size 1800 new instances (seed=3) 

instances m   
DPC  IHDP 

OFV time(s)  OFV time(s) GAP(%) 

1 5 6 14974.25 277.85   14972.15 4.51 0.000 

2 10 6 17113.60 290.08    17113.60 56.95 0.000 

3 15 6 18259.88  278.21    18259.88 112.63 0.000 

4 20 6 18250.43  310.59    18250.43 138.08 0.000 

5 25 6 18769.08  282.40    18769.08 155.32 0.000 

6 5 8 15993.28  293.52    15993.28 8.45 0.000 
7 10 8 18022.70  283.77    18022.70 87.99 0.000 

8 15 8 18772.30  274.74   18772.30 143.05 0.000 
9 20 8 19341.68  281.89   19341.68 192.06 0.000 

10 25 8 19653.10  287.14     19653.10 227.91 0.000 

11 5 10 15902.78  288.95    15902.78 7.68 0.000 

12 10 10 18600.38  275.67   18600.38 99.46 0.000 

13 15 10 19213.53  275.63   19213.10 167.44 0.000 

14 20 10 19730.58  272.70    19730.58 207.27 0.000 
15 25 10 20012.65   282.42   20012.65 260.77 0.000 

16 5 6 14730.78    324.04    14623.88 5.34 0.007 

17 10 6 17040.13  301.38   17040.13 47.19 0.000 
18 15 6 18025.05  305.29    18025.05 103.17 0.000 

19 20 6 18465.53  316.33    18465.53 153.18 0.000 
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20 25 6 18842.85  313.16   18842.85 189.40 0.000 

21 5 8 15830.78  304.80    15827.15 6.76 0.000 

22 10 8 17801.28  317.94   17801.28 81.35 0.000 

23 15 8 18732.18  299.69    18732.18 147.56 0.000 
24 20 8 19156.50  313.54    19156.50 186.86 0.000 

25 25 8 19384.78  306.00    19384.78 216.96 0.000 

26 5 10 15078.53  297.44    15078.53 6.96 0.000 
27 10 10 17974.48  313.68   17958.15 90.66 0.001 

28 15 10 18850.90  310.60   18850.90 166.48 0.000 

29 20 10 19401.13  311.13   19401.13 232.41 0.000 
30 25 10 20059.15  308.62    20059.15 274.27 0.000 

Average   18066.14 296.64  18061.83 125.94 0.000 
Note: Bold type in the table represents the non-optimal solution 

Table 7. Compare with DPC on the small size 1800 new instances (seed=7) 

Ins. m   
DPC  IHDP 

OFV time(s)  OFV time(s) GAP(%) 

1 5 6 3947.23 2.17  3947.23 0.12 0.00 

2 10 6 4388.65 3.11  4388.65 0.85 0.00 

3 15 6 4526.98 3.57  4526.98 1.75 0.00 

4 20 6 4654.13 3.89  4654.13 2.23 0.00 

5 25 6 4758.02 4.21  4758.02 2.31 0.00 

6 5 8 4020.60 2.42  4020.60 0.24 0.00 

7 10 8 4507.75 3.99  4507.75 1.44 0.00 

8 15 8 4732.47 4.66  4732.47 3.27 0.00 

9 20 8 4854.50 5.15  4854.50 3.62 0.00 

10 25 8 4924.37 5.41  4924.37 4.56 0.00 

11 5 10 4105.08 3.45  4105.08 0.93 0.00 

12 10 10 4732.95 5.45  4732.95 3.31 0.00 

13 15 10 4899.15 6.25  4899.15 5.70 0.00 

14 20 10 5006.60 6.72  5006.60 5.69 0.00 

15 25 10 5063.02 6.83  5063.02 7.38 0.00 

16 5 6 3810.30 4.33   3808.07  0.20  0.06 

17 10 6 4303.37 5.14   4303.37  0.63  0.00 

18 15 6 4529.53 5.56   4529.53  0.97  0.00 

19 20 6 4598.10 5.92   4598.10  1.42  0.00 

20 25 6 4702.70 6.22   4702.70  2.02  0.00 

21 5 8 4041.78 4.88   4041.78  0.74  0.00 

22 10 8 4501.80 5.97   4501.80  2.29  0.00 

23 15 8 4732.78 6.74   4732.78  2.96  0.00 

24 20 8 4803.43 6.82   4803.43  3.55  0.00 

25 25 8 4851.45 7.02   4851.45  3.88  0.00 

26 5 10 4055.08 5.12   4055.08  0.73  0.00 

27 10 10 4730.05 6.77   4729.92  2.95  0.003 

28 15 10 4820.05 7.01   4820.05  3.91  0.00 

29 20 10 4933.32 7.40   4933.32  5.06  0.00 

30 25 10 4992.20 8.48   4992.20  6.52  0.00 

Average   4584.25 5.36  4584.17 2.71 0.002 
Note: Bold type in the table represents the non-optimal solution 
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Table 8. Compare with DPC on the small size 1800 new instances (seed=11) 

Ins. m   
DPC  IHDP 

OFV time(s)  OFV time(s) GAP(%) 

1 5 6 3854.90  2.34   3854.90  0.18  0.00 

2 10 6 4352.48  3.46   4352.48  0.90  0.00 

3 15 6 4548.65  4.18   4555.65  1.36  0.00 

4 20 6 4658.13  4.49   4658.13  1.87  0.00 

5 25 6 4761.37  4.77   4761.37  2.43  0.00 

6 5 8 3918.62  2.87   3918.62  0.34  0.00 

7 10 8 4538.45  4.77   4538.45  1.53  0.00 

8 15 8 4758.63  5.67   4765.73  2.55  0.00 

9 20 8 4798.27  5.45   4798.27  3.02  0.00 

10 25 8 4926.80  6.39   4926.80  3.99  0.00 

11 5 10 3963.83  3.34   3963.83  0.69  0.00 

12 10 10 4635.02  5.56   4635.02  2.33  0.00 

13 15 10 4851.70  6.54   4851.70  4.07  0.00 

14 20 10 4926.92  6.91   4926.92  4.80  0.00 

15 25 10 5016.78  7.57   5016.78  6.01  0.00 

16 5 6 3818.85  2.97   3818.85  0.15  0.00 

17 10 6 4257.70  3.89   4257.70  0.61  0.00 

18 15 6 4586.68  5.02   4586.68  1.46  0.00 

19 20 6 4649.18  5.39   4649.18  2.09  0.00 

20 25 6 4776.97  5.86   4776.97  2.43  0.00 

21 5 8 3955.52  3.69   3955.52  0.33  0.00 

22 10 8 4524.15  5.00   4524.15  1.44  0.00 

23 15 8 4716.22  6.12   4716.22  2.62  0.00 

24 20 8 4795.03  6.08   4795.03  3.41  0.00 

25 25 8 4884.32  6.81   4884.32  4.28  0.00 

26 5 10 4100.58  4.31   4100.58  0.58  0.00 

27 10 10 4610.17  5.85   4610.17  2.21  0.00 

28 15 10 4806.98  6.36   4806.98  3.37  0.00 

29 20 10 4908.53  7.38   4908.53  4.58  0.00 

30 25 10 4982.80  8.07   4982.80  5.12  0.00 

Average   4562.81 5.24  4562.81 2.36 0.00 
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