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Abstract. Measuring the semantic similarity between pairs of terms in Gene 

Ontology (GO) can help to compare genes that can not be compared by other 

computational methods. In this study, we proposed an integrated information-

based similarity measurement (IISM) to calculate the semantic similarity between 

two GO terms by taking into account multiple common ancestors that they share, 

and aggregating the semantic information and depth information of the non-

redundant common ancestors. Our method searches for non-redundant common 

ancestors in an effective way. Validation experiments were conducted on both 

gene expression dataset and pathway dataset, and the experimental results suggest 

the superiority of our method against some existing methods. 

Keywords: Gene Ontology, GO terms, semantic similarity, biological pathways, 

gene expression profile. 

1. Introduction 

Measuring the similarity between pairs of genes or gene products is a fundamental and 

important research issue in molecular biology, as it can help to infer the biological 

function of genes, which has a vast variety of applications in the fields such as gene 

function prediction [1], gene expression data analysis [2], gene clustering [3], disease 

gene prioritization [4], analysis of protein interactions [5], and so on. As laboratory 

methods are costly, laborious and time-consuming, computational approaches to this 

issue are attracting more and more attention from the community of bioinformatics and 

biomedicine. With the advent of high-throughput techniques, a growing number of 

genes and gene products have been studied and annotated. Gene Ontology (GO) offers a 

consistent description of gene function from heterogeneous annotation data, and 

provides us with a promising way to compare genes or gene products that could not be 

compared by other computational approaches. The GO is composed of two components: 

GO graph and gene annotation, the GO graph is structured as a rooted Directed Acyclic 

Graph (rDAG) [6] with controlled vocabulary of terms as its nodes and the relationship 

between terms as its edges, while the gene annotation relates genes with terms in the 

GO graph. By studying the relationships between GO terms that annotate the genes 

involved, we can deduce the semantic similarity of genes at functional level. 
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The similarity between two genes or gene products can be quantified by computing 

the number of GO terms that annotate them simultaneously [7, 8], however, such 

approaches only take advantage of the annotation information, and are restricted to the 

genes or genes products with the same annotations [9]. Another class of approaches 

widely used is to consider both annotation and structure information of the GO graph, 

where the similarity between two genes is quantified by computing the semantic 

similarity between two terms or two sets of terms in the GO graph [10]. The semantic 

similarity measure between GO terms is close related to the structure of the GO graph, 

as the similarity score can be quantified by deriving both similarity and dissimilarity 

from their common ancestors and distance of path connecting them, respectively. We 

shall give a brief discussion of some most representative methods in the next section, 

the reader can refer to Pesquita et al. [10] and Gan et al. [11] for details about different 

semantic similarity measures and a comprehensive survey of literature. To date, many 

measures have been introduced to quantify the semantic similarity of GO terms, and 

some of them have been proved to be useful in relevant fields [12, 13]. However, due to 

the complexity of the GO structure, measuring the semantic similarity between two 

terms is still challenge problem. 

In this study, we proposed an integrated information-based similarity measurement 

(IISM) to measure the semantic similarity of GO terms. This method is based on the 

following observations: (1) A term in the GO graph inherits semantics from its 

ancestors; (2) some common ancestors of two GO terms provide redundant semantics 

for quantifying their similarity; (3) the similarity between terms near the root of GO 

graph is smaller than that of terms further from the root. The first two observations 

come from the semantics inheritance property between terms in the GO graph, and the 

third observation dovetails with the human intuition of biological knowledge that a GO 

term at lower levels has more specific biological meaning. Our method quantified the 

similarity measure between pairs of GO terms by combining the node property and the 

depth of nodes in the Go graph. We first detected the non-redundant ancestor of two 

terms and their non-redundant common ancestors. After computing the semantic value 

of the non-redundant ancestors of both terms and those of their non-redundant common 

ancestors, the similarity value based on the node property was quantified by the ratio of 

semantics two terms share. The similarity measure based on the depth of nodes was 

quantified based on the probabilities they occurred in the corpus, and then the average 

of these two measures was defined as the similarity values of the term pair. The 

effectiveness of our similarity measurement was evaluated through the study of 

similarity among genes in the pathway of Saccharomyces genome database (SGD) 

database, another experiment was conducted on a gene expression dataset, and the 

results suggest the superior performance of our method. 

The rest of this paper is organized as follows: after reviewing some related works in 

section 2, we describe our measure for quantifying semantic similarity over GO terms in 

section 3. Section 4 demonstrates some experimental results to evaluate the 

effectiveness of the proposed measure. Finally, this paper is finished with a conclusion 

in Section 5.  
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2. Related Work 

The methods to compute the semantic similarity between two GO terms can be 

generally classified into three categories: edge-based, node-based and hybrid methods, 

while the semantic similarity between two sets of GO terms can be computed in pairs or 

in groups.  

The edge-based approaches measure the similarity between two terms based on the 

number of edges and their type in the GO graph. A commonly adopted strategy is to 

derive the similarity measure from the distances between two nodes in the graph, where 

the distance is quantified by the length of the shortest path, or average length of the all 

paths connecting two nodes, and the distance measure can be easily converted into a 

similarity value. Rada et al. [14] were the earlier researchers that used this measure on a 

biomedical ontology MSH (i.e. Medical Subject Headings), and Al-Mubaid et al. [15] 

used it on GO terms for the first time. Alternatively, the similarity measure of this 

category can be directly quantified by the number of edges in the path from the root 

node to the most informative common ancestor of two nodes [16]. However, Pesquita et 

al. [10] suspected the effectiveness of the edge-based measures as they are established 

on the basis of two assumptions that are seldom true in biological ontologies, that is to 

say, the nodes and edges in the graph are evenly distributed, and the edges at the same 

level have the same semantic distance from the root. Even though several attempts have 

been made to lessen these disadvantages by weighting the edges at different depth, 

considering the link type or the density of nodes [17, 18], the problem caused by these 

assumptions are still not solved effectively. 

Node-based methods used the nodes and their properties as data source to deduce the 

semantic similarity between two terms. The nodes used in this categories of method 

includes those relate to the term pair investigated and their ancestors or descendants in 

the GO graph [10]. The most commonly used property of a node is the information 

content (IC), which indicates how informative and specific a term is, and is defined as 

the negative logarithm of the probability of a term occurs in a corpus [19] or in the GO 

graph [20, 21]. Resnik [22] proposed a similarity measure based on the shared 

information, which is deduced from the information content of their most informative 

common ancestor (MICA). Since the similarity value of Resnik‟s measurement may be 

greater than one, Lin [23] and Jiang and Conrath [24] proposed their improved versions 

of measure that normalized the similarity value to (0,1). Nevertheless, these 

measurements defined the similarity based on Resnik‟s measurement that only consider 

the information content of a single common ancestor, namely, the MICA that inherited 

by both terms. This is proper in the case that the GO is a tree, but it will become 

problematic in the Directed Acyclic Graph (DAG) structure of GO, as a node may have 

more than one parent nodes and thus some biological information inherited from some 

ancestors will be neglected. Some measures were proposed to address this problem by 

considering the effect of multiple ancestors [25, 26] or multiple descendants [27, 28] of 

two terms investigated, In [25], Couto et al. employed the concept of disjunctive 

common ancestors (DCAs) and proposed a graph-based similarity measure (GraSM), 

where the disjunctive common ancestors is determined in a recursive way, and they 

redefined the shared information content as the average information content of all their 

disjunctive common ancestors. They later updated GraSM with dubbed Disjunctive 

Shared Information (DiShIn) [26] to calculate the shared information content between 

two terms by counting the number of distinct paths from common ancestors to the 
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terms, even so, the computational complexity of GraSM and DiShIn are rather high, as 

they need to search for the paths between two terms. In real-time scenario, they need to 

perform a preliminary calculation and stored the results for later application. 

As mentioned above, both the edge-based and the node-based measures have their 

limitations. Some works take into account both nodes and edges in the graph into 

account. Wang et al. [18] presented a similarity measurement by combining the 

structure of GO graph and the semantic information of the GO terms, where they 

quantified the semantics of a term by S-value, which integrated the contribution of all 

term in a GO subgraph including all the ancestors and the term itself. Their similarity 

measure between two terms was defined as the percentage of S-value they share. 

Several works [29-31] have demonstrated the advantage of this measurement. However, 

this approach suffers from some shortcomings [32], namely that the semantic 

contribution value of a edge is empirically determined, and that the dynamically 

calculation for the semantic values of GO terms is rather time consuming. Recently, Wu 

et al. [9] proposed a hybrid measure, where they used the node information to improve 

the edge-based measure they introduced previously, and shown the superiority in 

determining the protein-protein interaction. Bandyopadhyay and Mallick [33] developed 

a new hybrid method to address the issue of shallow annotation in the GO structure. 

Song et al. [32] introduced an aggregate information content approach where they 

defined the semantics of a term as the aggregate contribution of semantic weight of all 

its ancestors and the term itself and the similarity between two terms was defined as the 

ratio of semantics they shared. 

3. The Proposed Measure 

3.1. Non-redundant Common Ancestors of Two GO Terms 

The GO graph is structured as a rooted Directed Acyclic Graph (rDAG) [6] with 

controlled vocabulary of terms as its nodes and the relationship between terms as its 

edges. The terms in the graph describe genes and gene products with three aspects of 

biological meanings: molecular function (MF), biological process (BP) and cellular 

component (CC). The edges in the graph link different terms to each other by certain 

relationships, such as “part-of”, “is-a”, “regularized”, and so on. In the DAG structure 

of GO graph, all terms in the graph are organized in a hierarchical way, a term closer to 

the root of the graph has more general biological meaning, while those far from the root 

have more specific biological meanings, that is to say, a term at lower level inherits the 

semantics from its parents, which are more specific in biological meanings. The 

biological meanings of nodes in the graph are more and more specific from ancestral 

terms to descendant terms, and the semantics of GO terms also become more and more 

specific. 

Due to the inheritance relationship between terms at different levels of the GO graph, 

the semantics conveys from upper terms to their descendants step by step through the 

edges linking them, and the child nodes aggregate all semantics from its direct parents 

and form a more specific semantics, which will be transmitted downwards. Based on 
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this observation, one may think that the semantics of a node‟s ancestral terms are 

redundant to all its descendants. This is the case when there is a unique direct parent of 

those child nodes. However, as a node in the GO graph may have multiple parents, and 

a parental node may have more than one child nodes, the semantics of an ancestral node 

may be specified through a path and flows into some descendants, but not flows into 

other child nodes. For the similarity measure between pairs of GO terms, this kind of 

ancestors is informative and is referred to as non-redundant common ancestors. How to 

identify such common ancestors is a focus of this study. 

In order to distinguish between redundant and non-redundant common ancestors of 

two GO terms investigated, we examine the direct child nodes of each common 

ancestor. If they are all inherited by the both terms, we can see that from these direct 

child nodes upwards, the two terms have the same common ancestors, and the semantics 

of the common ancestors are inherited by both terms through the paths passing these 

direct child nodes. Thus, the common ancestors upwards from the direct child nodes are 

redundant as it provides no more information about the relationship between the term 

pair. On the contrary, if there is a direct child node inherited by either term involved, the 

semantics of the common ancestor may flow into this child node and downward to the 

term exclusively. This suggests that the common ancestor is informative to the semantic 

relationship between two terms, and the common ancestor of this kind is distinguished 

as non-redundant common ancestor, they should be taken into consideration when we 

define the similarity measurement between two terms. 

The non-redundant common ancestors shared by two terms can be identified in a 

direct way. First of all, we detect the parental node set for each term involved, and then 

compute the common ancestor set from the two parental node sets. Consequently, for 

each element in the common ancestor set, we check its direct child nodes, if there is a 

child node that are not included in the common ancestor set, we consider it to be a non-

redundant common ancestor. This algorithm has a computational complexity of )(nO , 

which is much cheaper than other methods [18, 26] based on multiple common 

ancestors. 

 

A

B

C

2C1C

A

B

C

2C1C

2D

1D

A

B

C

1C 2C

2D1D

( )a ( )b ( )c

A

B

C

2C1C

A

B

C

2C1C

2D

1D

A

B

C

1C 2C

2D1D

( )a ( )b ( )c
 

Fig. 1. Illustrative examples of the inheritance relationship and the non-redundant common 

ancestors of two terms in the GO graph. Ancestral nodes in yellow color are redundant ancestors 

and those in blue color are non-redundant ancestors of 1C and 2C . 1D and 2D in (c) are the non-

redundant ancestor of 1C and 2C , respectively 

Figure 1 gives an illustrative example to show the inheritance relationship among 

nodes in the GO graph and the non-redundant ancestors of two terms, as well as their 
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non-redundant common ancestors. The graph in Figure 1(a) is a tree, in which A  and 

B  the redundant ancestors of 1C and 2C  as the semantics of A is inherited by B and 

then uniquely inherited by C , which is directly inherited by 1C and 2C , and thus C is 

their unique non-redundant common ancestor.  Similarly, C in Figure 1(b) is also a 

unique non-redundant common ancestor of 1C and 2C  as all semantics of their 

ancestors are combined in C  and directly inherited by the two terms. Figure 1(c) gives 

another example of multiple inheritance. Unlike 1D and 2D in Figure 1(b), these two 

nodes are uniquely inherited by 1C and 2C , and they serves as non-redundant ancestor 

of this two nodes respectively, C is the direct parent of the term pair and serves as a 

non-redundant common ancestor. The semantics of B is a redundant common ancestor 

as it contributes all its semantics to node C . As for A in this graph, it is a non-

redundant common ancestor of 1C and 2C , as the semantics of this node flows into the 

two leaves nodes through different paths, even though it is not directly inherited by the 

two terms.  

3.2. The Semantic Similarity between GO Terms 

As discussed in the previous section, many existing measures have their limitations. In 

order to address these problems, we proposed a hybrid scheme to quantify the similarity 

between pairs of terms in the GO graph, where both structural information and 

information content of nodes are taken into consideration. Moreover, we took advantage 

of more than one common ancestor of two terms. The similarity value composes of two 

parts: one is deduced from the semantic values of both non-redundant common 

ancestors and the non-redundant ancestors of the term pair involved, the other is 

deduced from the depth of their non-redundant common ancestors, which is based on 

the probability that these non-redundant common ancestor occur in the corpus. 

Suppose we have two terms 1c and 2c ,and 1 2( , )RCA c c is their redundant common 

ancestor set, then the commonality of the term pair can be characterized by their non-

redundant common ancestor set, which can be calculated as, 

         1 2 1 2 1 2( , ) ( , ) ( , )NRCA c c CA c c RCA c c                  (1) 

where 1 2( , )CA c c is the common ancestor set of 1c and 2c . Consequently, the semantic 

value that they share can be defined as the summation of information content that all 

their non-redundant ancestors contain, and computed as follows, 

           
1 2

1 2

( , )

( , ) ( )
t NRCA c c

SSV c c IC t


                            (2) 

The non-redundant ancestor set of term 1c can then be defined as, 

          1 1 1 2( ) ( ) ( , )NRA c Parent c RCA c c                      (3) 

where 1( )Parent c is the ancestor set of 1c . Then the semantics of this term can be 

characterized by the elements in 1( )NRA c  and the term itself. In this study, we define the 

semantic value of a GO term by adding the information content of this term and those of 

its non-redundant ancestors, 

               
1

1

( )

( ) ( )
t NRS c

SV c IC t


               (4) 
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where 1 1 1( ) ( ) { }NRS c NRA c c U . Note that 1( )SV c provides the information to describe what a 

term 1c is, and 1 2( , )SSV c c  provides all information  needed to state the commonality of 

1c and 2c in the GO graph, we can quantified their similarity measure, based on the 

information they share, in a normalized form by the ratio between the amount of 

1 2( , )SSV c c and the semantic values of 1c and 2c  as follows, 

            1 2

1 2

1 2

2 ( , )
( , )

( ) ( )
sv

SSV c c
sim c c

SV c SV c





                      (5) 

According to the definition in formulas (1) and (3), we have 1 2( , )NRCA c c  

 1( )NRA c and 1 2 2( , ) ( )NRCA c c NRA c , which will result in 1 2( , )SSV c c  1( )SV c  and 

1 2( , )SSV c c  2( )SV c  and then 1 2( , ) 1svsim c c  . 

In the case where 1c and 2c  are identical, we have 
1 2( ) ( )SV c SV c  and 1 2( , )SSV c c  

2( )SV c , and the similarity value of this kind will be equal to 1. This means that the 

specificities of terms in the GO graph are ignored and it will cause the problem of 

shallow annotation, which has been highlighted in previous work. In order to address 

this limitation, we take advantage of the information related with the depth of non-

redundant common ancestors in the GO graph. 

In the hierarchical structure of GO graph, if a gene is annotated with a term, it is also 

annotated with the ancestors of this term. That is to say, once a term occurs in a corpus, 

all its ancestors will also occur in the same corpus implicitly, which will result in 

smaller probability of occurrence for the terms at lower level. As we have discussed in 

previously that GO term pairs at lower level are more specific and have larger similarity 

values, we can relate the probability that the non-redundant common ancestors occur 

with the similarity measurement of two terms, and define this kind of similarity value as 

follows, 

    
1 2

1 2

( , )

1
( , ) (1 ( ))depth

t NRCA c c

sim c c p t
N 

                     (6) 

where N is the number of non-redundant common ancestors of 1c and 2c , ( )p t  is the 

probability that a term t occurs in the corpus. It is easy to see that if the non-redundant 

common ancestors are far away from the root, the similarity value of this kind will 

become larger. 

 Finally, we define the overall semantic similarity value between 1c and 2c by 

integrating the above two similarity measures as below: 

               1 2 1 2 1 2( , ) ( ( , ) ( , )) / 2
IISM depth svsim c c sim c c sim c c               (7) 

To show how the non-redundant ancestors are identified and the semantic similarity 

measurement IISM is calculated, we take a snippet of GO graph for example. Figure 2 

is a sub-graph of biological process aspect of GO that consists of 7 terms and the 

corresponding relationships among them. In this context, cellular protein localization 

(denoted by n5) and establishment of protein localization (denoted by n6) are two terms 

investigated, and the set of their common ancestors is },,,{ 4210 nnnn , 0n and 1n are 

redundant common ancestors as all their semantics flow into 2n and then into n5 and n6 

through different paths, so the non-redundant common ancestors set of n5 and n6 

is },{),(
4265

nnnnNRCA  . After removing the redundant common ancestors away from 

the corresponding ancestor set of n5 and n6, we get their non-redundant ancestor 

set, },,{)(
4325

nnnnNRA   and 6 2 4( ) { , }NRA n n n , respectively. 
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Table 1. The information content value, semantic value and probability of the terms presented in 

Figure 2 

Id GO id IC value S value P value 

0n  GO:0008150 0 0 1 

1n  GO:0051179 0.7508 0.7508 0.1775 

2n  GO:0033036 1.2365 1.9873 0.0580 

3n  GO:0070727 1.5644 3.5517 0.0273 

4n  GO:0008104 1.3416 3.3289 0.0455 

5n  GO:0034613 1.5819 10.4498 0.0262 

6n  GO:0045184 1.4176 6.7338 0.0382 

IC value denotes the information content of each node and S value is the semantic value of this 

term and its non-redundant ancestors, P value denotes the probability that each node occurs in 

the occurs in a corpus 
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Fig. 2. A fragment of GO graph that contains cellular protein localization and establishment of 

protein localization. The nodes in blue color  with red dashed circles ( 2n  and 4n ) are the non-

redundant common ancestors of 5n and 6n , while those in orange color are their redundant 

common ancestors 

3.3. The Implementation of IISM 

The algorithm for the implementation of IISM is described below. It starts by 

selecting the parents and the common ancestors of the both terms (line 1) in GO and by 

initializing the set of redundant common ancestors as an empty set (line 2). The 

algorithm selects each common ancestor (line 3). For each selected ancestor, the 

algorithm calculates its direct descendants and checks if they are all inherited by both 

terms (line 4-5), if the common ancestor is redundant, it is added to the set of redundant 

common ancestors (line 6). Then the non-redundant common ancestor set and the non-

redundant ancestor sets of the both terms are calculated (line 9-11), and the common 
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semantics as well as the semantics of each term is computed (line 12 -22), the similarity 

measure based on the semantic values is quantified as the ratio of common semantics to 

the total semantics of two terms (lines 22). After the similarity based on the depth of the 

non-redundant common ancestors was computed (line 23 - 27), the algorithm calculates 

the similarity as the average of the two kinds of similarity values (lines 28). The 

algorithm for the implementation of IISM is shown in Figure 3. 

 

Algorithm 1. IISM (c1, c2) 

1:  CA = GetCommonAnc(c1, c2), P1=GetParent(c1), P2=GetParent(c2) 

2:  RCA = {}  

3:  for all a in CA do 

4:    DirectChildSet = GetDirectDescendant(a) 

5:    if DirectChildSetCA then 

6:      }{aRCARCA   

7:    end if 

8:   end for 

9:   NRCA=CA-RCA,  

10:  NRA1=P1 - RCA 

11:  NRA2=P2 - RCA 

12:  SSV = 0, SV1 = 0,SV2 = 0 

13:  for all ca in NRCA do 

14:    SSV +=IC(ca) 

15:  end for 

16:  for all c1 in NRA1 do 

17:    SV1 +=IC(c1) 

18:  end for 

19:  for all c2 in NRA2 do 

20:    SV2 +=IC(c2) 

21:  end for 

22:  simsv= 2×SSV/(SV1+SV2) 

23:  P = 0 

24:  for all ca in NRCA do 

25:    P += p(ca) 

26:  end for 

27:  simdepth= P/N 

28:  return sim= (simsv+ simdepth)/2 

 

Fig. 3. The algorithm for the implementation of our approach 
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4. Validation of the Proposed Approach 

In this section, the performance of our similarity measure over terms is validated 

through the effectiveness that they quantified the functional similarity between pairs of 

genes or gene products. As a gene may be annotated with more than one term, the gene 

similarity is usually established on two terms sets. The similarity value between two 

term sets can be computed by three schemes: maximum (MAX) [18], average (AVE) 

[34] and best match average (BMA) [35] rule. In this study, the BMA rule was adopted 

to estimate the semantic similarity value between two genes.  

There are some strategies to validate the effectiveness of similarity measure for genes 

or gene products: comparing the semantic similarity with the gene expression similarity, 

comparing it with sequence similarity, comparing it with interaction relationship of 

proteins, or comparing it with the gene relationships in biological pathways. In this 

study, we used gene expression dataset and pathway dataset as bench mark to validate 

the proposed measure, the semantic similarity was compared with expression similarity 

and gene functional similarity in pathway. Our experimental results were evaluated 

against those produced by some existing measures. 

4.1. Dataset 

Three datasets were used in this study: the GO dataset (released in April 2013), a gene 

expression dataset and a pathway dataset were used. The Gene Ontology data and gene 

annotation dataset were downloaded from the Gene Ontology database [36], which 

contains 25370 BP, 3295 CC, and 10445 MF terms. The gene annotation dataset 

contains 91133 annotations of 6381 genes for the yeast genome, and 358244 

annotations of 43245 genes. The Spellman dataset [37] comprises of 6178 gene 

expression profiles of genes in yeast cell cycle. 

The pathway dataset was downloaded from the website of SGD (http://pathway. 

yeastgenome.org/), which contains classification and annotation information of genes in 

each pathway. There are 187 biological pathways in the SGD database (as of September 

23, 2013). Most of these pathways contain more than three genes manually annotated by 

both Enzyme Commission (EC) numbers and molecular function GO terms. For 

instance, there are eleven genes, BAT2, BAT1, PDC6, PDC5, PDC1, SFA1, ADH5, 

ADH4, ADH3, ADH2 and ADH1 in the amino acid degradation pathway valine 

degradation. According to SGD, the eleven genes in this pathway are manually divided 

into three classes as illustrated in Figure 4. The genes in each group participate in the 

same biological process and are annotated by an EC number. Table 2 lists the EC 

number of all genes in this pathway. Moreover, the genes in the same group are 

annotated by mostly the same GO terms. In this study, the entities lacking EC number 

or gene name, as well as pathway with less three genes, were removed from SGD. The 

final dataset contains 109 pathways with at least three genes annotated by EC numbers 

and GO terms. 
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Fig. 4. Functions of genes in a S.cerevisiae pathway valine degradation 

4.2. Experimental Results 

Results on pathway dataset.  In the SGD dataset, genes in each pathway are 

manually classified according to their molecular function, and annotated with molecular 

function terms of GO and the corresponding EC numbers. Two genes annotated with 

the same EC number means that they participate in the same reaction and tend to 

perform similar biological function. This kind of priori knowledge provides similarity 

information between genes at functional level, i.e., the genes with the same EC number 

is more similar than those with different EC numbers. We took this priori functional 

information as ground truth to validate our approach by comparing it to the clustering 

results derived from our approach. The genes in a pathway are clustered according to 

the semantic similarity measurement proposed in this paper and then compared with the 

ground truth. If the clustering result is consistent with the artificial classification result 

based on the biological reactions, it suggests that the similarity measure is effective in 

charactering the functional similarity between genes. 

Because of the space crunch, we only take the pathway „valine degradation‟ as an 

example to demonstrate the performance of our approach and that of Wang‟s method 

[18]. The gene names and corresponding EC numbers in this pathway are listed in Table 

2. We see that there are 11 genes involved in 3 reactions in valine degradation pathway, 

SFA1, ADH1, ADH2, ADH3, ADH4 and ADH5 are in a reaction annotated with EC 

number „1.1.1.1‟, BAT1 and BAT2 are in another reaction with EC number „2.6.1.42‟, 

while PDC1, PDC5 and PDC6 participate in the reaction numbered with „4.1.1.1‟. 
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Table 2. Functions of genes in valine degradation pathway 

Class id EC number Gene name Class id EC number Gene name 

C1 1.1.1.1 ADH3 C2 4.1.1.1 PDC1 

 1.1.1.1 ADH4  4.1.1.1 PDC5 

 1.1.1.1 SFA1  4.1.1.1 PDC6 

 1.1.1.1 ADH5 C3 2.6.1.42 BAT1 

 1.1.1.1 ADH1  2.6.1.42 BAT2 

 1.1.1.1 ADH2    

Table 3. Similarity values among genes in valine degradation pathway obtained by different 

methods 

 ADH3 ADH4 ADH5 ADH2 ADH1 SFA1 PDC1 PDC5 PDC6 BAT1 BAT2 

ADH3 1.000 0.896 0.851 0.897 0.837 0.915 0.577 0.530 0.647 0.625 0.648 

ADH4 0.917 1.000 0.820 0.812 0.824 0.838 0.581 0.557 0.667 0.648 0.669 

ADH5 0.886 0.867 1.000 0.850 0.788 0.867 0.551 0.556 0.677 0.686 0.673 

ADH2 0.823 0.852 0.884 1.000 0.892 0.911 0.527 0.573 0.725 0.665 0.722 

ADH1 0.879 0.866 0.842 0.924 1.000 0.881 0.513 0.550 0.699 0.652 0.682 

SFA1 0.934 0.872 0.804 0.929 0.913 1.000 0.513 0.541 0.666 0.700 0.662 

PDC1 0.660 0.673 0.640 0.463 0.615 0.607 1.000 0.963 0.628 0.595 0.628 

PDC5 0.629 0.658 0.646 0.657 0.646 0.632 0.975 1.000 0.670 0.621 0.666 

PDC6 0.736 0.749 0.754 0.794 0.774 0.746 0.703 0.731 1.000 0.912 0.994 

BAT1 0.717 0.736 0.764 0.747 0.736 0.568 0.661 0.683 0.928 1.000 0.915 

BAT2 0.735 0.750 0.750 0.790 0.763 0.740 0.701 0.727 0.997 0.468 1.000 

The values in the upper triangular matrix are obtained by our method, while those in the lower 
triangular matrix are obtained by Wang’s method  

The semantic similarity values among genes in this pathway were computed by our 

measure and Wang‟s, and the genes were clustered based on the semantic similarity 

values. Table 3 lists the similarity values obtained by our method (the upper triangular 

matrix) and those obtained by Wang‟s measure (the lower triangular matrix). It shows 

that the two measures generally product higher similarity values within the same cluster. 

They both mostly produce semantic similarity values lager than 0.8 for the two reaction 

annotated with “1.1.1.1”and “4.1.1.1”, respectively. However, Wang‟s method 

produced a rather small similarity value of 0.468 between BAT1 and BAT2, which is 

only about half of our similarity value. Figure 5 demonstrates the comparison results of 

average semantic similarity values of inner and between groups. We can see that the 

inner similarity scores are generally larger than the similarity between groups except 

one (produced by Wang‟s method). In comparison, the inner group similarities of C1-

C1 and C2-C2 produced by Wang‟s method are somewhat larger than those produced 

by IISM, while those for the third group C3-C3 is much smaller than IISM. As for 

similarity values between groups, IISM consistently has larger scores, which suggests 

that our method has stronger ability to distinguish between groups than those of Wang‟s.  
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Fig. 5. Comparison results of inner and between groups similarity values for IISM and Wang‟s 

method. Larger inner similarity score and smaller inter similarity values implies stronger ability to 

distinguish different classes 

The clustering results based on the semantic similarity values obtained by our 

method and those obtained by Wang‟s method are shown in Figure 6 and Figure 7, 

respectively. Figure 6 shows that the 11 genes in the valine degradation pathway are 

clustered into three clusters based on our measure. SFA1, ADH1, ADH2, ADH3, ADH4 

and ADH5 form the first class (denoted by class 1), while PDC1, PDC5 and PDC6 are 

clustered into another group (denoted by class 2) and BAT1 and BAT2 form the third 

cluster (denoted by class 3). The clustering results suggest that our semantic similarity 

measure can effectively capture the functional relationships among genes in the 

pathway. 

The clustering results based on Wang‟s measure are demonstrated in Figure 7. We 

see that the eleven genes are not clear grouped in to three classes, as the second class 

(PDC1, PDC5 and PDC6) and the third class (BAT1 and BAT2) do not seem to form 

clear groups. Specifically, PDC6 seems more close to the first group of genes, while 

PDC1 and PDC5 seem more close to the third class. In addition, the genes in the third 

class are clustered into proper group either. Thus, the clustering result is not consistent 

with our prior knowledge about the valine degradation pathway. It implies that the 

similarity scores obtained by Wang‟s approach can‟t effectively characterize the 

functional relationship between genes in this pathway. 

Here we give a biological interpretation of the clustering result of our method in this 

pathway to show how it is consistent with the priori functional knowledge of these 

genes. According to the annotation information in the SGD database, the eleven genes 

in this pathway are functionally related with the valine degradation activity, which is 

comprised of the following steps: 1) deamination of the amino acid to the corresponding 

alpha-keto acid; 2) decarboxylation of the resulting alpha-keto acid to the respective 

aldehyde; and, 3) reduction of the aldehyde to form the corresponding long chain or 

complex alcohol. Specifically, the genes in class 1 (SFA1, ADH1, ADH2, ADH3, 

ADH4 and ADH5) tend to be involved in alcohol dehydrogenase activity (GO:0004022) 

and participate in amino acid catabolic process to alcohol via Ehrlich pathway 

(GO:0000947) and NADH oxidation (GO:0006116) in cytoplasm (GO:0005737). By 

contrast, PDC1, PDC5 and PDC6 are inclined to perform pyruvate decarboxy-lase 

activity (GO:0004737) in nucleus (GO:0005634) or cytoplasm (GO:0005737), and be 
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involved in catabolic and metabolic process, as they are mostly annotated with 

glycolytic fermentation to ethanol (GO:0019655), aromatic amino acid family catabolic 

process (GO:0000949), tryptophan catabolic process (GO:0006569), L-phenylalanine 

catabolic process (GO:0006559) and pyruvate metabolic process (GO:0006090). As for 

the third group of genes, BAT1 and BAT2 tend to be involved in branched-chain-

amino-acid transaminase activity (GO:0004084) and participate in the branched-chain 

amino acid biosynthetic process (GO:0009082) and branched-chain amino acid 

catabolic process (GO:0009083). In terms of the relationship among the three groups, 

class 2 and class 3 are more similar to each other since the genes in these two groups are 

all annotated with „catalytic activity‟ in the SGD database. This result suggests that our 

clustering result is consistent with the human perspective of gene functions in this 

pathway. Additionally, the genes in class 1 also participate in some other degadation 

pathway, such as tryptophan degradation, leucine degradation, phenylalanine 

degradation and isoleucine degradation, and those in class 2 (PDC1, PDC5 and PDC6) 

also be involved in the pathways of glucose fermentation, phenylalanine degradation, 

tryptophan degradation, isoleucine degradation and acetoin biosynthesis II, while the 

two genes in the third group tend to be active in the biosynthesis pathways like 

isoleucine biosynthesis, leucine biosynthesis and valine biosynthesis. Once again, we 

see the superior of our method, as our semantic similarity scores can clearly distinguish 

the genes between class 2 and class 3, which are similar in biological meanings. 
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Fig. 6. Clustering results of genes in valine degradation pathway based on similarity values 

obtained by our method   
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Fig. 7. Clustering results of genes in valine degradation pathway based on similarity values 

obtained by Wang‟s method  

Results on gene expression dataset.  In the experiment conducted on the gene 

expression dataset, the performance of our method is evaluated by comparing the 

semantic similarity values with the gene expression similarity. The hypothesis for this is 

that genes express at similar level tend to perform similar biological function or 

involved in the same biological process. In this study, the relationship between the 

expression similarity and semantic similarity was characterized by the Pearson‟s 

correlation coefficient. The expression similarity relationship between genes is 

quantified by the absolute correlation coefficients between the expression profiles, and 

the semantic similarity values of genes were deduced from the biological process (BP) 

ontology. Like several previous studies [32, 38, 39], the gene pairs are divided into 

equal intervals based on the sorting  expression correlation coefficients between pairs 

of genes. The average expression correlation coefficients of genes within each interval 

characterize the mean statistical property of expression correlations. The corresponding 

average semantic similarity values based on GO terms in each interval were computed 

and then the Pearson‟s correlation coefficients between the averages of the two kinds of 

similarities in each interval are calculated. The larger coefficient suggests that the 

stronger association between the semantic similarity and the expression similarity, and 

the more effective semantic similarity measure between GO terms. 

To evaluate the effectiveness of our metric against other methods on this gene 

expression profile dataset, we split the gene pairs into 4-13 bins like [32], the Pearson‟s 

correlation coefficients based on different methods were computed and listed in Table 4. 

We can see that the scores of correlation coefficient generally decrease as the number of 

groups grows. This means that the data more close to the „raw‟ data will produce 

smaller coefficients, which will make it difficult to capture the relationship between the 

expression similarity and semantic similarity, and subsequently evaluate the effective-

ness of the similarity measure. As for different measures, the similarity scores produced 

by multiple common ancestors based methods, including Wang‟s, Song‟s and IISM, 

generally correlate better with expression similarity than those derived by single 

common ancestor based methods (including Resnik‟s, Li‟s and Jiang‟s methods). 
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Among the methods based on multiple common ancestors, our method (IISM) almost 

produces larger correlation coefficients than those produced by Song‟s, which is 

followed by Wang‟s approach. In particular, our measure correlations better with 

expression profile than all other approaches in the case that the number of bins is larger 

than 8, which implies that our method based on integrated information performs better 

even if the resolution is high. This may due to the fact that our approach not only 

combines both semantic information and depth information of the GO terms, but also 

takes into account information from multiple common ancestors of two terms. 

Table 4. Correlation Coefficients between Gene Expression Similarities and Semantic 

Similarities Derived from Different Approaches 

Classes Resnik [22] Lin [23] Jiang [24] Wang [18] Song [32] IISM 

4 0.614 0.789 0.930 0.929 0.966 0.943 

5 0.561 0.717 0.889 0.802 0.850 0.864 

6 0.413 0.569 0.700 0.745 0.774 0.785 

7 0.519 0.622 0.761 0.725 0.733 0.758 

8 0.496 0.597 0.675 0.706 0.714 0.743 

9 0.417 0.659 0.664 0.745 0.778 0.791 

10 0.403 0.620 0.730 0.733 0.772 0.793 

11 0.419 0.665 0.691 0.725 0.761 0.776 

12 0.246 0.485 0.722 0.715 0.782 0.797 

13 0.321 0.525 0.715 0.709 0.791 0.832 

5. Conclusions 

In this study, we proposed a novel approach for the semantic similarity measurement 

over GO terms by taking into account multiple common ancestors, and aggregating both 

semantic information and depth information of GO terms. The semantic value of a GO 

term was established on the concept of non-redundant ancestors and the common 

semantics two terms share was derived from their non-redundant common ancestors. 

The information associated with the probability that a non-redundant common ancestor 

occurs in the corpus was integrated into our IISM measurement to address the problem 

of „shallow annotation‟. The validation experiments were conducted on both pathway 

dataset and gene expression dataset, and results on the both datasets show the 

superiority of our approach. Moreover, the computational complexity of our IISM 

approach is O(n), which is more effective than other methods based on multiple 

common ancestors, this makes it suitable for large-scale study. IISM is an alternative to 

other methods based on multiple ancestors. 

In addition, there are two issues should be noticed in this work: (1) the IC value of a 

GO term used in this paper is derived from the probability that it appears in a specific 

corpus, which will be affected by the annotation of specific species, and the IC value 

may vary across the annotations of  different species. In addition, the IC value may 

change with the increase of our biological knowledge in the future; (2) our method only 

took into account the common ancestors in the upper part the GO graph. As a matter of 
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fact, the descendants two terms share can also provide information to characterize their 

commonality. It will be help to consider the common descendants of two terms for 

better semantic similarity measure. 
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