
Computer Science and Information Systems 11(4):1537–1553 DOI:10.2298/CSIS131220078M

Optimization of server performance in the CMX

educational MMORPG for Computer Programming

Christos Malliarakis1, Maya Satratzemi
1
, Stelios Xinogalos

1

1 Department of Applied Informatics, University of Macedonia, 156 Egnatia Street,

540 06 Thessaloniki, Greece

{malliarakis, maya, stelios}@uom.gr

Abstract. A new generation of computer games has taken over during the last few

years, called Massive Multiplayer Online Role Playing Games (MMORPG). In

parallel, the usage of games in education has increased, exploiting the fact that

young people are familiarized with them and would be more motivated to learn

while entertained. However, MMORPG require significant amounts of resources,

such as bandwidth, RAM and CPU capacity to support learning. In this paper, we

propose a new methodology to achieve monitoring and optimization of the load

balancing, so that the essential resources for the proper execution of an

educational MMORPG for computer programming can be foreseen and bestowed

without overloading the system. Moreover, we present an educational MMORPG

called CMX, which aims to teach computer programming through interactive

activities and role-playing. We finally apply the proposed model to CMX by

conducting an experiment and conclude that the server’s performance is indeed

increased.

Keywords: MMORPG server optimization, networked game, MMORPG delay,

educational game, computer programming.

1. Introduction

Students of the 21
st
 century learn and react accordingly to the digital world they are

growing up in. As a result, they are less impressed and motivated to learn in traditional

ways. This is due to the fact that computer games with impressive graphics invade their

lives from a very early age, making them significantly accustomed to many of the

computer’s functionalities.

In parallel, students are still confronting severe difficulties in computer programming,

which are still a topic of interest for researchers in the last two decades [13]. To hinder

these difficulties, several educational programs were developed that also aimed to depict

additional competences, such as critical thinking and problem solving. The relevant

literature identifies three major categories of environments that have been constructed

towards this goal. The first category is educational programming environments, sets of

tools supporting students in the process of learning introductory programming [2, 5, 17].

Secondly, programming microworlds are learner-centred worlds explored by directly

manipulating objects in the world with a limited set of simple commands coupled with

metaphors to aid in problem description and to exploit storytelling [14, 22]. Finally,

1538 Christos Malliarakis et al.

educational games are used as educational tools and provide compelling contexts via

interactive, engaging and immersive activities [10]. Out of the three categories,

educational games are considered to promote the majority of interaction and

collaboration towards a final goal by allowing students to engage in activities already

familiar to them from computer games. It should be noted that educational games also

support engaging learning for learners with disabilities, allowing them to learn through

entertaining and motivating activities [24]. These games combine the delivery of

domain-specific knowledge with an attractive graphical environment and interesting

scenarios to enhance students’ motivation. This field is known as Game Based Learning

and includes computer games that are structured in a way that they not only entertain the

players, but also monitor and guide them through their learning process [9].

A new generation of computer games has started to take over during last few years,

called Massive Multiplayer Online Role Playing Games (MMORPG). This field has

brought on a vast variety of multiplayer games with attractive virtual environments,

interesting and interactive scenarios and technologically enhanced features that have

been built on top of advanced infrastructures that can service a large amount of users

[18]. A number of MMORPGs are popular with the young generation, which has

increased the interest in applying these games in educational settings. However, they

require significant amounts of resources in order to function properly, and a number of

parameters can play a part in the system’s consistent and responsive performance.

Therefore, system delay or failure issues are very important factors for the proper

operation of these games in education and they could have a huge impact in the learning

process and students’ motivation. These issues are even more important when

MMORPGs are applied in computer programming courses, where functionalities such as

compiling, debugging, and executing complex algorithms in a programming language

are required. Also, the packets transmitted between the server and the clients do not

include solely score points and players’ positions in the world, but they hold lines of

code that the server needs to retrieve, compile and send proper feedback to the

corresponding client.

Thus, the main problem that presents a significant research interest and remains a

challenge is the identification of how we can address the resources consumption in an

educational MMORPG in order to ensure its proper operation. In other words, it is

important to study how all of the beneficial features of an educational MMORPG can be

put to use, while the server hosting the game runs with no problems from beginning to

end. This way, teaching and learning is enhanced, students remain immersed in the

game’s environment, without disorienting their interest or motivation to win, the system

does not present delays in its responses and manages to produce the appropriate

feedback to the teacher (learning analytics).

For the successful solution of all the different problems that might occur and are

crucial to the server system’s performance, a number of interesting algorithms have been

constructed and are presented in the related work section of the paper.

The next section briefly describes the related work and its limitations, followed by a

presentation of CMX, an educational game developed to facilitate teaching and learning

of computer programming and will be used for the evaluation of the proposed

optimization algorithm. Next, the paper includes a section that presents the system

performance analysis and the corresponding creation of a mathematical model that

estimates how active players are hosted within an MMORPG game in a server so that

Optimization of server performance in the CMX educational MMORPG 1539

the server administrators can take the necessary measures that will ensure optimized

server’s performance. Moreover, the section includes a process to ensure server’s

performance optimization. The last section presents the evaluation of this optimization

with an experiment using the CMX game. The paper concludes with conclusions drawn.

2. Related work

The literature review carried out indicated a limited amount of studies that investigate

and measure the server system’s performance in online multiplayer games, though no

studies were identified for focusing on educational games and especially in the field of

computer programming. All these studies take into account that multiplayer games can

support either TCP/IP or IPX internet protocols and can be played either over LANs or

the internet. The goal in each study was to examine the parameters that affect the

server’s operation and thus should be taken into consideration while optimizing a

game’s performance. It should be noted that studies on optimizing applications and

mainly games has been a research focus for over two decades. However, there is a

distinction between optimizing network resources and optimizing the performance of the

packets’ transmission on the servers, by monitoring CPU usage and RAM efficiency.

A case study carried out by [23] using the “World of Warcraft”, identified the

specific features of an MMORPG that affect network performance and latency. Their

focus was on determining which of the game’s actions mobile devices can support;

however, they provide useful information that are in accordance with our scope of

interest. More specifically, the authors list actions that are usually executed by players in

the game across a number of categories, which are deemed to shape the network traffic.

A representative overview of these actions’ categories is presented in the following

Figure.

Fig. 1. Categories of actions within “World of Warcraft” 23

Moreover, [23] recorded the specific characteristics that influence network traffic,

such as the size of each packet transmitted, the time between each packet’s

transmissions, the bandwidth that is used and the load of each packet. Other

characteristics observed that could affect network performance include the session

duration and each player’s interest in the actions showed in Fig. 1. Also, [4] and [7]

have created their own models on game network traffic. According to their studies,

interactive gaming is extremely delay-sensitive, which in many cases can incorrectly

1540 Christos Malliarakis et al.

determine who wins or loses a game.

Another research carried out by [7] studies the “ShenZhou Online” MMORPG

indicates that the characteristics that constitute the game’s traffic include: the average

bandwidth, the volume of the traffic in the client and the server, the time interval status

update is carried out (e.g. how periodically is the game’s status synched), the overall

activity of the game and the game sessions per hour.

To examine the network traffic based on the transmit-receive cycle, [4] developed

models and tested them on the “Quake 2” game. These models indicated that the

performance of the game is highly dependent on the clients’ machines as well as on the

hosts’ CPU speed. The exact characteristics that were assessed regarding the network

traffic include the server’s CPU, Operating System and Random Access Memory.

Taking into consideration these characteristics and measuring the amount of packets

transmitted, the study calculated the mean and standard deviation of the transmission

volume as well as the time passed between transmissions. This study does not elaborate

on possible techniques of optimizing the traffic and thus the game’s performance levels,

but suggests such actions as future work.

According to [8], the process followed throughout a game’s session includes the

transition of packets from the server to the clients logged on regarding the game’s state.

Each client receives the data and processes the information by synchronizing their local

game’s state with the server’s. This way, all players in different clients can interact with

the game while having the exact same visual representation of the game’s status at any

period interval. In the study, [8] used the “Counter strike” game and developed a model

to measure its network traffic. This game is ideal for such examinations, since, like most

multiplayer games, it is built under client-server architecture and presents a very high

traffic volume available to be examined due to its popularity.

In this model, they studied the server and clients independently, without taking into

consideration any possible inter-dependencies between them that could affect the

network traffic. This can be also seen in Fig. 2, where individual measures are taken for

server and client, and the characteristics that are evaluated are the size of the packets

transmitted and received as well as the time spent between each transmission.

Fig. 2. Traffic evaluation for “Counter Strike” 8

As optimization techniques, the study suggests carrying out predictions on the game’s

status (e.g. interactions of the players with the game’s bots, objects and other players), a

method initially proposed by [3] and [15].

An additional study that researched network traffic is [12]. The mathematical model

they use to measure traffic delay is shown in the following equation.

  min ,que tot
eff

S
T T T

R
 (1)

Optimization of server performance in the CMX educational MMORPG 1541

The measures included in the above equation include all features that the authors

suggest strongly influence a game’s performance, where Tmin is the minimum packet

processing delay in a transmission, S is the packet size measured in bits, Reff is the

effective link rate in a packet transmission and Tque,tot is the total delay while the packets

are queuing.

Additionally, [6] studied the players’ behaviour according to network traffic as well

as the factors that affect it. They also chose the “Counter Strike” multiplayer game and

examined the way the game’s state is constantly updated by the server and transmitted

into all the different clients as well as how the players interact with the game’s objects.

This study does not focus on the actual game’s performance and the characteristics that

could optimize the process.

Another research by [21] carried out a thorough investigation on the different factors

that influence network traffic and multiplayer games’ performance. More specifically,

the affecting factors were categorized into three axes, namely “Resource Management”,

“Consistency and Responsiveness” and “Logical Platform and Application”.

The quantity of resources transmitted from the clients to the servers and vice versa is

a feature that was pointed out by all studies as influential in network traffic. [20] move

on to elaborate on the individual elements that comprise the resources sent in a

multiplayer game. These elements have been identified and form an equation called the

“Information Principle Equation”, shown in (2).

Resources = M × H × B × T × P (2)

According to this equation, the different information types that are part of the

resources in a game include the number of messages (M), the average number of nodes

where a message has to be transmitted (H), the average of the network bandwidth that

can successfully transmit a message without losses (B), the time in which each message

is transmitted over the network with the corresponding bandwidth to the corresponding

node (T) and the actual number of cycles the processor has to complete for the

successful message transmission (P). The equation shows that all these parameters are

strictly interconnected; thus, any attempt to lower one in an attempt to enhance the

resource transfer will lead to the necessary increase of one or more of the others.

Moreover, [20] investigated the factors that influence the game’s consistency and

responsiveness, since both these elements indicate a game’s high quality. According to

their study, the factors that influence consistency are the bandwidth volume, the latency

volume and the number of nodes that are connected to the system. Moreover, the factors

that influence responsiveness include fast resources transmission, lack of lost messages

and again bandwidth and latency.

Other studies that have been carried out research approximately the same features in

assessing multiplayer games’ performances and delay factors [16, 11]. The most

commonly mentioned factors include bandwidth delay and consumption [1, 19].

However, all aforementioned studies focus mostly on network traffic of strategy or

shooting games and less on MMORPGs that require more resources and in different

formats, as it is usually the case in the educational domain. All changes in a player’s

status (e.g. score, new level, new task achieved) are required to be recorded and

presented as a feedback not only to the player in question but also to all other players

that could see him/her in their view scope. This way, network traffic in MMORPGs

involves changing recordings and multiple message documentations and transmissions

1542 Christos Malliarakis et al.

to players of the game. This is even more required in multiplayer games that are used in

education, since any system delay or failure will not only reduce the quality of the users’

entertainment but of the learning process as well.

3. CMX –An educational MMORPG for computer programming

In our effort to tackle the problems students and teachers face during computer

programming learning and teaching, we developed an educational game that increases

motivation to engage in learning and introduces computer programming elements in a

scenario-based, problem-solving setting. In this section we elaborate on the game, which

is called CMX, and provide an overall overview of its features and scenario. In doing so,

we aim to show why such a system’s optimized performance is necessary.

Just as the majority of the multiplayer games, one of the most important features of

CMX is the scenario based on which the students are required to learn computer

programming. The virtual environment of the game is a toxic waste factory that is

equipped with a number of employees and an advanced system for handling all its

business activities and ensuring high quality of waste handling. A toxic waste factor with

protagonists a series of activists was chosen as the game’s scenario in order to send an

ecological message through the game. Thus, the MMORPG is not another common war

game like most commercial versions; in CMX, players learn how to program in order to

stop the waste factory’s server from working. Since CMX is not only a multiplayer game

but it also supports role-playing, we have configured two opposite teams in the

environment, namely “hackers” and “crackers”. The hackers are the employees of the

factory while the crackers are outsider activists that want to break through the system.

Each player, according to the team’s role, has to achieve activities in order to win.

Additionally, CMX includes internal characters called Senseis, which aim to tutor the

students’ characters in the game on how to solve the assigned computer programming

tasks. If the students seem to face difficulties in comprehending the materials taught, the

Senseis provide explanatory messages and hints to guide them through each activity.

Once an activity is successfully executed, students are rewarded with passwords that

assist them in proceeding to and interacting with the next levels of Senseis.

We consider the initial tutoring of the students essential for their successful learning

process; hence, the training process is divided into three phases based on their level of

difficulty, and each phase includes a different Sensei type. The Basic Sensei initiates

interactive training and provides a number of multiple-choice questions to its assigned

player regarding the learning materials. The player answers these questions and the

answers are evaluated automatically by the Sensei. Correct answers are rewarded with

passwords and the player moves on to the second level and the Iron Sensei. The player

is provided with a drag & drop mechanism and maps the correct answer to a given

question. The third training phase includes a Gold Sensei, where students have to write

their own lines of code with the guidance and motivation provided by the Sensei. Once

all three trainings are completed, the players are equipped with a comprehensive body of

essential knowledge and with rewards that will help them win the game.

The successful training of the players requires the transmission of a large amount of

messages from the server to the clients and vice versa (e.g. questions, answers, awards,

Optimization of server performance in the CMX educational MMORPG 1543

hints, explanations, level, task number etc). Moreover, it is essential that this

transmission occurs with no errors, since the players need to be given correct feedback

on their answers. If the server’s response is not accurate or if it is delayed significantly,

the learning process is strongly and negatively affected.

The second area is called the Arena, where players interact with each other and all

players of one team (hackers) confront the players of the other team (crackers). All

gained items from the trainings are exploited in this phase, and winning players gather

even more weapons they can later on use in their tasks. The game also presents each

player’s status as bars on the screen, with information such as remaining energy and

number and type of remaining weapons. Additionally, students in the Arena can

communicate with each other through a specialized chat tool included in the game,

shown in Fig. 3.

CMX ensures that students fully understand how to write lines of code in C or Java

by including a C or Java compiler in the code editor. The compiler presents all errors

made during the code programming and gives the opportunity to students to retry the

process.

With this synchronous communication, students are able to help each other, solve

problems and communicate ideas in their common effort to execute their assigned tasks.

The game can easily be used by a teacher to facilitate teaching computer

programming. Each teacher can redesign the game easily by setting his own multiple

choice questions for the Senseis, the drag and drop programs for the iron Senseis and the

scenarios of the programs that students are required to write for the gold Senseis.

From students’ point of view, the better players they are going to be, the more they

will increase their programming skills. This is because during their continuous

interactions with all levels of Senseis, they learn the theory more in depth and they

practice in different programming code exercises.

Fig. 3. CMX MMORPG interface

When the game is completed, teachers can access analytical reports documented by

the system, where they can easily see which students gathered satisfying scores, which

stages they did not manage to pass and where teachers should focus on their teaching.

Players use keyboard buttons in order to navigate through the game, as it has been

1544 Christos Malliarakis et al.

established in the majority of computer games. More specifically, they use the arrows in

order to move in the four directions, the Alt button in order to chat and collaborate with

the other players and the Ctrl button in order to attack their opponents. Finally,

facilitating shortcuts have been added, which the players can customize themselves and

use in whatever way it may suit them (e.g. use a specific button to activate an element of

the game, like restore their health etc).

As it has been mentioned in the descriptions of all game’s components, each phase,

character, action and graphical environment require proper resource management and

correct real-time feedback so that all players will have the same visualization of the

game’s and their personal status as well as on the messages transmitted.

4. System analysis and performance optimization

The architecture on which most MMORPGs are based comprises of one or more servers

and several clients inter-connected through internet access. The server is usually

protected by a firewall or a proxy server mainly for stability and safety reasons. The

server administrator is responsible for ensuring the stable performance of the system and

the optimization of the data stored in the server’s database. This data is gathered by the

game’s system, documented in the database connected with the game and it includes

information about each player, such as the player’s status, the world’s condition, the

possible actions that can be executed as well as any instances created by the chat

function usually embedded within MMORPGs.

More specifically, the player’s status includes all elements that relate to the specific

player. Such elements can be the player’s statistics which are constantly renewed along

with his/her corresponding evolvement during the game (e.g. current difficulty level of

programming concepts, health points, strength etc.), the player’s position in the virtual

world and all the game objects under the player’s possession. The world’s status

comprises of all the characteristics of the virtual world, such as the world map, the

virtual players (e.g. intelligent agents) that are programmed by the game creators as well

as actions that take place by each player. The actions are all the possible moves and

operations that a player can realize or that are occurring at a specific moment (e.g. a

spell is being cast; a player’s character is walking etc.). These actions involve both the

ones carried out by the actual players and agents. Finally, each MMORPG contains

groups of players, thus most games include a chat tool that supports the group members’

communication through the broadcasting of messages amongst them.

As the number of active players increases, the chat function that transmits simple text

messages continues to have a relative small complexity, so it should not be taken into

consideration during the search for the system’s complexity simplification. Moreover,

the internet connection speed will also not be considered as a factor, since it could vary

depending on the client and its changes cannot be predicted.

It is important that the system hosting a MMORPG is studied for the identification of

all factors that influence its performance and thus could potentially lead to system

overload. This way, we can determine which elements to take into consideration during

load balancing efforts. To this end, this section will propose a mathematical model for

the appropriate estimation of these factors and the subsequent configuration of the

Optimization of server performance in the CMX educational MMORPG 1545

system should their values pose a risk to the game’s successful execution by learners.

For example, if we assume that we have one player that is playing in a MMORPG,

then the server's performance would depend on the player's status, the world's status and

the possible actions that are caused or that can be caused. All these elements are

recorded and documented in a database installed within a database server inside the

main server; so the more the data produced during a game’s operation the heavier the

capacity transferred from the individual clients to the main server and stored into the

database server. Hence, the rate in which the above elements’ values change can

significantly affect the server’s overall performance and potentially obstruct the game’s

proper execution and subsequently the learning process’s successful realization. To this

end, we are proposing a model that will estimate the computational cost and the server

administrators can take the appropriate actions for possible server upgrading based on

these estimations (i.e. dynamic prediction of resources commitment).

This model includes the usage of an algorithm that measures and grades the players’

behaviour, i.e. the value changes of the varying factors that we are examining for each

player as they are being stored in the system’s database. The indicators can take values

between the scale [0.1, 10] and are considered to be versus time, which means that we

are recording the activity occurring across time, as transmitted from clients to the server.

This activity’s value is stored as a vector in the database as shown below:

               1 2 3 cs cs cs cs cs cs
CSS t P t W t A t s t s t s t (3)

CS is the indicator of the score that suggests the client-server message transmission,

while t is the time parameter, since the values that these variables take, change through

time. The Scs (Score) is a vector that corresponds to each player and indicates how active

the player is in the game’s progression. This score is dependent on the player’s status’

change rate as opposed to a) the other players’ status (variable P
CS

), b) the virtual world

(variable W
CS

) and c) the possible actions that can be executed (variable A
CS

). With

P
CS

(t)│ W
CS

(t)│A
CS

(t), we indicate that in every time instance the variables’ values

change and each new value is documented in the database over time. We further map the

P
CS

, W
CS

 and A
CS

 variables to the indices x = {1, 2, 3} respectively in order to alleviate

some of the complex representation of the relation and, thus ratings are finally

represented as sx. For example, in a game, when a player moves towards the opponent,

the changes that occur are the following: a) his relative position towards the opponent as

he is recorded in his screen, b) his absolute position for the virtual world and finally, c)

the possible actions that can be executed and the results that can be presented, e.g. when

he is near enough he can damage the opponent, an action that could not have happened

if he had been far away. Similarly, in a multiplayer educational game oriented to

learning programming if a player tries to make moves or other actions by writing lines of

code, the changes that occur are relative to the other players' situation and their code

should be configured accordingly.

Moreover, we can estimate that the metric of the activities’ score for each player at a

ti time by the c client to the s server is the sum of the P
CS

, W
CS

 and A
CS

 metrics. In order

to avoid extreme values, we logarithm them, so that they end up being in a [-1, 1] range,

where the negative values mean that the player is less active, while the more the values

tend towards 1, the more active the player is. This process is mathematically portrayed

by the following relation:

1546 Christos Malliarakis et al.

     
  
  

3 cs
i1

log tcs cs i
s t S t s (4)

Each player’s final score is configured by his interaction with the other players as

well as by the agents. The difference lies in that we can shape the system players’

behaviour so that we ensure optimized load balancing, whereas we cannot intervene in

the agents’ behaviour, as it is automatically determined by the game system.

Finally, we define two indicators, namely the us indicator that symbolizes the number

of the player’s interaction with the game’s agents and the uo indicator that symbolizes

the number of the player’s interactions with the other players. So for a player a, the final

relation is configured as follows:

 
   

   

 
   

  
   

 
   

 

 


 

i i

i i

cs i i ja i it t t ts o
cs j a

s o s oi it t t t

s t t s t tu u
TS t

u u u ut t
 (5)

The above relation estimates the Total Score (TScs) for a player, which depends on

values of the elements stored in our game database. In the above relation of the Total

Score (TScs), the first sum refers to the player’s (α) interaction with the system (e.g.

movements inside the environment, actions towards game’s agents), while the second

part of the relation refers to the player’s (α) interaction with the rest of the players (j

where j ≠ a) for each previous time instance  ()it t . With the addition of the s

s o

u
u u

in the relation we measure the multitude of the user’s interaction with the system while

with the o

s o

u
u u

, we measure the multitude of the user’s interaction with the rest of the

players. It is also important to mention that since these variables change through time,

the last values they take (i.e. the most recent) should be considered more in the final

value of the player’s total score. To represent this, as we show in the relation, we

multiply the rating calculated at a specific time instance ti, with itself. For example, an

instance of the database table that holds this information is depicted in the following

Table.

Table 1. MMORPG database instance of a player’s recorded activity

PlayerID P
CS

W
CS

A
CS

ti u

2 0.2 0.1 0.6 1 S

2 0.5 0.1 0.4 2 S

2 0.3 0.1 0.3 3 O

Let us assume that we are trying to measure the total score for the player with an ID

2. This player has executed activities during three different time instances within the

game as shown in the ti column. Moreover, the u column shows that two of these

activities include interaction with the system, while the last one represents interaction

with other players of the game. Using the proposed model, the value of the total score

will be estimated taking into consideration the fact that the player’s interaction with the

system’s agents (the first two rows that have the value u=S) has increased in the 2
nd

 time

instance, which shows he is becoming more active and thus could need more resources

Optimization of server performance in the CMX educational MMORPG 1547

in the future. According to the above table and the relation (5) of the model, the total

activity score for the player with ID=2 and instance ti=4 is TSCS(4)=0.44, which means

that his behaviour is very good and according to the goals of the game. We could easily

understand that without the algorithm we would have to use the same quantum of

resources for all the players, but now that we know their behavior, we could easily

customize the game’s responses and the corresponding needed resource commitment.

Next, we demonstrate a way to reduce the big computational cost at run-time

indicated by the double sums in the last relation of the previous section. The run-time

computational complexity of relation (5) is O(n*y), where n is the number of agents

acting in the system and y is the total amount of transactions. Both of these numbers

increase rapidly in a MMORPG game. More specifically, the
 

 

 

 
 





i

i

cs i it t

it t

s t t

t
sum

does not need to be estimated at run time, but incrementally, as each rating vector is

gathered and stored. We re-symbolize this sum with the  

 
  

3
1

CT
ii

t variable.

Additionally, the
 

 

 
 

 
 






i

i

ja i it t
j a

it t

s t t

t
 sum can also be estimated incrementally

and it will be replaced with the  

 
  


3

1
jb
ii

t variable. This way, relation (5) is

transformed into the following:

      
 

  
     

   
  

3 3
1 1

jbCTs o
CS i ii i

s o s o

u u
TS t t t

u u u u
 (6)

This relation’s complexity is O(n), where n is the total number of agents and players

inside the system. The sum in the three dimensions does not count because its limit is

stable and already known that it is 3. Thus, we are left with only a sum inside the second

addendum. The initial relation (5) has a run-time complexity of O(n*y), i.e. the number

of agents and players (n) over the number of transactions (y), which is much larger than

the complexity of relation (6).

In conclusion, the optimization of the algorithm is possible because the player’s

active score is calculated and stored in the database as a total number, instead of the

system calculating the score’s value after each player movement.

5. Evaluation

In order to evaluate our model, we use a specially designed test bed in a 3GHz Core 2

Duo Server with 4GB RAM. We ran our scenario two times, maintaining the exact same

conditions in both cases. However, in the first case, we do not exploit the optimization

algorithm and in the second case we do. More specifically for the second case, we

investigate if and how much the server’s performance improves, while at the same time

adding virtual players inside the game.

1548 Christos Malliarakis et al.

5.1. Test bed overview

We used a special virtual world without any obstacles inside CMX, called “Arena” and

we placed many virtual players with behaviours of escalating randomness. This was

done in order to simulate the randomness of the players and create a realistic

experiment. We moved on to creating additional virtual players with predictable

behaviour, so that the appropriate resources can be committed according to their

behaviour. More specifically, we created virtual players with predictable behaviour so

that we can commit specific resources based on that behaviour, and a group of virtual

players with completely random behaviour, which will simulate a possible un-

predictable behaviour of an actual player at a specific period.

We continued to load more players in the virtual world and study the server’s reaction

without and with applying the algorithm. In the first case, as we add the virtual players,

equal resources for each player will be committed without any distinctions (e.g. for 100

players, 1% of the entire CPU usage will be used to accommodate the individual traffic).

However, this could lead to the engagement of redundant resources because not all

players need the same amount of CPU usage, depending on their actions in the game.

Thus, in the second case, with using our algorithm, we store in the database features

such as how active each player is etc, as mentioned in the previous section. This way,

the exact amount of resources needed per player will be calculated and committed.

5.2. Use case scenario

The test bed in the experiment was populated with excellent, good, fair and bad virtual

players, depending on their level of computer programming prior knowledge. More

specifically, 100 virtual players were used, 10 of which were excellent, 30 good, 20 fair

players and 40 bad players. By excellent players we mean players with a completely

predictable behaviour, where we know for example, that when such a player at a time t1

is at a specific location in the virtual world in pursuit of a task, this player will continue

walking 1it t  times until the goal is achieved. A good player is also navigating through

the game in a predictable way; however, there is a small chance that some actions will

be not predicted by the server, such as a change of course in the Arena. The probability

that a behaviour will be unpredictable increases with fair players, while bad players’

actions are completely random. These players constantly make non sequential

movements and are not aiming to fulfil the educational game’s objectives.

We included several players with unpredictable behaviour in our experiment because

we wanted to test our algorithm in extreme situations where the server’s overloading

with resources, since we already can estimate that in excellent and good players, the

game’s performance will be adequate. Thus, we endeavour to prove that in the case of

an excellent or good player, the minimum possible resources are bound in the CPU,

while these increase in the case of fair and bad players. As an overall result, the amount

of resources needed with the usage of the optimization algorithm should be significantly

less than if the same amount of resources had been bound for all players.

We positioned a player on the “hackers” team and one in the “crackers” team in the

game’s Arena. Following, we equally populated both teams with virtual players that

Optimization of server performance in the CMX educational MMORPG 1549

exhibited similar behaviour, while monitoring and recording the sent and received

messages packets as well as the CPU usage levels. The players of each team tried to win

all other players of the opposite team while executing assigned tasks and gathering

weapons and spells. It should be noted that we provided unlimited lives to our virtual

players to prevent possible elimination from the game.

During a solely entertaining multiplayer game with the same conditions as the ones

we have established in our experiment (e.g. 100 players, unpredictable behaviour of

movements, constant transmission of multiple resources), a possible overloading of the

system would most likely last a few seconds. This is because, in most cases, the majority

of the students lose and exit a game rather quickly and thus the resources committed get

reduced 6. However, in an educational setting we require the majority of the students to

go through all the game’s levels in order to obtain the maximum possible knowledge and

skills. Thus, any latency on behalf of the server could significantly affect the learning

process, the students’ motivation as well as the entire game’s configuration.

A server’s operation is significantly increased when the players interact with each

other in the Arena while it is less extreme during the training phase. This is because a

large amount of resources are required during the players’ confrontations with each

other such as each player’s absolute and relative position that is occupied in the same

screen of the virtual world. This information flow needs to be constant since the data is

ever changing, which increases the server’s CPU usage.

5.3. The results

The experiment was executed without any issues, and we closely monitored all the

information recorded in the server’s log file. We initially performed the CMX scenario

as-is and thereafter performed the use case scenario that involved the usage of the

optimization algorithm. The results gathered are presented in Fig. 4 and they show that

when the first 10 players with excellent behaviour are inserted in the Arena, the

optimization algorithm seems to reduce the CPU usage by about 5%, since their

behaviour has been programmed to be predictable, and thus the algorithm knows what

resources they need. The algorithm starts monitoring even more the server’s resources

when additional players are inserted, even though their behaviour is not completely

predictable.

Fig. 4. CPU Usage with and without optimization

1550 Christos Malliarakis et al.

Based on the results, the first 60 players have predictable behaviour, since they play

according to the game’s rules. With these players, we observe that the algorithm is

constantly reducing the CPU’s computing cost. More specifically, the CPU usage is

reduced down to 20% when 60 players in total are a part of the game’s environment.

However, when we start inserting virtual players with totally unpredictable behaviour,

the algorithm’s performance is decreased since it cannot predict what resources should

be committed. For this reason, we can see three significant drops in Fig. 5, which occur

when players with more unpredictable behaviour are inserted. Nonetheless, Fig. 5 also

shows that the algorithm manages to maintain an approximately 15% of CPU usage

reduction.

Fig. 5. CPU Usage Reduction

It should be noted that 15% of CPU usage reduction is a significantly satisfying result

for the server’s performance, as with the corresponding release of resources, the game

can operate smoothly and without performance issues and can also host more players.

This optimization ratio will remain stable even if the players are dramatically increased.

This is because our algorithm depends only on the behaviors of the players in the game

and it already takes into consideration different types of behaviours that new players

could show (excellent, good, fair and bad). Similarly, the second diagram shows how

the CPU’s computing cost reduction is increased. It is worth mentioning that the low

reduction values shown in the diagram occur due to the addition of new users with

constantly extra random behavior.

Furthermore, it should be noted that when we use the CMX’s server optimization

algorithm, the RAM usage is slightly increased since we store more information;

however, in an educational game this increase is very low compared to the CPU usage,

and therefore it does not affect negatively on the game’s operation.

6. Conclusions

The current paper aimed to propose a new methodology that can achieve optimization of

the load balancing in educational MMORPG for computer programming and the

bestowal of the proper and only necessary resources without overloading the system. To

Optimization of server performance in the CMX educational MMORPG 1551

this end, we analysed existing published works that identified the factors that influence a

computer game’s performance. These works, however, focus mostly on network traffic

of strategy or shooting games and less on MMORPGs that require more resources, as it

is usually the case in the educational domain. Thus, the existing studies could not be

used as a comparison for the model presented in our paper.

Our model is based on the notion that not all players are equally active in a learning

process and in a game’s activities, and thus they do not require the same amount of

resources committed by the main server to their client. Therefore, we monitor a player’s

activity along with other parameters within the game. In the end, we manage to commit

only the essential resources for each player, where traditionally we would commit the

same amount resulting in abundant resources’ commitment and thus server overloading.

The novelty of our approach is the cumulative storage of information in the database

in an abstract manner, in order to exploit in the maximum degree the gathered

information regarding the players' predictable behaviour and thus ensure the proper

commitment of CPU and RAM memory. It should be noted that the reasoning behind the

exploitation of the cumulative information can be applied in any MMORPG in

combination with algorithms that address the optimization of network resources and

packet transmissions for the optimum system's performance.

Moreover, we presented an educational game called CMX, which aims to facilitate

learning and teaching of computer programming, we analysed the game’s phases,

namely training and playing, and elaborated on the elements and functions related to

each phase. This way, we indicated the importance of optimizing such a server’s

performance to ensure consistent and responsive learning processes.

Finally, we applied the proposed algorithm to CMX by creating a use case scenario

and inserting virtual players instead of using students. This way, we could control the

entire process on the server’s point of view, since all virtual players’ behaviours were

simulated in accordance to the types of behaviours usually presented by students. The

results of the test bed indicated that indeed the optimization algorithm managed to

decrease the CPU usage by a total amount of 15%, which should also be the case during

the implementation of the game in educational settings. Due to the fact that a more

accurate and dynamic prediction of resources needed is carried out with the algorithm,

in total less resources are committed than the fixed amount of resources that are usually

committed by default. Future objectives include the integration of our approach in the

CMX's code ran on the client side for the optimization of their performance, as well as

the documentation of the results on the client and client-server level.

References

1. Armitage. G.: "An Experimental Estimation of Latency Sensitivity in Multiplayer Quake 3",

11th IEEE International Conference on Networks, Sydney, Australia. (2003)

2. Bennane, A.: Adaptive Educational Software by Applying Reinforcement Learning.

Informatics in Education, Vol. 12, No. 1, pp. 13-28. (2013)

3. Bernier Y.W.: Latency Compensating Methods in Client/ Server In-game Protocol Design

and Optimization, Game Developers Conference, http://www.gdconf.com/

archives/proceedings/2001/prog_papers.html (2001)

http://www.gdconf.com/

1552 Christos Malliarakis et al.

4. Borella, M. S.: Source Models of Network Game Traffic. Computer Communications,

23(4):403-410. (2000)

5. Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., & Miller, P.: Mini-

languages: a way to learn programming principles. International Journal of Education and

Information Technologies, 2, 65–83. (1997)

6. Chang, F. and Feng, W.: Modeling Player Session Times of On-line Games, ACM

NetGames 2003. (2003)

7. Chen, K-T., Huang, P., Lei, C-L.: Game traffic analysis: An MMORPG perspective,

Computer Networks, Volume 50, Issue 16, pp. 3002-3023, doi:

http://dx.doi.org/10.1016/j.comnet.2005.11.005. (2006)

8. Farber, J.: Network Game Traffic Modelling, Proceedings of the first workshop on Network

and system support for games. (2002)

9. Gee, J.P.: Why game studies now? Video games: A new art form, Games and Culture,

Volume 1 Number 1. (2006)

10. Gunter, G. A., Kenny, R. F., & Vick, E. H.: Taking educational games seriously: using the

RETAIN model to design endogenous fantasy into standalone educational games.

Educational Technology Research and Development, 56(5/6), 511-537. (2008)

11. Guo, K., Mukherjee, S., Rangarajan, S. and Paul, S. A fair message exchange framework

for distributed multi-player games, Proceedings of the 2nd workshop on Network and

system support for games, p.29-41, Doi 10.1145/963900.963903. (2003)

12. Jehaes, T., Vleeschauwer, De D., Coppens , T. Van Doorselaer, B., Deckers, E., Naudts,

W., Spruyt , K., Smets, R. Access network delay in networked games, Proceedings of the

2nd workshop on Network and system support for games, p.63-71. doi:

10.1145/963900.963906. (2003)

13. Lahtinen, E., Ala-Mutka, K., Jarvinen, H.: A Study of Difficulties of Novice Programmers.

In: Innovation and Technology in Computer Science Education, 14–18. (2005)

14. Long, J.: Just For Fun: Using Programming Games in Software Programming Training and

Education. Journal of Information Technology Education 6: 279-290. (2007)

15. Ng Yu-Sheng: Designing Fast-Action Games for the Internet, Gamasutra (Online Game

Developer Magazine). (1997)

16. Quax , P., Monsieurs, P., Lamotte, W., Vleeschauwer, De D., Degrande, N.: Objective and

subjective evaluation of the influence of small amounts of delay and jitter on a recent first

person shooter game, Proceedings of 3rd ACM SIGCOMM workshop on Network and

system support for games, Portland, Oregon, USA. (2004)

17. Radosevic, D., Orehovacki, T., Lovrencic, A.: Verificator: Educational Tool for Learning

Programming. Informatics in Education, Vol. 8, No. 2, pp. 261-280. (2009)

18. Shanahan, J.: Students Create Game-based Online Learning Environment that Teaches Java

Programing, Publisher ACMSE. (2009)

19. Sheldon, N. Girard, E., Borg, S. Claypool, M. Agu. E.: The Effect of Latency on User

Performance in Warcraft III, Technical Report WPICS-TR-03-07, Computer Science

Department, Worcester Polytechnic Institute. (2003)

20. Singhal S. and Zyda, M.: Networked Virtual Environments: Design and Implementation.

Addison Wesley, ISBN 0-201-32557, ACM Press. (1999)

21. Smed, J. Kaukoranta, T. Hakonen, H.: A Review on Networking and Multiplayer Computer

Game, Turku Centre for Computer Science. (2002)

22. Stuikys, V., Burbaite, R., Damasevicius, R.: Teaching of Computer Science Topics Using

Meta-Programming-Based GLOs and LEGO Robots. Informatics in Education, Vol. 12,

No. 1, pp. 125-142. (2013)

23. Suznjevic, M., Dobrijevic, O., and Matijasevic, M.: MMORPG Player actions: Network

performance, session patterns and latency requirements analysis. Multimedia Tools Appl.,

45, 191-214. (2009)

http://gac.sagepub.com/content/1/1/58.short

Optimization of server performance in the CMX educational MMORPG 1553

24. Torrente, J., Blanco, Á. d., Serrano-Laguna, Á., Vallejo-Pinto, J. Á., Moreno-Ger, P.,

Fernández-Manjón, B.: Towards a Low Cost Adaptation of Educational Games for People

with Disabilities. Computer Science and Information Systems, Vol. 11, No. 1, 369–391.

(2014)

Christos Malliarakis (e-mail: malliarakis@uom.gr) holds a BSc in Applied Informatics

from the University of Macedonia in Thessaloniki and an MSc in Informatics from the

Computer Science Department of the Aristotle University of Thessaloniki. He is

undergoing his PhD research in Game Based Learning and Game Design on Computer

Programming since May 2011, supervised by Professor Maya Satratzemi and Lecturer

Stelios Xinogalos. In the context of the undergoing PhD research, he has designed and

developed CMX, an educational MMORPG for learning computer programming. He has

worked in Primary and Secondary education for 5 years in Mandoulides Schools, a large

private school located in Thessaloniki, Greece.

Maya Satratzemi (email: maya@uom.gr) received the BS degree in math from the

Aristotle University of Thessaloniki, and the PhD degree in informatics from the

University of Macedonia. She is a professor at the Department of Applied Informatics,

University of Macedonia. She has published more than 40 papers in journals & book

chapters and 80 papers in conferences proceedings. Her current research interests

include Programming Environments and Techniques, Adaptive Systems, Serious Games,

Game Based Learning, Collaborative Programming – Distributed Collaborative

Programming Environments, Educational Technology, Graph Algorithms and

Applications.

Stelios Xinogalos (e-mail: stelios@uom.gr) is a lecturer at the Department of Applied

Informatics, School of Information Sciences, University of Macedonia, Thessaloniki,

Greece. He is author or co-author of 70 research papers on programming environments

and techniques, object-oriented design and programming, educational programming

environments and educational games for programming, most of which are published in

international conferences and journals. He has also designed and implemented two

educational programming environments for procedural and object-oriented

programming based on 'Karel the Robot'.

Received: December 20, 2013; Accepted: June 14, 2014

