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Abstract. Defunctionalization is generally considered a whole-program transfor-
mation and thus incompatible with separate compilation. In this paper, we formal-
ize a modular variant of defunctionalization which can support separate compilation
for a functional programming language with parametric polymorphism. Our tech-
nique allows modules in a Haskell-like language to be separately defunctionalized
and compiled, then linked together to generate an executable program. We provide
a prototype implementation of our modular defunctionalization technique and we
discuss the experiences of its application in compiling a large subset of Haskell to
low-level C code, based on the intensional transformation.
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1. Introduction

Separate compilation allows programs to be organized in modules that can be compiled
separately to produce object files, which the linker can later combine to produce the fi-
nal executable. Modern compilers support separate compilation for many reasons: (a) it
saves development time by avoiding the recompilation of all the source code every time
a change is made, (b) object files can be collected together in the form of libraries, which
can be distributed as closed-source code, and (c) it can be used by build systems like
make to tractably recompile big code bases [1].

Defunctionalization [32] is a technique which transforms higher-order programs to
first-order programs. It does so by eliminating all closures of the source program, replac-
ing them with simple data types and invocations of special first-order apply functions.

The technique has been used in the implementation of programming languages, where
the compiler uses an intermediate first-order language [7,8,38]. Such implementations can
have an advantage when running on certain processors, making closure dispatch cheap
and presenting opportunities for code inlining [31]. The transformation was also rediscov-
ered in the context of higher-order logic programming [40] and was used to implement
the HiLog language [10]. Defunctionalization has been used in the implementation of
type-preserving garbage collectors [39] and a variant of it has been used to apply the first-
order Catch analysis tool to higher-order programs [23]. It has also been used to support
higher-order functions in first-order database programming [19,20].

Defunctionalization is the seminal work on higher-order removal transformations, be-
ing able to always eliminate all higher-order expressions from a program. This contrasts
it with other partial techniques, such as Nelan’s firstification [25], the method of Chin and
Darlington [11], the deforestation variant of Nishimura [27], or the Firstify algorithm of
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Mitchell and Runciman [23]. It is the inverse of Church encoding [12] and can be used to
reason about programs in terms of data structures, rather than higher-order functions. In
particular, Ager et al. used defunctionalization to derive abstract machines and compilers
from compositional interpreters [2,3] and Danvy presents it as an important transforma-
tion, part of a toolbox of techniques, that can be used to reason about program representa-
tion, evaluation order, and abstract machines [13]. Defunctionalization has also been used
to prove correct control-flow-based program transformations in functional programming
languages [5]. The transformation can be applied in a type-safe way in monomorphic
and polymorphic languages [6,31] and its correctness has been proved [5,26]. In practice,
when the transformation is used to improve performance, it can also be seen as working
in the opposite direction compared to optimizations that introduce higher-order struc-
tures [16,28,29].

So far, defunctionalization has been presented as a whole-program transformation, a
property that has been frequently cited as its major shortcoming [24,31,35,38], rendering
it unsuitable as a realistic implementation approach for most compilers. Although it is
used in compilers that run in whole-program mode, such as MLton [41] and UHC [15], it
has not yet been used in compilers that support separate compilation to native code.

This paper is a self-contained extension of our previous work [18], where we demon-
strated how defunctionalization of a simply-typed functional programming language can
be combined with separate compilation. Here we modify this technique to support para-
metric polymorphism, using an adaptation of the technique suggested by Pottier and Gau-
thier [31]. We add support for over-saturated higher-order function calls; in our previous
work, it was assumed that all functions returned a result of ground type but this was not a
real nuisance for lazy languages in the absence of polymorphism. Moreover, we describe
a modification of the technique with a lightweight heuristic, which significantly reduces
the number of closures that need to be generated during defunctionalization.

In the rest of this paper, we give an introduction to polymorphic defunctionaliza-
tion and describe the problems that appear when we attempt to combine it with separate
compilation. We then demonstrate how these problems can be overcome using modular
polymorphic defunctionalization, a variant that supports separate compilation of modules
and linking. We give a formalization of our transformation and describe how it has been
implemented in a compiler for a subset of Haskell. To our knowledge, this is the first time
defunctionalization is implemented for a functional programming language with paramet-
ric polymorphism, in a way that supports separate compilation to native code.

2. Defunctionalization

In this section we introduce the reader to the basics of defunctionalization, a program
transformation that takes a higher-order program and produces an equivalent first-order
program with additional data types representing function closures.

Assume that we have the following higher-order program written in Haskell.

result = high (add 1) 1 + high inc 2
high g x = g x
inc z = z + 1
add a b = a + b
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There are three higher-order expressions in this program:

1. add 1 is a partial application of the add function yielding a closure of add that
binds a to 1; the closure has residual type Int→Int.

2. inc is the name of the inc function yielding a (trivial) closure that binds no variables
and has residual type Int→Int.

3. g is a higher-order formal variable of type Int→Int.

Defunctionalization will then convert this program to an extensionally equivalent one,
using only first-order functions. This is achieved by introducing a data type Closure
for closures, with one constructor for each different type of closure. In addition, a spe-
cial function apply is introduced that recognizes these constructors and does function
dispatch.

result = high (Add 1) 1 + high Inc 2
high g x = apply g x
inc z = z + 1
add a b = a + b

data Closure = Add Int | Inc

apply c c0 = case c of
Inc → inc c0
Add a0 → add a0 c0

Defunctionalization is a well-known technique, first introduced by Reynolds as an
implementation technique for higher-order languages in an untyped setting [32]. Notice
that, in the example presented above, both closures conveniently expect one argument of
type Int and return a result of type Int. Had this not been the case, our function apply
would not typecheck in Haskell; we would either have to use several different types of
closures and apply functions (the approach that we took in our previous work [18]) or
resort to GADTs (as we do in the rest of this paper).

The simple example above captures the basic idea of defunctionalization; the next case
contains polymorphism. Assume the following polymorphic source program in System F;
it is written again in Haskell with explicit types for convenience.

result :: Int
result = if h id True then h add 17 25 else h (add 2) 5

h :: (a → b) → a → b
h g x = g x

add :: Int → Int → Int
add a b = a + b

id :: a → a
id z = z
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Here, h is a polymorphic function taking a higher-order parameter g; it is used three times
with three different instantiations for the type parameters a and b. Notice that the second
call to h in result is over-saturated: it takes three arguments, when the definition of h
only mentions two. This is legal here because h is a polymorphic function and, in this call,
the type parameter b is instantiated with the function type Int→Int; the third argument
(25) will be passed to the function that is the result of the call to h.

As Pottier and Gauthier have noted [31], we can defunctionalize polymorphic pro-
grams in a typed setting if our target language is System F with GADTs [42]. The defunc-
tionalized counterpart of our example program is then the following and it typechecks in
Haskell, if GADTs are allowed. We use explicit types, again, to facilitate the comparison
with the original program.

result :: Int
result = if h Id True then apply (h Add 17) 25

else h (Add1 2) 5

h :: Closure a b → a → b
h g x = apply g x

add :: Int → Int → Int
add a b = a + b

id :: a → a
id z = z

data Closure par res where
Id :: Closure a a
Add :: Closure Int (Closure Int Int)
Add1 :: Int → Closure Int Int

apply :: Closure par res → par → res
apply cl arg = case cl of

Id → id arg
Add → Add1 arg
Add1 i → add i arg

The basic intuition behind this technique is that GADTs guarantee the type safety of
the apply function, which receives an argument of the appropriate type, according to the
type of the closure cl. The Closure data type takes two type parameters, par and res,
so a value of type Closure par res is a closure for a function of type par→res.
Notice that Id is a (trivial) polymorphic closure for function id, that Add and Add1 are
closures for function add (the first trivial, the second with one given argument), and that
the result of applying an Add closure to one argument is an Add1 closure. Notice also
that the over-saturated call to h needs an extra apply.
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3. The Source and Target Languages

In this section we describe HLM , a higher-order functional language with modules that
will serve as the source language for modular defunctionalization. We also describe FL,
its first-order subset that is the target language of our algorithm. Finally, we discuss how
standard defunctionalization fails to separately transform HLM modules.

3.1. The Source Language HLM

The language HLM is a Haskell-like higher-order functional language based on System
F, with GADTs [30,36] and modules [14].

A program in HLM is organized in modules, each having a name, a list of imports
consisting of data types and functions defined in other modules, a list of data type decla-
rations, and a list of function definitions. HLM is defined by the following abstract syntax,
where m ranges over module names, d ranges over data type names, b ranges over basic
data types, x ranges over function parameters and pattern variables, op ranges over built-
in constant operators, f ranges over top-level functions, r ranges over function arities
(natural numbers), t ranges over type variables, and κ ranges over constructors. The star
notation is used to denote zero or more repetitions.

p ::= M ∗ program

M ::= module m where I ∗ D∗ F ∗ module

I ::= import m (m.d)∗ (v/r : τ)∗ import

D ::= data m.d t∗ where (m.κ : τ)∗ data type

τ ::= b | t | m.d τ∗ | τ → τ type

F ::= m.f x∗ = e definition

e ::= (x | v | op) e∗ | case e of b∗ expression

v ::= m.f | m.κ top-level variable

b ::= m.κ x∗ → e case branch

In HLM we assume that type names (d), top-level function names (f ) and constructor
names (κ) are always qualified by the name of the module (m) in which they are defined.
Function parameters and pattern variables (x) are local names; they are not qualified.
In this way, every module has its own namespace: every top-level function is distinct
and two different modules can define functions, data types or constructors with the same
name, without the danger of name clashes. In our presentation, we will follow Haskell’s
convention: all functions and variables start with a lowercase letter, while data types,
constructors, and modules start with an uppercase letter.

An example program organized in two modules Lib and Main is the following. For
the sake of simplicity, let us assume that the types of Lib.high and Main.high are
monomorphic.

module Lib where

Lib.high g x = g x
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Lib.h y = y + 1
Lib.test = Lib.high Lib.h 1
Lib.add a b = a + b

module Main where

import Lib ( Lib.high/2 :: (Int→Int)→Int→Int
, Lib.test/0 :: Int
, Lib.add/2 :: Int→Int→Int )

Main.result = Main.f 10 + Lib.test
Main.f a = a + Main.high (Lib.add 1) + Lib.high Main.dec 2
Main.high g = g 10
Main.dec x = x - 1

3.2. The Target Language FL

The language FL is the first-order subset of HLM , without modules. In other words, in
programs written in FL:

1. All functions and data type constructors are first-order.
2. Module qualifiers are considered parts of the names of functions, data types and con-

structors.
3. Module boundaries are eliminated; programs are lists of data type declarations and

function definitions.

For the purpose of our presentation, FL is used as the target language of our defunc-
tionalization transformation. In a real compiler, FL would be replaced by (or subsequently
transformed to) native object code.

3.3. The Problem with Naı̈ve Separate Defunctionalization

Let us go back to the two modules Lib and Main defined in Section 3.1. If we defunc-
tionalize them separately, we obtain the following two pieces of code.

-- module Lib where

Lib.high g x = Lib.apply g x
Lib.h y = y + 1
Lib.test = Lib.high Lib.H 1
Lib.add a b = a + b

data Lib.Closure par res where
Lib.H :: Lib.Closure Int Int

Lib.apply c z = case c of
Lib.H → Lib.h z
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-- module Main where

Main.result = Main.f 10 + Lib.test
Main.f a = a + Main.high (Lib.Add 1) + Lib.high Main.Dec 2
Main.high g = Main.apply g 10
Main.dec x = x - 1

data Main.Closure par res where
Lib.Add1 :: Int → Main.Closure Int Int
Main.Dec :: Main.Closure Int Int

Main.apply c z = case c of
Lib.Add a → Lib.add a z
Main.Dec → Main.dec z

First of all, we see that the two different modules generate two different declara-
tions of a Closure data type, each having possibly different constructors. Assuming that
these two pieces of code are linked successfully and the two Closure types are blindly
merged, the problem will become evident when the expression Lib.high Main.Dec
2 will be evaluated: Lib.high will call Lib.apply, which does not know the closure
constructor Main.Dec and the program will terminate with an error.

We observe that closure data types, closure constructors and closure dispatching func-
tions must be treated in a special way, if functions from different modules are to exchange
higher-order expressions. On the other hand, all other data types, constructors and func-
tions can be safely compiled separately and coexist, since it is guaranteed that there are
no name clashes.

4. Modular Defunctionalization

The solution to the problem described in the previous section is to have a proper way
of managing the code that is generated by defunctionalization: closure data types, clo-
sure constructors and their dispatchers must be collected together from all modules and
code for them must only be generated at link-time. Our technique applies defunctionaliza-
tion separately to each module, transforming from HLM source code to FL target code,
introducing closure constructors and invoking closure dispatchers whenever needed. It
remembers the closure constructors that were required for each module and collects this
information together with the target code generated for each module. Subsequently, in a
final linking step, it merges the closure data type declarations and generates code for the
closure dispatcher, based on the collected information.

Our modular defunctionalization is therefore a two-step transformation:

1. Separate defunctionalization: Each module is defunctionalized separately. This pro-
duces (i) a set of defunctionalized data type declarations; (ii) a set of defunctionalized
top-level function definitions; and (iii) information about the closures that correspond
to the top-level functions defined in this module. The third part serves as the defunc-
tionalization interface of the module. At this point, the defunctionalized definitions
from each module can be compiled separately to object code, assuming that closure
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constructors and dispatching functions are external symbols to be resolved later, at
link-time.

2. Linking: The separately defunctionalized code is combined and the missing code is
generated for closure constructors and dispatching functions, using the defunctional-
ization interfaces from the previous step. The missing code can then be compiled and
linked with the rest of the already generated code, to produce the final program.

This section formally presents a module-aware variant of defunctionalization. The two
steps mentioned above are described in the next two subsections.1

4.1. Separate Defunctionalization

This step defunctionalizes each module, generating a list of defunctionalized data type
and function definitions, and a list of all closure constructors that correspond to the top-
level functions defined in this module. In the rest of this section, we describe how a single
module M is defunctionalized.

We assume that type checking (and/or type inference) has already taken place and
that all type information is readily available. To simplify presentation, we assume that
expressions are annotated with their types (e.g., eτ ) but most of the times we will omit
such annotations to facilitate the reader.

We also assume a mechanism for generating unique names during defunctionalization.
All such names will be free of module qualifiers and suitable for use in FL. In particular:

– N (m.d), N (m.f), and N (m.κ) generate names for module-qualified types, top-
level functions and constructors that appear in the source code of a module;

– C`(τ0, τ1) generates the GADT corresponding to closures that take arguments of type
τ0 and return a result of type τ1 (we used Closure τo τ1 in the examples);

– C(v, n) generates the name of a constructor corresponding to the closure of v, binding
n arguments; and

– A generates the name of the closure dispatching function (we used apply in the
examples).

A number of auxiliary functions for manipulating types will be useful:

– arityT (τ) returns the arity of a type (i.e., how many formal arguments must be sup-
plied before a value of ground type is reached).

arityT (b)
.
= 0

arityT (t)
.
= 0

arityT (m.d τ
∗)

.
= 0

arityT (τ1 → τ2)
.
= 1 + arityT (τ2)

– arityV (v) returns the arity of a top-level function or constructor (i.e., how many ar-
guments exist in its definition). This is known from the syntax, for top-level func-
tions of the current module, or from information present in the import clause.
Notice that, for a given top-level function f of type τ , it is always the case that
arityV (f) ≤ arityT (τ); however, the two arities are equal only if the body of the
function’s definition is of ground type.

1 A prototype implementation in Haskell of the technique described in this section is available at:
http://www.softlab.ntua.gr/˜gfour/mdefunc/.

http://www.softlab.ntua.gr/~gfour/mdefunc/
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– ground(τ) converts higher-order types to ground types, by replacing function types
with the corresponding closure types.

ground(b)
.
= b

ground(t)
.
= t

ground(m.d τ∗)
.
= N (m.d) ground(τ)∗

ground(τ1 → τ2)
.
= C`(ground(τ1), ground(τ2))

– lower(τ) converts higher-order types to first-order, by replacing the arguments of
function types with the corresponding closure types, if necessary.

lower(b)
.
= b

lower(t)
.
= t

lower(m.d τ∗)
.
= N (m.d) ground(τ)∗

lower(τ1 → τ2)
.
= ground(τ1)→ lower(τ2)

The defunctionalization process is formalized using four transformations: T (D),D(F ),
E(e), B(b), for type declarations, top-level function definitions, expressions and case
branches, respectively. They are defined as follows.

T (datam.d t∗ where (m.κ : τ)∗)
.
=

data N (m.d) t∗ where (N (m.κ) : lower(τ))∗

D(m.f x∗ = e)
.
= N (m.f) x∗ = E(e)

E(x e1 . . . en)
.
= A . . . (A x E(e1)) . . . E(en)

E(v e1 . . . en)
.
= C(v, n) E(e1) . . . E(en)

if n < n′ = arityV (v)
E(v e1 . . . en)

.
= A . . . (A (N (v) E(e1) . . . E(en′)) E(en′+1)) . . . E(en)

if n ≥ n′ = arityV (v)
E(op e1 . . . en)

.
= op E(e1) . . . E(en)

E(case e of b∗) .
= case E(e) of B(b)∗

B(m.κ x∗ → e)
.
= N (m.κ) x∗ → E(e)

In principle: (i) data types are also defunctionalized: all higher-order types in the signa-
tures of constructors are replaced by the corresponding closure data types; (ii) functional
parameters or pattern variables are applied by using the corresponding closure dispatch-
ing functions; (iii) partial applications of top-level functions and constructors are replaced
by closure constructors; (iv) over-saturated calls are replaced by applications of closures
returned as function results.

During the first step of the transformation, useful information is collected for every
closure corresponding to a top-level function or constructor. This is achieved with function
F(vτ ), defined as follows. We assume that v is a top-level function or constructor and τ
is its type.

F(vτ ) .
= info(v, τ, [ ])

info(v, τ, τ∗)
.
= {(v/r, τ∗, ground(τ))} ∪ info(v, τ2, τ

∗++ [ground(τ1)])
if τ = τ1 → τ2, and length(τ∗) < arityV (v) = r

info(v, τ, τ∗)
.
= ∅ otherwise
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Function F(vτ ) returns a set of triples, one for each possible closure in which v can
be used. Each triple contains: (i) the name v and the arity r of the corresponding top-level
function, (ii) a list with the types of the arguments that have already been supplied, and
(iii) the type of the corresponding closure.

As an example, consider a function add with three integer arguments.

add a b c = a + b + c

This function of arity 3 has type Int→Int→Int→Int; it can be used in three closures,
when 0, 1 and 2 arguments are supplied:

F(addInt→Int→Int→Int) =
{ (add/3, [ ],Closure Int (Closure Int (Closure Int Int))),
(add/3, [Int],Closure Int (Closure Int Int)),
(add/3, [Int,Int],Closure Int Int) }

It is possible that not all of the different closures generated by function F(vτ ) will
actually be used in the final program. The implementation is free to use a subset of these
closures, e.g. taking just the ones that are generated in the code of the module. However,
the final set of closures after linking is not just the union of those generated in the code of
each linked module; more closures need to be automatically generated by the dispatching
functions, in the case of partial application. We will come back to this point, when we
describe our heuristic in Section 5.

4.2. Linking

After separately defunctionalizing a number of modules, we are left with object code, i.e.,
defunctionalized definitions, and information about closures. To link the final executable
program, we must merge all defunctionalized definitions and add the missing closure
dispatching functions. Let I be the union of closure information from all modules to
be linked. As our presentation is at the source level, we start by generating data type
definitions for closures; this would not be necessary if we were linking native code.

The data type for closures, parameterized by the type of the closure’s argument a and
the type of the result b, is defined as follows.

data C`(a, b) where { C(v, n) : τ∗ → τ | (v/r, τ∗, τ) ∈ I, n = length(τ∗) }

where τ∗ → τ is an abuse of notation for constructing function types with more than one
curried arguments, e.g., [τ1, τ2, τ3]→ τ

.
= τ1 → τ2 → τ3 → τ .

To generate the closure dispatching function A, we use again the closure information
I . As the program is closed at link-time, we only need to generate a big case expression
with one branch for each closure constructor found in I . The result of such branches can
be of two different types: (i) if by supplying one more argument we have reached the
corresponding function’s arity, then a full application of this function can be performed;
or (ii) if more arguments remain to be supplied, a new closure (expecting one argument
less) is returned. The two alternatives are treated in common by the auxiliary function
next(v/r, n), defined below.

next(v/r, n)
.
= N (v) if n = r

next(v/r, n)
.
= C(v, n) if n < r
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The definition for A can then be written as follows.

A c x = case c of { C(v, n) y1 . . . yn → next(v/r, n+ 1) y1 . . . yn x
| (v/r, τ∗, τ) ∈ I, n = length(τ∗) }

4.3. Example Revisited

We now return to the example of Section 3.1. Applying the first step of the technique
described in the previous section, we obtain two defunctionalized pieces of code and
two sets of closure information. Both are given in Fig. 1. The code is very similar to that

Defunctionalized module Lib

f_Lib_high g x = apply g x
f_Lib_h y = y + 1
f_Lib_test = f_Lib_high Cf_Lib_h_0 1
f_Lib_add a b = a + b

Closure information for module Lib

(f_Lib_add/2, 0, Closure Int (Closure Int Int))
(f_Lib_add/2, 1, Int → Closure Int Int)
(f_Lib_h/1, 0, Closure Int Int)
(f_Lib_high/2, 0, Closure (Closure Int Int) (Closure Int Int))
(f_Lib_high/2, 1, Closure Int Int → Closure Int Int)

Defunctionalized module Main

f_Main_result = f_Main_f 10 + f_Lib_test
f_Main_f a = a + f_Main_high (Cf_Lib_add_1 1)

+ f_Lib_high Cf_Main_dec_0 2
f_Main_high g = apply g 10
f_Main_dec x = x - 1

Closure information for module Main

(f_Lib_add/2, 0, Closure Int (Closure Int Int))
(f_Lib_add/2, 1, Int → Closure Int Int)
(f_Lib_high/2, 0, Closure (Closure Int Int) (Closure Int Int))
(f_Lib_high/2, 1, Closure Int Int → Closure Int Int)
(f_Main_dec/1, 0, Closure Int Int)
(f_Main_f/1, 0, Closure Int Int)
(f_Main_high/1, 0, Closure (Closure Int Int) Int)

Fig. 1. The result of defunctionalization for the example of Section 3.1.

obtained in Section 3.3, except for naming conventions and the fact that they now use only
one Closure data type and only one apply function. Also, notice that the definitions
of these two are not included in the compiled code. After linking these two modules, the
definitions of the Closure GADT and the apply function are as given in Fig. 2.
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GADT for closures

data Closure p r where
Cf_Lib_add_0 :: Closure Int (Closure Int Int)
Cf_Lib_add_1 :: Int → Closure Int Int
Cf_Lib_h_0 :: Closure Int Int
Cf_Lib_high_0 :: Closure (Closure Int Int) (Closure Int Int)
Cf_Lib_high_1 :: Closure Int Int → Closure Int Int
Cf_Main_dec_0 :: Closure Int Int
Cf_Main_f_0 :: Closure Int Int
Cf_Main_high_0 :: Closure (Closure Int Int) Int

Closure dispatch function

apply c x = case c of
Cf_Lib_add_0 → Cf_Lib_add_1 x
Cf_Lib_add_1 y1 → f_Lib_add y1 x
Cf_Lib_h_0 → f_Lib_h x
Cf_Lib_high_0 → Cf_Lib_high_1 x
Cf_Lib_high_1 y1 → f_Lib_high y1 x
Cf_Main_dec_0 → f_Main_dec x
Cf_Main_f_0 → f_Main_f x
Cf_Main_high_0 → f_Main_high x

Fig. 2. Code generated during linking for the example of Section 3.1.

5. Optimizing Closure Constructors

For big programs containing a large number of top-level functions, the technique that we
described in Section 4 may end up with a large number of closure constructors and an
equally large apply function. Here we describe a heuristic that can eliminate a poten-
tially significant number of closure constructors (and corresponding cases in the apply
function), based on a very simple usage analysis for closure constructors.

Our analysis is based on the observation that currying always appends arguments to
the right of the argument list of a closure. Therefore, the only closures that can appear
during program run-time are those closures that are initially created (and appear in the
program text), or the new closures that result from appending extra arguments to existing
closures.

We define the set of all closure constructors that may be generated during program
run-time as Cu = C0 ∪ Ca, where:

1. C0 is the set of all constructors appearing in the defunctionalized bodies of top-level
functions.

2. Ca is the set of all constructors that be created by appending one or more arguments
to all closures represented by c ∈ C0.

In practice, this heuristic is dependent on the number of functions forming closures
in the original program and the arities of these functions. Since most Haskell programs
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do not use all of their functions to form closures, we believe this is a lightweight enough
heuristic that is useful in practice.

To make use of this heuristic in a modular way, our technique described in Section 4
must be slightly modified. The defunctionalization interface of a module must not keep
information about the “exported” closures that can be formed from its top-level functions
and constructors. Instead, it must keep information about the closures that the module
actually uses, either formed by local functions and constructors, or by imported ones.
Again, the set of all possible closures used in the program will be the union of all such
information from all modules, gathered during linking.

Applying this heuristic to the example of Section 3.1, we end up with a Closure
GADT containing just three constructors, in comparison to the eight constructors in Fig. 2.
The obtained GADT and apply function are given in Fig. 3.

GADT for closures

data Closure p r where
Cf_Lib_add_1 :: Int → Closure Int Int
Cf_Lib_h_0 :: Closure Int Int
Cf_Main_dec_0 :: Closure Int Int

Closure dispatch function

apply c x = case c of
Cf_Lib_add_1 y1 → f_Lib_add y1 x
Cf_Lib_h_0 → f_Lib_h x
Cf_Main_dec_0 → f_Main_dec x

Fig. 3. Code generated during linking for the example of Section 3.1, with our heuristic.

6. Modular Defunctionalization in a Haskell-to-C Compiler

Apart from a simple prototype implementation for a small subset of a Haskell-like lan-
guage with modules, we have implemented this technique in GIC,2 a compiler from a large
subset of Haskell to low-level C that is based on the intensional transformation [17]. De-
functionalization is used in the front-end of the GIC compiler, transforming from Haskell
to a first-order language with data types, which is subsequently processed by the inten-
sional transformation [33,34] to generate C code using lazy activation records [9].

As in our prototype implementation, defunctionalizing a Haskell module in GIC gen-
erates a set of function definitions. These can be transformed to C and then compiled to
native code. The defunctionalized definitions contain references to external symbols cor-
responding to closure dispatching functions and constructors. Closure constructor infor-
mation for each module is kept in a separate file, which describes the defunctionalization
interface of the module.

2 Available at http://www.softlab.ntua.gr/˜gfour/dftoic/.

http://www.softlab.ntua.gr/~gfour/dftoic/
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This technique permits each module to be independently compiled to an object file.
These files can be combined by the linker, which does the following:

– It builds the final closure constructor functions and closure dispatchers for all closures
in the defunctionalization interfaces;

– It compiles the generated code of closure constructors and dispatching functions to a
separate object file; and

– It calls the C linker to combine the compiled code of the modules and the compiled
generated code of defunctionalization, in order to build the final executable.

Modular defunctionalization enables incremental software rebuilding for our Haskell
subset. Moreover, it enables the building of shared libraries from defunctionalized Haskell
code, provided that defunctionalization interfaces are distributed together with object
files; such libraries can then be used by any third-party source code that has an appro-
priate linker.

7. Related Work

Pottier and Gauthier point out that defunctionalization can be modular for languages that
are richer than our HLM and support recursive multi-methods [31]. Our technique is sim-
pler, as it only records closure constructor information for every module. In effect, our
separate defunctionalization and linking can be seen as implementing the multi-methods
needed by modular defunctionalization.

GRIN’s front-end had some support for separate compilation, but the back-end was a
whole-program compiler [7]. The Utrecht Haskell Compiler (UHC), which is also based
on the GRIN approach, supports separate compilation for a special bytecode format that
runs on an interpreter but not for native code [15]. In the context of the specialization
transformation in UHC, Middelkoop pointed out that to fully support separate compilation
in the presence of defunctionalization, some information should be kept that looks like the
abstract syntax tree of a function [22]. We do the same by keeping only closure constructor
type information, which is enough to generate the final abstract syntax tree of the required
closure dispatchers.

A variant of defunctionalization that introduces no closure constructors nor dispatch-
ers was proposed by Mitchell [23]. Consequently, it is not affected by modularity prob-
lems of generated code and is compatible with separate compilation. However, it cannot
defunctionalize all higher-order programs, while our transformation is equally powerful
with traditional defunctionalization.

Tolmach sketched an extension of his typed closure conversion [37] that can support
separate compilation. His sketch shares ideas with our approach: it postpones the genera-
tion of constructors and a set of dispatching functions for linking time. However it applies
to monomorphic languages and uses extensible data types and a special analysis of global-
vs-local closures and dispatching functions, while we support System F with GADTs and
a uniform treatment of all function closures, based on module-qualified names. In sub-
sequent work [38], Tolmach mentions that his technique can be applied to polymorphic
programs, again using extensible data type declarations.

As noted in Section 6, our prototype compiler still does not support full Haskell; it
currently lacks support for ad-hoc polymorphism using type classes. However, this is
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just a feature missing from the compiler front-end: our approach supports type classes,
if their concretization encoding is used [31]. This contrasts our technique with MLton’s
monomorphisation [8], JHC’s alternative approach based on a whole program analysis
and the lambda cube [21] and GHC and UHC’s type classes with dictionaries [4,15].

8. Conclusion

To the best of our knowledge, our approach is the first concrete implementation of the de-
functionalization transformation that supports separate compilation of polymorphic func-
tional programs to native code. We do so by defunctionalizing program modules sepa-
rately while at the same time recording information about closure constructors. We then
build and compile closure dispatchers for these constructors and for all program modules
at link-time.

Our technique may lose opportunities of inter-module optimizations such as inlining,
but loss of these optimizations is a general problem of separate compilation. Although
what we described in this paper is related to separate compilation and static linking, it
is also applicable to language implementations with dynamic linking without significant
modifications, provided that the dynamic loader and linker handles not only the object
code but also the defunctionalization interfaces.
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