
Computer Science and Information Systems 11(4):1455–1477 DOI: 10.2298/CSIS130920049N

XML to Annotations Mapping Definition with Patterns

Milan Nosál’ and Jaroslav Porubän

Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics,

Technical University of Košice
Letná 9, 042 00, Košice, Slovakia

milan.nosal@gmail.com, jaroslav.poruban@tuke.sk

Abstract. Currently, the most commonly created formal languages are configura-
tion languages. So far source code annotations and XML are the leading notations
for configuration languages. In this paper, we analyse the correspondence between
these two formats. We show that there are typical XML to annotations mapping so-
lutions (mapping patterns) that indicate a correspondence between embedded and
external metadata formats in general. We argue that mapping patterns facilitate cre-
ating configuration tools and we use a case study to show how they can be used to
devise a mapping between these two notations.

Keywords: Mapping Patterns, Language Design, Source Code Annotations, Attribu-
te-oriented Programming, XML.

1. Introduction

Usually, a programmer associates the term formal language with compiler/interpreter,
maybe parser generators, concrete and abstract syntax, etc.. Therefore when he is asked
whether he had already designed a language himself, if he did not work with any of such
abstractions and tools, he is going to answer that he did not. However, that would almost
definitely be false. Formal languages that are designed and implemented on a daily basis
are configuration languages. A configuration language is a language that defines what can
be customized in a software system. Nowadays each non-trivial system is customizable.
User interface style, size and type of font, etc.; even small utilities that programmers
implement to help themselves do their everyday work have some options that can be set.
Even command line arguments are tiny languages. Such a language may have multiple
notations, even graphical, as we argue in our earlier work [11].

This paper concentrates on software system configuration formats. We will use the
term software system metadata for the total sum (everything) of what one can say about
any program element, in a machine or human understandable representation. This defini-
tion complies with the understanding of software system metadata in Guerra et al. [7].

By the association model (Duval et al. [4]) there are two types of metadata.
– Embedded metadata are metadata that share the source file with the target data.

Embedded metadata use in-place binding, they are associated with the target data by
their position.

– External metadata are metadata that are stored in different source files than the
target data. They use navigational binding where metadata includes references to the
target data.

1456 Milan Nosál’ and Jaroslav Porubän

A metadata format is a case of a generic language [1] that can be used to host any
formal domain-specific language that conforms to some syntactic restrictions. A generic
language is not a language itself; it rather provides a syntactic skeleton that can be used
as a basis for the design and implementation of a new language (usually domain specific
languages [3]). A generic language restricts the concrete and abstract syntax of the hosted
language and in return provides a generic parser that can be used to parse the sentences
of the hosted language. The same way, metadata formats provide means to easily define
an abstract syntax and a concrete syntax of a language. The configuration module of a
system is the implementation of the configuration language semantics. Currently in the
industry the most popular embedded and external metadata formats are attribute-oriented
programming and XML respectively. Kollár [8] even experiments with an XML format
as an intermediate format in language parsing.

Attribute-oriented programming (@OP) is a program level marking technique. This
definition shared by many works in the field [10, 15] is a basis for classifying @OP as
a form of embedded metadata. A source code annotation (shortly: an annotation) is a
concrete mark annotating a program element.

XML on the other hand is a classic form of external metadata [5, 18, 11]. XML allows
structuring metadata and storing them externally to the source code.

The popularity of these formats can be illustrated by many frameworks and systems
that use them. For example, Java EE uses both formats in many technologies such as
the Java Persistence API (JPA) or Enterprise Java Beans (EJB). The .NET framework
extensively uses both XML formats (e.g., in the Enterprise Library) and .NET attributes.

XML and annotations are both generic languages. They both allow "borrowing" their
syntax for language design and provide standard parsers (often called processors). Their
correspondence in this sense is outlined in Figure 1. The scheme explains that the mapping
between them works on two levels – language sentences, and language definitions. An
XML document corresponds to annotations where an XML document is a sentence of
an XML language and annotations are a sentence of an annotation-based language. On
the level of language definition, an annotation-based language is defined using annotation
types, which correspond to the XML language definition. In Figure 1, we chose the most
popular XML definition language, XML schema.

XML schema
Annotation

type

XML
documents

Annotations

instances of instances of

corresponds

corresponds

Language
definition

Language
sentences

Fig. 1. Correspondence between XML and source code annotations

XML to Annotations Mapping Definition with Patterns 1457

The similarities between annotations and XML allow for mapping a configuration
language to both formats (as many frameworks do). An example is a mapping of an XML
element to an annotation and XML subelements and attributes to annotation parameters.
In the XML language, a sequence of the same XML elements is a common structure. In
annotations, a sequence can be represented by an array.

The two formats do not correspond in all aspects. So far the implementations of source
code annotations provide some restrictions that impair full correspondence to XML. In
XML, there can be a tree of elements of infinite depth. Current implementations of an-
notations do not allow that. Even between implementations there are some discrepancies.
For example, .NET attributes allow multiple occurrences of the same annotation types to
annotate the same program element. Java annotations do not support that. Therefore, it is
sometimes useful to look at annotations and XML as complementing notations and not
just as interchangeable.

In our research we have analysed the potential correspondence between these two for-
mats. The hypothesis of this research was our assumption that there are typical mapping
solutions between annotations and XML that can be found across multiple frameworks
that support configuration through both annotations and XML.

2. XML to Annotations Mapping

Why would anyone want to map a language in one notation to the other? There are char-
acteristics of these notations that make them complement each other. In some situations,
annotations are better; sometimes XML documents are advantageous.

2.1. Related Work

Fernandes et al. [5] present a case study that compares three forms of configuration meta-
data – annotations, databases and XML. They compare these formats according to three
criteria: the ability to change metadata during runtime of a system; the ability to use
multiple configurations for the same program elements; and support for the definition of
custom metadata. Tilevich et al. [18] compare annotations and XML in few aspects such
as programmability, reusability, maintainability, and understandability.

Annotations’ association model and their native support in a language is the reason
why Tansey et al. [17] talk about annotations as a tool for more robust and less verbose
software system metadata. The XML navigational binding is more fragile during refac-
toring and evolution of the program than in-place binding [16, 18]. Annotations’ com-
pactness and simplicity is a consequence of native support in a language, that lowers the
redundancy of structural information [13]. Since the annotations are a part of a host lan-
guage, changes in annotations need recompilation. If runtime changes of configurations
are a requirement, external metadata are a viable solution [7, 11].

The fact that annotations are scattered in the code puts a programmer into a situation
when he/she needs to search the whole source code to understand a configuration [18, 11].
On the other hand, when examining only one program component a programmer can see
the component code and configuration in one place [18]. Since annotations are embedded
they are a perfect tool for recording design decisions and semantic properties of the source
code to provide means for concern-oriented projections of source code [14].

1458 Milan Nosál’ and Jaroslav Porubän

All these arguments show that the use of both annotations and XML have their sense
and meaning. Therefore, we think that there are situations when one language notation is
no longer the better and there is a need to map one configuration language to the other. If
it is expected that there will be situations in which annotations are more adequate and also
situations in which XML is better, then it is useful to support two notations for a config-
uration language, one annotation-based and one XML-based. This we consider the main
motivation for a mapping definition. An interesting related work that deals with finding
mappings between XML and object-oriented notations is a comprehensive discussion of
XML to objects mapping by Lämmel et al. [9].

2.2. Mapping Usage Scenarios

Above we have presented a motivation for finding a mapping definition. In this section we
want to consider the scenarios that require mapping definition. The mapping definition is
needed in the following scenarios:

– Rewriting an existing system from one configuration format to another – a system
author decides to change the configuration notation from XML to annotations or vice
versa. He/she has to map the old configuration to a new one to make the new config-
uration language easily usable by the users of the system.

– Adding a new configuration notation to an existing system – in this situation a system
supports XML or annotations but not both. A system author wants to support a new
configuration notation in order to gain benefits of supporting multiple configuration
formats. Again a mapping definition is needed.

– Building a new system supporting multiple configuration notations – a mapping is
needed even when the two configuration notations for the language are designed si-
multaneously from scratch. It is similar to adding a notation to an existing system.
However, in this situation it may be a little easier since a programmer can adapt one
notation (concrete syntax) to the capabilities of the other thus creating two balanced
notations. During the addition of a new notation the old one is usually frozen to keep
backward compatibility.
These situations can be abstracted and are summarised in Figure 2. In short, there is

a need to define mappings between annotations and XML to define configurations both
with XML and annotations. If the case is that configurations are moving from one format
to another, then mappings are needed to reuse domain knowledge from the old language.

2.3. XML to @OP Mapping Patterns

Our research of the correspondence of XML and annotations started with our prototypical
tool that abstracts the information from concrete notations (XML or annotations, or both
complementing each other to form a full piece of information). The system’s author is then
relieved of the additional effort needed to deal with multiple formats. Our first prototype
generated an XML configuration file from annotated sources using simple and straightfor-
ward mapping. However, first experiments with industrial configuration formats showed
us that supporting only one straightforward mapping is insufficient in practice. There are
multiple different ways of mapping a language from XML to annotations and the best
choice depends on a situation.

XML to Annotations Mapping Definition with Patterns 1459

System

Partial
configuration in

annotations

Partial
configuration in

XML

Abstract
representation of
the configuration

are mixed

is used to configure

Fig. 2. XML and annotation-based configurations

A new version of the tool was built upon a notion of a metamodel. A metamodel de-
fines an abstract syntax of a configuration language and its mapping to multiple concrete
syntaxes. We designed a metamodel for annotations and XML (we describe it in detail in
[11]). It allowed us to define arbitrary mappings between annotations and XML.

However, new experiments showed us that although we could map configuration lan-
guages from all chosen industrial frameworks, suddenly even a simple and straightforward
mapping required a significant effort (because of the metamodel generality). Even in stan-
dard situations a user had to define the mapping in detail. The final effort was comparable
with implementing a processor of both formats in adhoc manner. We have realised that
if there were typical mapping solutions we could use them to implement a mapping DSL
that would significantly reduce mapping definition efforts for most common cases. A DSL
would be transformed to a metamodel. Considering the number of frameworks using both
annotations and XML as configuration formats we assumed that there should be typical
mapping solutions. We took the second prototype and designed a new configuration inter-
face to it built upon an annotation-based mapping DSL. A parsed sentence resulted in a
metamodel instance that could be modified programatically if there was a need for some
specific mapping.

By analysing mappings from industrial systems we discovered multiple typical map-
ping solutions that we call XML to @OP mapping patterns (shortly: mapping patterns). A
catalogue of discovered patterns is presented in Section 3. Most of the discovered patterns
found their place in the prototypes’s configuration interface, some of them were discov-
ered later and are to be implemented in the future. These patterns prove our hypothesis
about typical mapping solutions. There are three consequences of their discovery.

First, mapping patterns indicate a correspondence between embedded and external
metadata. Even with these essentially different format types we can see that most of the
languages can interchangeably use annotation-based and XML-based notations.

Second, mapping patterns are beneficial for creating configuration interfaces of soft-
ware systems including tools for transformation between different formats. This conse-
quence is illustrated in detail by a case study presented in Section 4.

Third, the fact that patterns cover common mapping solutions also helps with con-
figuration comprehension. New users who already worked with some other configurable
systems can understand a mapping definition based on patterns faster and easier. And the
recognized patterns can be used in a documentation, too. Instead of explaining all the

1460 Milan Nosál’ and Jaroslav Porubän

notions of the mapping definition a programmer can just refer to a concrete pattern. This
reduces documentation costs since it is easier and faster to just refer to the pattern than to
explain how the mapping works for a particular case.

3. Patterns Catalogue

In this paper, we will focus on mapping definition construction. We will present shortened
version of the mapping patterns catalogue where some details and examples are omitted.
For a detailed version of the catalogue we refer the reader to [12]. The patterns are cate-
gorized into structural mapping patterns and program element binding patterns.

The following describes a pattern’s description elements.
– The Motivation presents a problem context in which the pattern’s solution is suitable.
– The Problem states the question to which a pattern provides an answer.
– Forces lists conflicting forces that the pattern should help balance.
– The Solution describes the mapping pattern.
– Consequences list the possible positive/negative consequences of pattern application.
– Known Uses list selected known uses of the described pattern.

3.1. Structural Mapping Patterns

The first group of patterns are structural patterns. They aim to show the fundamental map-
pings between XML and annotations. They do not deal with the relationship of a configu-
ration to the program structure, they deal only with the structural mappings between XML
and annotations.

An example when these patterns can be applied without target element binding pat-
terns are global configurations that are not configurations of some program element but
of a system as a whole. In case of configurations through annotations this means that the
binding of configuration annotations to program elements does not have to be significant.
Probably the best case would be if they could just annotate a system as a whole. However,
currently the source code annotations do not support annotating a whole system. In Java,
there are package annotations that are usually used for this purpose. In the .NET frame-
work, there is an option to annotate assemblies. Another solution may be annotating an
arbitrary class or a class that is significant for configuration.

Direct Mapping Pattern

Motivation. The first and basic problem when mapping a language from XML to anno-
tations (or vice versa) is the question of how to represent language constructs from one
language in another. For example, if there is an annotation-based configuration language
and the new language is supposed to be built on XML, there has to be a simple and direct
way to match constructs from one language to another to have a starting point.
Problem. What is the most straightforward way to map annotations’ constructs to XML
and vice versa?
Forces.

– An annotation-based and an XML-based language need to be able to represent the
same configuration information.

– Both languages do not have to conform to any special rules.

XML to Annotations Mapping Definition with Patterns 1461

Solution. The most common and straightforward way is to use the Direct Mapping pat-
tern. By default, the Direct Mapping pattern proposes to map annotation types to XML
element types with the same name. Annotation type parameters are mapped to element
types with the same name, too. An annotation is then mapped to an XML element. From
the point of view of XML an XML element is by default mapped to an annotation that has
its simple name identical to the corresponding XML element’s name. XML attributes are
mapped to annotation type parameters of the same name.

There are pattern variations concerning the name mapping and XML attribute/element
mapping choice. Naming pattern variation allows different names (in this context we can
speak of keywords) for mapped constructs in both languages. It allows keeping nam-
ing conventions in both formats, identifiers starting with uppercase for Java annotation
types and identifiers starting with lowercase in XML. For some language constructs in
annotation-based languages it might be interesting to use XML attributes instead of el-
ements. This concerns only marker annotations (see [19]) and annotation members that
have as return type a primitive, string or a class (if its canonical name is sufficient in
XML). For example, arrays are excluded since XML attributes are of simple type and
there cannot be more than one attribute with the same name. The scheme of the Direct
Mapping pattern with both variations is shown in Figure 3.

@Element(

 attribute="value1",

 subelement="value2"

)

<element

 attribute="value1">

 <subelement>value2</subelement>

</element>

naming variation

attribute variation

Fig. 3. Direct Mapping pattern scheme

Consequences.
[+] Simple XML structures can be mapped to annotations and vice versa.
[+] Naming parameterization allows different names in annotations and in XML.
[+] In some cases element/attribute choice parameterization allows more convenient XML
notation, because XML attributes are less verbose than XML elements.
[–] More complex mappings cannot be realised with this pattern.
Known Uses.

– JAX-WS’s mapping of the serviceName parameter of the @WebService anno-
tation to wsdl:service element of WSDL language.

– JSF’s maps the @ManagedBean annotation to managed-bean element.
– JPA also uses this pattern, see the case study in Section 4.1.

Nested Annotations Pattern

Motivation. Another structural problem of mapping is handling the XML tree structure in
annotations. The tree structure of XML is usually significant.
Problem. How to preserve an XML tree structure in annotation-based languages?

1462 Milan Nosál’ and Jaroslav Porubän

Forces.
– XML allows to structure configuration information to trees of element nodes and their

attributes.
– The meaning of the tree structure is significant and therefore it has to be preserved in

some form in annotations.
Solution. The Nested Annotations pattern nests annotations in order to model a tree struc-
ture. The root of the tree in XML is modelled by an annotation type and its direct descen-
dants (in XPath the children axis of the XML element) are modelled by the parameters of
the annotation type. This pattern can be applied recursively. If one of the descendants has
children itself, its type will be an annotation type, too. The children of the descendant will
become annotation type parameters. Figure 4 shows a scheme of the Nested Annotations
pattern. However, the Nested Annotations pattern is still rather limited as it cannot be used
in several situations, like in .NET or for modelling cyclic XML structures.

@Root(

 simpleLeaf1="value1",

 subtree=@Subtree(

 simpleLeaf2="value2"

)

)

<root>

 <simpleLeaf1>value1</simpleLeaf1>

 <subtree>

 <simpleLeaf2>value2</simpleLeaf2>

 </subtree>

</root> modeling tree structure

Fig. 4. Nested Annotations pattern scheme

Consequences.
[+] XML tree structures can be mapped to annotations.
[–] Currently available annotations’ implementations do not support cyclic nesting. If the
XML language has an element that can have itself as a descendant, this pattern cannot
be used. XML allows modelling arbitrary trees, e.g., there can be a node XML element
with child elements of the same type. The same is not allowed in annotations.
[–] The sequence of annotation members is not preserved during the compilation; there-
fore if the order is significant, this approach will fail. The only way of preserving the order
of the elements in annotations is the use of an array as an annotation parameter type.
[–] In programming languages that do not support annotation nesting at all (e.g., .NET)
the pattern is not applicable.
[–] All nested annotations inherit the target program element from the root annotation.
Therefore, the modelled XML tree has to apply to the same target program element.
Known Uses.

– In JPA there is a @Table annotation with the parameter uniqueConstraints
that is of the type array of @Unique annotations. The @Table is mapped to table
element and uniqueConstraints are mapped to its unique-constraint
subelement with its own children.

– EJB and their @MessageDriven annotation with the activationConfig pa-
rameter that is of type array of @ActivationConfigProperty annotations.
This models a branch from XML, where the @MessageDriven annotation is map-

XML to Annotations Mapping Definition with Patterns 1463

ped to the message-driven element and the parameter activationConfig
to the activation-config-property element.

– The @WebFilter annotation in the Java Servlets technology uses the Nested Anno-
tations pattern. Its parameter initParams is an array of @WebInitParam anno-
tations. The @WebFilter is mapped to the filter XML element and the config-
uration branch represented by the initParams annotation parameter is mapped to
an XML subtree init-param (or in fact multiple subtrees, since the initParams
parameter is an array).

Enumeration Pattern

Motivation. Sometimes there is a piece of configuration information represented by a set
of mutually exclusive marker annotations. Designing an XML language with "marker"
XML elements might seem a little too verbose and it increases the complexity of XML
instance documents.
Problem. How to elegantly map a set of mutually exclusive marker annotations to XML?
Forces.

– There is a configuration property that is in annotation represented by a set of mutually
exclusive marker annotations.

– The Direct Mapping pattern makes the XML language too complex.
Solution. The Enumeration pattern proposes to map a set of mutually exclusive marker
annotations to XML element values instead of elements themselves. Each of the marker
annotations is mapped to an enumeration value.

This pattern can be extended by allowing more occurrences of the enumeration ele-
ment tu support also marker annotations that are not mutually exclusive. Custom value
parameterization allows to have one annotation with a parameter (such as in case of JSF
managed beans) that is mapped to XML element’s values that are not part of the enumer-
ation. In Figure 5 there is a scheme of the Enumeration pattern including also a custom
value parameterization.

@EnumValue1

@EnumValue2

@Custom("customValue")

<element>enumValue1</element>

...

<element>enumValue2</element>

...

<element>customValue</element>

XML values are mapped to annotations

custom value variation

Fig. 5. Enumeration pattern scheme

Consequences.
[+] The XML language can be more compact and comprehensible.
[+] At the same time marker annotations are more compact regarding readability.
[–] An indirect mapping may make mixing configurations from XML and annotations
more complex.

1464 Milan Nosál’ and Jaroslav Porubän

Known Uses.
– The JSF technology uses this pattern to specify the scope of their managed beans. The

JSF scoping annotations (e.g., @RequestScoped) are mapped to a single XML el-
ement – the managed-bean-scope element. The @CustomScoped annotation
has a parameter that is mapped to the managed-bean-scope value thus imple-
menting custom value pattern parameterization.

– EJB use @Stateless, @Stateful and @Singleton annotations to configure
session beans. These three annotations are mapped to the session-type XML
element’s value in the XML deployment descriptor.

Wrapper Pattern

Motivation. In some situations there may be an implicit grouping property in annota-
tions that has to be mapped to XML. An example may be a grouping of some pieces of
configuration information according to their bound target elements. In annotations, this
structuring is implicit according to their usage, for example they annotate the members of
the same class.
Problem. How to represent grouping in XML that is based on some implicit property of
annotations?
Forces.

– Annotations use some implicit grouping property that does not have an appropriate
language construct that could be mapped to XML.

– Grouping is closed on branches and depth – grouping is defined strictly on one branch
in a tree and it groups only constructs on the same level in the tree.

Solution. The Wrapper pattern proposes to map implicit groupings from annotations to
so called wrapper XML elements. A Wrapper XML element is an element that groups
together elements according to some property. A Wrapper XML element does not have
its counterpart in annotations, at least not an explicit language construct like an annotation
or an annotation parameter. The Wrapper pattern is usually just a notation enhancement.
For example, binding to the members of the same class can be recovered from target
program element specifications. The Wrapper pattern structurally enhances the notation
in XML, for example, for design reasons. To increase comprehensibility we recommend
using a naming convention for the Wrapper XML element so that its name will refer to the
common property of wrapped information. For example, when annotations annotate the
fields of the same class the Wrapper XML element should be named fields. Another
viable option is to use a domain-specific term. In the same example if the class represents
an entity and its fields the entity attributes then attributes Wrapper element would
be good, too.
Consequences.
[+] XML can model some implicit properties of the annotations or the target program.
[+] The Wrapper pattern may increase the readability of the XML configuration language.
[+] Wrapper pattern is used to overcome the problem of annotating the program element
with more annotations of the same type (Vectorial Annotation idiom from [6]).
[–] Since the Wrapper pattern proposes a use of a language construct in one language that
does not have a corresponding counterpart in the other, this may increase the complexity
of mixing the configuration.

XML to Annotations Mapping Definition with Patterns 1465

public class SomeClass {

 @Element

 private String field1;

 @Element

 private String field2;

 @AnotherElement

 private String field3;

 ...

<wrapper>

 <element field="field1"/>

 <element field="field2"/>

 <anotherElement field="field3"/>

</wrapper>

no explicit

equivalent

in @OP

X

X

Fig. 6. Wrapper pattern scheme

Known Uses.
– JPA uses the attributes Wrapper XML element, for details see the case study in

Section 4.1.
– JPA also uses the @NamedQueries vectorial annotation that is a Wrapper for an ar-

ray of @NamedQuery annotations. In XML, the @NamedQueries annotation does
not have an equivalent, the named-query XML elements (that are mapped to the
@NamedQuery annotations) are directly situated in the root entity-mappings
element.

– The @MessageDriven annotation from EJB has a parameter that is of type array of
@ActivationConfigProperty. The XML activation-config wrapper
element wraps activation-config-property elements representing
@ActivationConfigProperty annotations.

Distribution Pattern

Motivation. Sometimes the same configuration information is supposed to be distributed
in one configuration language differently than in another. There may be some configu-
ration information that in XML, due to design reasons, is separated from its logical tree
structure, but it still has to be somehow associated together as a logic unit. An example
may be dealing with so called Fat Annotation annotations’ bad smell (Correia et al. in [2]).
While an XML element with many children elements might be good, overparameterized
annotations might increase code complexity and reduce code readability.
Problem. How to handle different distributions of configuration information in XML and
annotations?
Forces.

– Due to design decisions one or more constructs in the first language are mapped to one
or more constructs in the second language, while the mapping is not straightforward.

– Distributed constructs need to be tied together to form a logical unit.
– Logical units in both languages need unambiguous mapping to their counterparts.

Solution. The Distribution pattern proposes to group distributed constructs by sharing a
unique identifier. This identifier is unique in the language sentence. The complete model
for the corresponding configuration information is built up from all the constructs with
the same identifier. This unique identifier may even be a target program element, as in
case of mapping one XML element to multiple simple annotations. The unique identifier
is shared between both languages and is used to bind together logical units. In Figure 7,

1466 Milan Nosál’ and Jaroslav Porubän

there is a simple scheme of the distribution pattern, where the information from one an-
notation is distributed to two elements in XML. However, the Distribution pattern signif-
icantly increases the complexity of the mapping and therefore its use should be carefully
considered.

@Annotation(

id="identifier",

info1="value1",

info2="value2"

)

public class SomeClass {

...

<element>

 <id>identifier</id>

 <info1>value1</info1>

</element>

...

<anotherElement>

 <id>identifier</id>

 <info2>value2</info2>

</anotherElement>

bound with identifier

Fig. 7. Distribution pattern scheme

Consequences.
[+] More complicated tree structures of configuration languages are possible that do not
have to strictly follow each other.
[–] The pattern may require adding an identifier to the pre-existing configuration notation
in the scenario of converting from one configuration language to the other.
[–] Differences in the notations increase the complexity and readability of the mapping.
Known Uses.

– The Java Servlets technology uses the @WebServlet annotation to annotate a serv-
let implementation and through parameters specify a servlet’s name and its URL map-
pings. XML configurations distribute these pieces of information to the servlet
XML element, that specifies the servlet and binds it to its implementation, and to
possibly multiple servlet-mapping XML elements (one for each URL mapping
in annotations). The servlet-mapping and the servlet elements are tied to-
gether by the servlet’s name, which is the servlet’s identifier.

– Java Servlets use the same approach with the @WebFilter annotations.

3.2. Program Element Binding Patterns

Structural patterns are fundamental for mapping between annotations and XML. How-
ever, in practice they are combined with program element binding patterns. That is be-
cause most of the configuration usually directly concerns program elements. Annotations
deal with this easily because annotations by definition annotate program elements. They
are a form of embedded metadata and they bind themselves to program elements us-
ing in-place bindings. Annotations are written before (they annotate) program elements.
Metadata of an annotated program element are enriched with the metadata represented by
its annotation. This of course raises a question of how to take into account this binding to
program structure in an XML-based language. This group of patterns deals with this issue
and shows how XML structures can be bound to their target program elements.

XML to Annotations Mapping Definition with Patterns 1467

Target Pattern

Motivation. @OP is a form of embedded metadata. Annotations are always bound to
program elements. XML elements that carry the configuration information have to be
bound to program elements, too.
Problem. How to bind XML elements and/or attributes to program elements?
Forces.

– XML does not have in-place program element binding as embedded metadata do.
– XML elements/attributes have to be bound to the same program elements as their

corresponding annotation constructs.
Solution. The Target pattern proposes to use a special dedicated XML element or attribute
to set a target program element for an XML element. An attribute is preferred to make the
notation more compact. The name of the dedicated element/attribute has to be unique in a
given context for the node to be distinguishable from other nodes used to carry configura-
tion information. By default the generic name is used (e.g., "class" for binding elements
to class definitions). By means of parameterization a special name can be used, that may
suit better for the language. Another reason may be preventing name clashes if the lan-
guage already defines a node with the same name that is used to represent configuration
information. To make the notation shorter, the target program element is inherited in XML
branches, analogously to XML namespaces. Thus, by default a whole branch is bound to
the same target program element. Figure 8 shows a scheme of the Target pattern.

@Element()

public class SomeClass {

...

<element

 class="pckg.SomeClass"/>

bound with target’s canonical name

Fig. 8. Target pattern scheme

A more structured approach can be used as well. The reference can be structured to
multiple XML elements/attributes. For example, a canonical name of the class member
can be split to the class name and to the simple name of the member. This can be useful
when there is a need to use both of these pieces of configuration information. Then the
canonical name does not have to be parsed every time the configuration is read. EJB uses
this approach in the example mentioned in Known Uses.
Consequences.
[+] XML elements and attributes can be bound to target program elements.
[–] Navigational binding using the names of target program elements is error-prone due to
the absence of code refactoring that would take into account the composition of languages.
If a programmer changes the name of a method, thanks to in-place binding, annotations
will still be valid while XML will need manual refactoring or a respective tool.
Known Uses.

– The JSF technology uses the Target pattern in the managed-bean XML element to
bind it to the program element, to which its counterpart – the @ManagedBean an-
notation, is bound. The managed-bean element has the managed-bean-class
child element that states the target program element’s canonical name.

1468 Milan Nosál’ and Jaroslav Porubän

– Servlets have the XML servlet element with a child servlet-class element
that binds the servlet to its implementation.

– EJB use the resource-refXML element as an equivalent to the @Resource an-
notation. The resource-ref element is bound to its target program element by the
injection-targetXML element, that has two descendants, injection-tar
get-class specifying the target class, and injection-target-name identi-
fies the actual field to be injected (a structured variation of the pattern).

– JPA also uses this pattern, see the case study in Subsection 4.1.

Parent Pattern

Motivation. Sometimes the Nested Annotations pattern is not suitable for modelling the
XML tree. In case of the object-relational mapping tools such as JPA the columns of
the database table belong to the table. In XML, this is modelled by putting the column
element into the table element. Using the Nested Annotations pattern this would be mod-
elled by a single annotation @Table with a member that would have the type of array
of @Column annotations. But these annotations have a different target program element
than the @Table that annotates the class. They should annotate the class members. Ac-
cording to the Target element pattern, in the Nested Annotations pattern, the parameters of
annotations are bound to the same target program element as the annotations themselves.
Problem. How to model an XML tree structure in annotations when the descendants of
the branch root element belong to a different target program element than the branch root?
Forces.

– XML allows to group elements by their meaning and to create trees of element nodes.
– The meaning of the structure is significant and therefore it has to be preserved in some

form in annotations.
– Some of the XML elements or attributes in the branch belong to different target pro-

gram elements than the branch root.
Solution. The Parent pattern proposes to define parent-child relationships between an-
notation types. This relationship defines two roles, parent and its children. Parent-child
relationships can be used to define logical tree structures consisting of annotations. Meta-
data carried by annotations in the children role are considered to be on the same level as
the parent’s parameters.

The matching of child annotations with their parents has to be unambiguous. Usually,
a matching based on program structure axes is sufficient. For example, in the Java lan-
guage a program structure is built from packages, classes and class members. The most
commonly used axis is the descendant axis, where the children annotations annotate de-
scendants of the target program element of their parent. A concrete example of using this
axis can be found in the example section of this pattern. Another example can be the self
axis. In this case all children annotations annotate the same program element as their par-
ent. However, on the self axis the children have the same target program element as the
parent. Therefore the self axis does not deal with the problem of different target program
elements. The Parent pattern on the self axis is merely an notational alternative to the
Nested Annotations pattern. The Parent pattern on the self-axis is shorter than the Nested
Annotations pattern since the annotation parameter name is not stated (see the scheme in
Figure 9). On the other hand, if the relationship between the parent and the child is signifi-
cant it might be better to choose the Nested Annotations pattern since with that pattern the

XML to Annotations Mapping Definition with Patterns 1469

relationship will stay explicit in annotations too (annotation as parent and its parameter
as child). That makes the annotation-based notation more comprehensible.

@Parent(child1="value1")

public class SomeClass {

 @Child2(element="value2")

 private String field;

 ...

<parent

 class="pckg.SomeClass">

 <child1>value1</child1>

 <child2 field="field">

 <element>value2</element>

 </child2>

</parent>

mapped to logical relationship

Fig. 9. A scheme of the Parent pattern on the descendant-axis (using relative naming)

In the XML tree the new target program element of some of the descendants can be
specified both using its absolute name – the full canonical name of the program element;
or using a relative name, specifying the identifier relative to the current target element
context1.

This pattern allows to override the inherited target program element in XML by ex-
plicitly specifying a new target program element. Annotations have to define a logical
relationship to preserve the desired structure from XML and to still properly annotate
different target program elements.
Consequences.
[+] XML tree structures can be mapped to annotations.
[+] Different target program elements of the configuration information in the tree are
preserved in the annotation’s concrete syntax.
[+] In programming languages that do not support annotation nesting this pattern can
substitute the nested annotations pattern (using the self axis).
[–] Using unnatural or complicated matching algorithms may decrease annotation-based
language’s understandability and usability. We believe the direct descendant axis can be
understood most easily.
Known Uses.

– JSF uses the Parent pattern on the self axis with annotations @ManagedBean and
scope annotations, such as @RequestScoped or @SessionScoped. Scope an-
notations are logical descendants of the @ManagedBean annotation.

– JPA also uses this pattern, see the case study in Section 4.1.

Mixing Point Pattern

Motivation. If the system supports both XML and annotations, there has to be a mech-
anism to recognize whether some configuration information is in both annotations and
XML or just in one of the formats. The common situation may be using an annotation-
based configuration language to define a default configuration and an XML-based lan-

1 E.g., if the current context is the tuke.Person class then instead of
tuke.Person.surname we can use just the relative name of the field, the surname
identifier.

1470 Milan Nosál’ and Jaroslav Porubän

guage to override the default configuration. In such a situation processing only one con-
figuration format based on users choice is not sufficient, finer granularity in mixing is
required than just on the root construct level. The languages should not only be substi-
tutable but rather be able to complement each other.
Problem. How to provide finer granularity for duplicity checking in XML and annotation-
based configuration languages?
Forces.

– The annotation-based and XML-based configuration languages can both be used to
define the configuration.

– Some pieces of the configuration are duplicated in either XML and annotations.
– Both the XML and annotation-based configurations are incomplete, a complete con-

figuration is a combination of both.
Solution. The Mixing Point pattern proposes to define so called mixing points in a tree
structure of the languages. A mixing point node has to be unambiguously identified, e.g.,
by its name and target program element. These two properties are represented in both
formats using the Direct Mapping and the Target pattern. When a node in a tree is a
mixing point, the checks for duplication on its level must be performed in both annotation
and XML-based trees and the configuration information is mixed from both sources. If a
node is not a mixing point, no mixing is performed and the information is taken from the
language with higher priority. The Mixing Point pattern varies in the priority parameter.
In case of duplication the configuration in notation with highest priority is used. A root
node is by default a mixing point. Figure 10 shows the scheme of the pattern.

@Element(child="value1")

private String field1;

@Element(child="value2")

private String field2;

@Element(child="value3")

private String field3;

<element field="field1">

 <child>value1</child>

</element>

<element field="field2">

 <child>value2</child>

</element>

<element field="field3">

 <child>value3</child>

</element>

duplication

used from @OP

used from XML

Fig. 10. Mixing Point pattern scheme

Consequences.
[+] A finer granularity of combining two partial configurations in XML and annotations.
[–] Sometimes even this granularity is too coarse-grained. Components of array annota-
tion members share the same name and target element. To combine two arrays without
duplicates, a different duplication detection approach must be used (e.g., based on values).
Known Uses.

– The Spring framework supports mixing of both annotations and XML configuration.
An example may be using both approaches to configure dependency injection. The
XML configuration can be complemented by annotations (@Autowired annotation
is one of the mixing points). XML has the higher priority in the Spring framework.

XML to Annotations Mapping Definition with Patterns 1471

– Hibernate (JPA compliant ORM framework) supports mixing, too. However, as mix-
ing points there are classes and not fields. It is possible to configure one class through
annotations and one through XML, but not to configure one class by mixing both
formats. The annotations have higher priority in the Hibernate framework.

4. JPA Configuration Case Study

In this section we will look closer at how mapping patterns presented in the catalogue
work together and how they can be used to efficiently define a mapping between anno-
tations and XML. Instead of designing a new configuration language we decided to take
an existing technology and study the mapping of its configuration notations. We chose
the Java Persistence API (JPA) that is an object-relational mapping specification for Java.
It uses a configuration language to specify mappings between entities’ representations in
the code and their representations in a relational database.

In Table 1 there is a short summary of the patterns. It can be used for better orientation
in choosing the appropriate patterns according to the problem that needs to be solved.

Name Problem

Structural Direct Mapping How to map XML to annotations to keep the map-
ping straightforward?

Nested Annotations How to preserve the XML tree structure in
annotation-based languages?

Enumeration How to reduce the effort of mapping a set of mutu-
ally exclusive marker annotations to XML?

Wrapper How to represent grouping in XML that is based on
an implicit property of annotations?

Distribution How to handle a different distribution of configura-
tion information in XML and annotations?

Element Binding Target How to bind XML elements to program elements?

Parent How to model the XML tree structure with multiple
target elements in annotation-based language?

Mixing Point How to provide finer granularity for mixing XML
and annotations?

Table 1. Summary table of patterns

4.1. The JPA Configuration Language

We will not work with the complete JPA configuration language but we will rather look
just at its most commonly used part – the definition of mappings for the entity classes. We
will present the case study on a simple Person entity class shown in Source 1.

1472 Milan Nosál’ and Jaroslav Porubän

Source 1. A simple Person entity class

public class Person {
private int id;
private String lastName;
...

}

This entity class will be mapped to a table named TABLEPERSON in a relational
database. The table will have columns corresponding to the fields of the Person class.
The correct JPA object-relational mapping using XML and annotations is shown in Source
2 (there may be more basic attributes).

Source 2. Correct equivalent JPA mappings of the Person entity using XML and @OP

<entity class="Person" name="Person">|@Entity(name = "Person")
<table name="TABLEPERSON"/> |@Table(name = "TABLEPERSON")

|public class Person {
<attributes> |
<id name="id"> | @Id
<column name="ID"/> | @Column(name = "ID")

</id> | private int id;
|

<basic name="lastName"> | @Column(name = "LASTNAME")
<column name="LASTNAME"/> | private String lastName;

</basic> |
</attributes> |...

</entity> |}

4.2. Patterns Application

We will devise an annotation-based notation for an existing XML notation. This transition
has become more common in practice after the introduction of annotations on the Java
platform since until then the most favourite configuration notation was XML. So in this
point we assume that the XML notation shown in Source 2 already exists.

We will start with the most straightforward mapping. Which pattern uses straight-
forward mapping? According to Table 1 it is the Direct Mapping pattern. In this case
it means that every XML element would be mapped to an annotation, while its subele-
ments and attributes would be mapped to parameters of the corresponding annotation. To
keep the Java conventions of upper camel case notation for annotation types’ names (e.g.,
@Entity instead of @entity) we used the naming variation of the Direct Mapping
pattern (highlighted in blue in Figure 11). However, just the Direct Mapping pattern will
not suffice because the XML tree is deeper than just two levels. The problem here is to
map an XML tree structure to the annotations. Again, the solution according to Table 1 is
the Nested Annotations pattern. If a subelement is an XML subtree, instead of a param-
eter of a primitive type the parameter will be an annotation representing the subtree. The
Nested Annotations pattern will be applied recursively until the leaves (highlighted in red
in Figure 11). So far the binding to program elements is done by referencing analogously
to the XML notation. The annotation in this version can annotate any program element,
however, probably the best would be to annotate the package with entity classes.

XML to Annotations Mapping Definition with Patterns 1473

Direct Mapping

Nested Annotations

@Entity(name="Person",

 class="Person",

 table=@Table(

 name="TABLEPERSON"),

 attributes=@Attributes(

 id=@Id(

 name="id",

 column=@Column(name="ID")

)

 basic={

 @Basic(

 name="lastName",

 column=@Column(

 name="LASTNAME")

)

 }

)

)

<entity name="Person"

 class="Person">

 <table

 name="TABLEPERSON"/>

 <attributes>

 <id

 name="id">

 <column name="ID"/>

 </id>

 <basic

 name="lastName">

 <column

 name="LASTNAME"/>

 </basic>

 </attributes>

</entity>

array for multiple elements
of the same type

Fig. 11. First mapping version with the Direct Mapping and Nested Annotations patterns

The most significant deficiency of the annotation-based notation in figure 11 is that we
do not use the natural relation between annotations and program elements. An annotation
has to annotate a program element, thus indicating a close relation between the metadata
in annotations and the program elements. As a result of using the Direct Mapping pattern
there are still annotation parameters referring to program elements. The problem here is
to naturally represent the binding of annotations to program elements. So the next step is
using the Target pattern and removing the explicit links to the source code (highlighted in
blue in Figure 12). In our example we can remove the class parameter of the @Entity
and express this relation by annotating the proper entity class.

The same way we would like to remove links from @Id and @Basic that navigate
to class fields. Here the problem is to model an XML tree that has multiple target pro-
gram elements – a candidate for the Parent pattern. The @Entity annotation will have
the parent role and the @Id and @Basic annotations will be its children. It is easy to
determine an axis on which the relationship will be defined. Because we need to move the
child annotations to fields of the entity class, the pattern will be on the descendant axis of
the program element tree. In practice this means that @Id and @Basic annotations can
only annotate the fields of a class that is annotated by a parent @Entity annotation. The
children are highlighted in green in Figure 12.

The next question is what to do with the @Attributes annotation. It was used to
group @Id and @Basic annotations but since those will be separated now it looses its
function. This is in fact an instance of the Wrapper pattern. The attributes XML
element in the configuration was used to group elements that represented attributes of the
entity class. In the source code the entity class attributes are its fields indeed. Therefore,
an attribute XML element is a wrapper that represents this relationship in XML. As

1474 Milan Nosál’ and Jaroslav Porubän

a consequence, we can omit the attributes parameter from the @Entity annotation
(highlighted in red in Figure 12).

Target

Wrapper

Parent

@Entity(

 name="Person",

 table=@Table(name="TABLEPERSON"))

class Person {

 @Id(

 column=@Column(name="ID"))

 int id;

 @Basic(

 column=@Column(

 name="LASTNAME"))

 String lastName;

 ...

}

@Entity(class="Person",

 name="Person",

 table=@Table(name="TABLEPERSON"),

 attributes=@Attributes(

 id=@Id(name="id",

 column=@Column(name="ID"))

 basic={

 @Basic(name="lastName",

 column=@Column(

 name="LASTNAME"))

 }

)

)

Fig. 12. Second mapping version with the Target, Parent and Wrapper patterns

We were able to significantly reduce redundancy and fragility by using the Target
pattern. Using links to code may cause inconsistencies in case of changing the code. Now
relationships are expressed by annotating proper program elements.

We can make this notation even shorter and more concise by using the Parent pattern
on the self-axis. For example, considering the @Id and the @Column annotations if the
@Column was a child on the self-axis the notation would become shorter by removing
the need of using the parameter assigment "column=". This makes the notation shorter
and does not impair comprehension since the information that the field id is a column is
not bound to the information that it is an identifier. An id field is an identifier and it is a
column (not an identifier and therefore a column). Therefore, the @Id and the @Column
may be both used as two distinct annotations. The same can be done with the @Entity
and the @Table annotations and with the @Basic and the @Column annotations. After
applying the Self-axis Parent pattern variation the mapping will look like in Figure 13.

The reader can notice that now the notation is shorter but still readable and com-
prehensible. This notation is a valid JPA configuration. It differs from the example from
Section 4 because there were no @Basic annotations. There the authors of the JPA spec-
ification used the default value technique. By default every column attribute of an entity
class is considered to be basic if not specified otherwise. @Basic annotations are optional
unless some of their attributes differs from default (then they need be stated explicitly).

4.3. Summary

The case study indicates which of the mapping patterns are most common. We have used
5 of the total 8 patterns. The most important are the Direct Mapping pattern for basic
mapping, the Nested Annotations and Parent patterns for tree-like structure mapping and

XML to Annotations Mapping Definition with Patterns 1475

@Entity(name="Person",

 table=@Table(name="TABLEPERSON"))

class Person {

 @Id(

 column=@Column(name="ID"))

 int id;

 @Basic(

 column=@Column(name="LASTNAME"))

 String lastName;

 ...

}

@Entity(name="Person")

@Table(name="TABLEPERSON")

class Person {

 @Id

 @Column(name="ID")

 int id;

 @Basic

 @Column(name="LASTNAME")

 String lastName;

 ...

}

Self-axis Parent

Fig. 13. Final mapping after the Self-axis Parent pattern variation

the Target pattern for binding the configuration information to the source code. These
three problems are always present when a programmer defines mapping between XML
and annotations. There is always the need to define at least this basic mapping, to map the
tree structure of the XML to annotations and to bind the configuration information to the
source code. Pattern variations are common, too. Especially, naming and attribute/element
variations of the Direct mapping pattern to keep metadata format naming conventions. In
case of the Parent pattern, most common are its variations on descendant and self axis.

5. Conclusion

We analysed the correspondence between XML and annotations and we have presented
the discovered XML to annotations mapping patterns that provide a proof of this corre-
spondence. The correspondence between these embedded and external format representa-
tives is a basis for our future research in which we want to analyse the nature of embedded
and external metadata formats.

Discovered mapping patterns can be used to facilitate configuration language devel-
opment. Therefore, recognition and formalization of mapping patterns from practice is a
contribution to the field of configuration languages. For the complete pattern catalogue
we refer to [12].

We presented a case study of constructing a mapping between XML and annotations
for a JPA configuration language. The case study provides an insight on how mapping
patterns can be used to devise a concise mapping from existing an XML notation to anno-
tations. It also indicates which mapping patterns are most common in mapping definitions.

Acknowledgments. This work was supported by VEGA Grant No. 1/0305/11 Co-evolution of the
Artifacts Written in Domain-specific Languages Driven by Language Evolution.

References

1. Chodarev, S., Kollár, J.: Extensible Host Language for Domain-Specific Languages. Comput-
ing and Informatics (accepted)

1476 Milan Nosál’ and Jaroslav Porubän

2. Correia, D.A.A., Guerra, E.M., Silveira, F.F., Fernandes, C.T.: Quality Improvement in Anno-
tated Code. CLEI Electron. J. 13(2) (2010)

3. Demirkol, S., Challenger, M., Getir, S., Kosar, T., Kardas, G., Mernik, M.: A DSL for the
Development of Software Agents working within a Semantic Web Environment. Computer
Science and Information Systems 10(4), 1525–1556 (2013)

4. Duval, E., Hodgins, W., Sutton, S.A., Weibel, S.: Metadata Principles and Practicalities. D-Lib
Magazine 8(4) (2002)

5. Fernandes, C., Ribeiro, D., Guerra, E., Nakao, E.: XML, Annotations and Database: a Compar-
ative Study of Metadata Definition Strategies for Frameworks. In: Proceedings of XATA 2010:
XML, Associated Technologies and Applications. pp. 115–126. XATA 2010 (2010)

6. Guerra, E., Cardoso, M., Silva, J., Fernandes, C.: Idioms for Code Annotations in the Java
Language. In: Proceedings of the 17th Latin-American Conference on Pattern Languages of
Programs. pp. 1–14. SugarLoafPLoP (2010)

7. Guerra, E., Fernandes, C., Silveira, F.F.: Architectural Patterns for Metadata-based Frameworks
Usage. In: Proceedings of the 17th Conference on Pattern Languages of Programs. pp. 1–14.
PLoP2010 (2010)

8. Kollár, J.: From XSL Transformation to Automated Software Evolution. Journal of Computer
Science and Control Systems 6(1), 52–57 (2013)

9. Lämmel, R., Meijer, E.: Revealing the X/O impedance mismatch: changing lead into gold.
In: Proceedings of the 2006 international conference on Datatype-generic programming. pp.
285–367. SSDGP’06, Springer-Verlag, Berlin, Heidelberg (2007)

10. Noguera, C., Pawlak, R.: AVal: an extensible attribute-oriented programming validator for Java:
Research Articles. J. Softw. Maint. Evol. 19(4), 253–275 (Jul 2007)

11. Nosál’, M., Porubän, J.: Supporting multiple configuration sources using abstraction. Central
European Journal of Computer Science 2(3), 283–299 (Oct 2012)

12. Nosál’, M., Porubän, J.: XML to Annotations Mapping Patterns. In: Leal, J.P., Rocha, R.,
Simões, A. (eds.) 2nd Symposium on Languages, Applications and Technologies. OpenAccess
Series in Informatics (OASIcs), vol. 29, pp. 97–113 (2013)

13. Pawlak, R.: Spoon: Compile-time Annotation Processing for Middleware. IEEE Distributed
Systems Online 7(11), 1– (Nov 2006)

14. Porubän, J., Nosál, M.: Leveraging Program Comprehension with Concern-oriented Source
Code Projections. In: Pereira, M.J.V., Leal, J.P., Simões, A. (eds.) 3rd Symposium on Lan-
guages, Applications and Technologies. OpenAccess Series in Informatics (OASIcs), vol. 38,
pp. 35–50 (2014)

15. Rouvoy, R., Merle, P.: Leveraging Component-Oriented Programming with Attribute-Oriented
Programming. In: Proceedings of the 11th International ECOOP Workshop on Component-
Oriented Programming. WCOP’06, Karlsruhe University (Jul 2006)

16. Song, M., Tilevich, E.: Metadata invariants: checking and inferring metadata coding conven-
tions. In: Proceedings of the 2012 International Conference on Software Engineering. pp. 694–
704. ICSE 2012, IEEE Press, Piscataway, NJ, USA (2012)

17. Tansey, W., Tilevich, E.: Annotation refactoring: inferring upgrade transformations for legacy
applications. SIGPLAN Not. 43(10), 295–312 (Oct 2008)

18. Tilevich, E., Song, M.: Reusable enterprise metadata with pattern-based structural expressions.
In: Proceedings of the 9th International Conference on Aspect-Oriented Software Develop-
ment. pp. 25–36. AOSD ’10, ACM, New York, NY, USA (2010)

19. Wada, H., Takada, S.: Leveraging Metamodeling and Attribute-Oriented Programming to Build
a Model-driven Framework for Domain Specific Languages. In: Proc. of the 8th JSSST Con-
ference on Systems Programming and its Applications (2005)

Milan Nosál’ is a PhD. student at the Department of Computers and Informatics, Tech-
nical University of Košice, Slovakia. He received his MSc. in Informatics in 2011 for his

XML to Annotations Mapping Definition with Patterns 1477

work in the field of configuration formats and attribute-oriented programming. Currently
his research focuses on attribute-oriented programming, metaprogramming, domain-specific
languages and projectional programming.

Jaroslav Porubän is Associate professor and the Head of Department of Computers and
Informatics, Technical university of Košice, Slovakia. He received his MSc. in Computer
Science in 2000 and his PhD. in Computer Science in 2004. Since 2003 he is the member
of the Department of Computers and Informatics at Technical University of Košice. Cur-
rently the main subject of his research is the computer language engineering concentrating
on design and implementation of domain specific languages and computer language com-
position and evolution.

Received: September 20, 2013; Accepted: June 7, 2014.

