
Computer Science and Information Systems 16(3):815–830 https://doi.org/10.2298/CSIS180915028L

Algorithm of Web Page Similarity Comparison
Based on Visual Block

Xingchen Li1, Weizhe Zhang1,2, Desheng Wang1, Bin Zhang2, and Hui He1

1 School of Computer Science and Technology,
Harbin Institute of Technology, Harbin,China

16s003084@stu.hit.edu.cn, (wzzhang,wangdesheng0821,hehui)@hit.edu.cn
2 Cyberspace Security Research Center,

Peng Cheng Laboratory, Shenzhen, China
bin.zhang@pcl.ac.cn

Abstract. Phishing often deceives users due to the relative similarity to the true
pages on a layout and leads to considerable losses for the society. Consequently,
detecting phishing sites has been an urgent activity. By researching phishing web
pages using web page screenshots, we discover that this kind of web pages use nu-
merous web page screenshots to achieve the close similarity to the true page and
avoid the text and structure similarity detection. This study introduces a new sim-
ilarity matching algorithm based on visual blocks. First, the RenderLayer tree of
the web page is obtained to extract the visual block. Second, an algorithm that will
settle the jumbled visual blocks, including the deletion of the small visual blocks
and the emergence of the overlapping visual blocks, is designed. Finally, the simi-
larity between the two web pages is assessed. The proposed algorithm sets different
thresholds to achieve the optimal missing and false alarm rates.

Keywords: phishing, similarity comparison, visual block, web rendering.

1. Introduction

With the advent of the network information age, the Internet has significantly improved
people’s works and lives [16] and has accelerated the spread of information. However,
prohibited tools for illegal profit-making have emerged simultaneously. Phishing websites
is one of the killers that threaten network development in China. These websites confuse
users when a domain name similar to the real website is used [18], thereby seriously
damaging the vital interests of regular enterprises and numerous netizens and seriously
disrupting China’s network trading environment. At present, phishing websites mainly
target financial and e-commerce websites [7] to defraud money. With the increase in the
popularity of family digitalization and network broadband and the emergence of new
consumption patterns (e.g., e-commerce, online bank payment, and online settlement),
phishing attacks have become the most serious threat to the realistic safety of e-commerce
[17].

Web page similarity comparison relates to network rendering technology in addition
to active detection technology. Network rendering technology involves the rendering prin-
ciples of a browser and a kernel and the generation process of the rendering tree.

The rendering principle of a browser is presented in Fig. 1. A browser parses a web
page into three steps.

816 Xingchen Li et al.

1) A document object model (DOM) tree is produced using HTML, XHTML, or SVG
files..

2) The CSS files will generate a CSS rule tree.
3) JavaScript scripts, mainly through the DOM and CSSOM API, are used to operate the

DOM and CSS rule trees.

After completing the parsing, the browser engine constructs the rendering tree through
the DOM and CSS rule trees. The main steps are as follows:

1) The rendering tree is not equivalent to the DOM tree because of a header or a display;
none is unnecessary in the rendering tree.

2) The CSS rule tree must complete the match and attach the CSS rule to each element
(or frame) on the rendering Tree, which is the DOM node.

3) The position of each frame (i.e., each element) is calculated. This procedure is called
the layout and reflow process.

Finally, the API of the operating system is drawn which is called native GUI.

HTML,

SVG,

XHTML

Content

Tree/DOM

Tree

Render

Tree/Frame

Tree

Script Script

Graphics

API

CSSCSS

Parse Construct

DOM API

CSSOM

API

Reflow/la

yout

Paint

Fig. 1. Browser rendering principle

The construction process of the rendering tree is illustrated in Fig. 2. The browser’s
rendering page must first build the DOM and CSSOM trees. The DOM tree captures the
attributes and relationships of the document markup, whereas the CSSOM tree presents
the appearance of all elements after rendering. The CSSOM and the DOM trees are
merged into the rendering tree and then used to calculate the layout of each visible el-
ement. The results are outputted into the rendering process to render the pixels to the

Algorithm of Web Page Similarity Comparison Based on Visual Block 817

screen. The rendering tree, which contains only the nodes required to render the web
pages, traverses the nodes in each DOM tree, thereby finding the style of the current node
in the CSSOM rule tree to generate the rendering tree. In addition, the rendering tree cal-
culates the exact location and size of each object in the layout of the web page. Every
visible node is traversed from the root node of the DOM tree during the traversal process.
The invisible nodes that are not reflected in the rendering output (e.g., script and meta
tags) will be ignored. Similarly, some nodes that are hidden by CSS will also be ignored
in the rendering tree. The suitable CSSOM rules for each node are then determined and
applied. The matching begins from the right side of the selector to the left, thereby indi-
cating that the matching begins from the child node of the CSSOM tree to the parent node.
In addition, the time required to execute the rendering tree construction, layout, and draw-
ing will depend on the size and application style of the document and on the device that
runs the document. That is, a large document indicates additional work that the browser
must complete. In addition, the drawing is time-consuming when the style is increasingly
complex.

DOM

HTML DOM Tree

Style Sheets

HTML

Parser

Attachment Render Tree Painting Display

CSS Parser Style Rules

Layout

Fig. 2. The construction process of render tree

On the basis of some visual nodes of the DOM tree, the browser will build the cor-
responding nodes in accordance with the node properties. These nodes will also form a
rendering tree. The browser will create new nodes on the basis of this rendering tree to
form a RenderLayer tree. The structural relationship between the three types of trees is
demonstrated in Fig. 3.

On the one hand, the rendering tree is a new tree that is built in accordance with the
DOM tree. The nodes of the rendering tree do not directly correspond to those of the DOM
tree. When encountering the non-visual nodes in the DOM tree, the rendering tree will not
create new nodes. After building the rendering tree, the layout operation will calculate the
related attributes, including location, size, and floating. This information will allow the
rendering engine to know the location and the manner of drawing the elements.

818 Xingchen Li et al.

DOM

Document

HTML

Head

Body

Div

Canvas

Render

RenderView

RenderBody

RenderHTM

LCanvas

RenderLayer

RenderLayer

RenderLayer

RenderLayer

RenderBlock

RenderBlock

. .

Fig. 3. The relationship between the three trees

On the other hand, the RenderLayer tree is a new tree that is built on the basis of the
rendering tree. In addition, the nodes of this tree do not directly correspond to those of
the rendering tree. Alternatively, a one-to-many relationship occurs among the nodes. In
some cases, the tree must create new RenderLayer points. In the present study, the visual
information of the web pages is obtained by analyzing the RenderLayer trees of the web
pages and then extracting the information.

In this study, we devise a method to detect phishing sites based on visual blocks. The
major contributions of this study are presented as follows:

1) Obtain the RenderLayer tree of the web page where the visual block will be extracted.
2) Design an algorithm that will settle jumbled visual blocks. This process involves delet-

ing the small visual blocks and merging the overlapping visual blocks.
3) Define the similarity of the two web pages, and set different thresholds for the algo-

rithm to achieve the optimal miss and error rates.

The remainder of this paper is organized as follows: Section 2 presents the related
work. Section 3 discusses the similarity matching algorithm. Section 4 introduces the
evaluation results. Section 5 provides the conclusions drawn from this study.

2. Related Work

Phishing detection methods are mainly divided into two categories, namely, detecting
URL and identifying the content of the web pages. The former identifies a phishing web-
site in accordance with the URL through mathematical modeling and is suitable for de-
tecting large quantities of web pages.

The research on web page similarity can be divided into the following categories:
traditional text, structural, and visual similarity studies.

Algorithm of Web Page Similarity Comparison Based on Visual Block 819

The text-based similarity detection extracts the text contents of the web page and com-
pares them with the text template of the phishing web page to determine if the latter is
a phishing website. The commonly used algorithms are Simhash and Imatch algorithms.
Takama et al. [3] proposed a fast HTML web page detection approach, which provided
direct access to node information by hashing the web page. The detection of the changes
in the two versions of a page was accomplished by performing similarity computations
after transforming the web page into an XML-like structure. It showed rapid improve-
ments when compared to the results of a previous approach. Zhuang et al. [21] extracted
10 different types of features such as title, keyword and link text information to represent
the website. Roopak et al. [14] proposed a novel method for detecting phishing pages
by searching similar web pages through web mining and then comparing the web pages
by matching the HTML source codes and computing the cosine similarity of the textual
contents. The experiment results indicated that the detection rate is higher in the pro-
posed mechanism than in other existing methods. Nichele et al. [12] presented a domain
taxonomy-based clustering approach, which integrated page similarities to compute the
session similarity. In the paper [15], authors used the Jaccard coefficient formula to de-
termine the similarity among the web pages. This approach can be applied for usage and
navigation clustering purposes. Huo et al. [13] proposed an N-gram algorithm to realize
the comparison of web page similarities. Anari et al. [2] determined the similarity of web
pages based on learning automata and probabilistic grammar.

DOMs are first used to express the internal structure of HTML files, thus contribut-
ing significantly to HTML parsing. Typical algorithms for structural similarity research
are web page similarity measurement methods based on edit distance and statistical fea-
tures. Edit distance, which is also known as Levenshtein distance, refers to the minimum
number of edit operations required between two strings, from one to another. Licensed
editing operations involve replacing one character with another, inserting one character,
and deleting one character. In general, a small edit distance indicates a considerable sim-
ilarity between two strings. Similar to the string, the number of edit operations is defined
by inserting, deleting, and modifying the nodes of the tree. Similarly, a small edit distance
of the two trees implies a huge similarity between the two trees. Therefore, the similar-
ity of the web page can be calculated by comparing the edit distance of the web page’s
DOM tree. Web page similarity measurement methods based on statistical features in-
clude a method based on link and node features. The link feature focuses on the order of
the nodes, while the node feature focuses on the content of the nodes. In the paper [9],
authors constructed the links from the root node to the leaf node in the DOM tree of the
independent web page and regarded the link frequency as a feature of the link to judge
the similar web pages based on link frequency similarity. This algorithm is difficult but
simple because it only considers tag information. Alpuente et al. [1] proposed a functional
technique that transforms each web page into a compressed, normalized tree to represent
a visual structure. An optimization of this technique, which was developed on the basis of
memorization, achieved remarkable improvements in efficiency in time and space.

Visual similarity detection uses the similarity of the image to match the similarity of
the web pages [8,19,11]. By cutting the web page image and extracting the size, color,
pixel, and other features of each sub-graph, the distance between the two features and the
similarity with the feature template are calculated. The visual similarity detection system
of the DOM structures of web pages proposed by Liu et al. [20] focused on the similarity

820 Xingchen Li et al.

of web page typesetting. Liu et al. [10] detected phishing web pages in accordance with
the similarity among the visual blocks after rendering the screening page, which involves
two processes. The first process ran on local email servers and monitored emails for key-
words and suspicious URLs, while the second process compared the potential phishing
pages against actual pages and assessed the visual similarities among them in terms of
key regions, page layouts, and overall styles. Fu et al. [6] proposed a phishing detection
scheme that calculated the visual similarity of web pages based on Earth mover distance.
In the paper [5], authors developed an automated process for crawling web pages. The
Porter stemmer algorithm was used to convert the keywords into basic forms, and the term
frequency–inverse document frequency method was utilized to obtain the importance of
a keyword. In the paper [4], authors detected phishing using website components, such
as source code, CSS, and logo. Furthermore, this method adopted the Jaccard coefficient
formula to determine the similarity among web pages.

3. Similarity Matching Algorithm

This section introduces a web page similarity matching algorithm based on visual blocks.
The algorithm consists of three parts. The first part is the extraction of the web page’s vi-
sual information. In this part, the RenderLayer tree of the web page must be analyzed, and
the visual information, including the location and size information of the visual nodes,
must be extracted. The second part is the merging of visual nodes. Given the scattered
numerous visual nodes of the web, the small ones can be ignored directly, while the over-
lapping ones require collision analysis and merge processing to maintain the consistency
of the visual blocks with the original web page and improve the calculation efficiency. The
last part is the web page similarity comparison, which utilizes the optimal free matching
algorithm. For each visual block in the target web page, given that the visual blocks with
coordinates, length, and width within a certain threshold range is found in the template
web page, the blocks are considered similar. When the number of similar visual blocks is
greater than a certain threshold, the two web pages are considered similar

3.1. Extracting Visual Blocks

Most web visual information are stored in the CSS file. Thus, obtaining the coordinates,
lengths, and widths of the visual nodes directly from the HTML source code is difficult.
The RenderLayer tree is more consistent with the visual structure of the original web
page than the rendering tree. The non-visual nodes in the original web page (e.g., HEAD,
META, and SCRIRT nodes) have been deleted.

The structure of the RenderLayer tree is shown in Fig 4. The first line represents the
total size of the layer point, and the remaining lines signify the visual nodes of the layer
point. The coordinates of the visual nodes in the layer are all relative coordinates. Thus,
each visual node must convert the coordinates into the absolute coordinates of the web
page.

To find the father node of each visual node, the structure of the RenderLayer tree
must be analyzed. This study introduces an algorithm that converts the text form of the
RenderLayer tree into an HTML source code to facilitate parsing. The conversion process
is presented in Algorithm 1.

Algorithm of Web Page Similarity Comparison Based on Visual Block 821

Fig. 4. Structure of the renderlayer tree

Algorithm 1 Converting algorithm
Input: Dc: Depth of the current line, Dp: Depth of the previous line, Tc: Tag of the current line,

Ec: End tag of the current line
Output: F : Format of HTML source code

1: function CONVERTING

2: for line do
3: F.wirte(Tc)
4: if Dc > Dp then
5: S.push(Ec)
6: end if
7: if Dc < Dp and and Dp is the last line of the layer node then
8: while ! S.empty() do
9: F.write(S.pop())

10: end while
11: end if
12: if Dc < Dp and and Dp is not the last line of the layer node then
13: depth = Dp −Dc

14: while depth != 0 do
15: F.write(S.pop())
16: depth = depth - 1
17: end while
18: end if
19: if Dc == Dp then
20: F.write(S.pop())
21: S.push(Ec)
22: end if
23: end for
24: end function

The tags of each line in the RenderLayer tree is written in the output result. The
tags include the name, coordinate position, and the length-width attributes of the tag.
Then, through the comparison of the depths, the relationship between the current and the
previous lines can be determined. On the one hand, if the depth is larger in the current
row than in the previous line, then the node is the child node of the previous ones. Thus,
the tail tag is added to the stack. For example, if the tag is <HTML>, then the tail tag
is also <HTML>. The stack is used to save the sequence of the nodes. On the other

822 Xingchen Li et al.

hand, if the depth is smaller in the current line than in the previous line and the previous
line is the last line of the RenderLayer point, then the line is the starting line of the new
layer point (i.e., the previous layer point has ended). The stack stores the tag order of
the previous layer point. Thus, all elements in the stack must be discarded. The tail tags
are then written in the output results. However, if the depth is smaller in the current line
than in the previous line, but the previous line is not the last line of the layer point, the
depth difference between the current and the previous lines must be determined to select
the number of element output of the stack. If the depth of the current line is the same as
that of the previous line, then the current node is the brother node of the last node. The
top element output of the stack is written in the output results, and the current node tag
is attached to the stack. The top end tag in the stack is popped and written in the output,
and then the end tag of this node is attached to the stack. The whole algorithmic process
is equivalent to restoring the visual attributes to the HTML source code, thereby unifying
all tag formats in the code. The output results are shown in Fig. 5.

Fig. 5. The output of algorithm 1

3.2. Merging Visual Blocks

Most web pages contain thousands of visual nodes. These visual nodes are disorganized
and discrete, and some visual blocks are overlapped. To make the extracted visual blocks
consistent with the original web pages, the visual blocks must be processed by deleting
the small visual blocks (i.e., overlooking) and merging the overlapped ones. The reduction
in the number of visual blocks can facilitate the improvement of computational efficiency.

Algorithm of Web Page Similarity Comparison Based on Visual Block 823

Each visual block is a rectangle. The merging process of the visual blocks may be
horizontal and vertical. The coordinates represent the position of a visual block in a web
page. The visual blocks with proximal abscissas can be merged after the abscissa ordering.
Similarly, the visual blocks with proximal ordinates can be merged after the ordinate
ordering.

The current study presents a merging algorithm for visual blocks. Assuming that a list
stores the visual blocks after ordering, in Algorithm 2, Pointer i points at the first element
in the list of the visual blocks before merging, whereas Pointer j points at the second
one. First, the visual blocks pointed by Pointers i and j must be assessed for suitability in
merging. If the points are unsuitable, then both pointers are moved backward for one bit.
Otherwise, the merging of two visual blocks is considered. Second, multiple overlapping
similar visual blocks must be merged. Therefore, Pointer j must move backward for one
bit until the visual blocks pointed by both pointers cannot be merged. At this time, the
visual block pointed by Pointer i and the previous visual block pointed by Pointer j are
merged. Pointer i points at Pointer j, which will move backward for one bit. When Pointer
j points at the end of the list, one merge process ends. Finally, when the length of the list
of two attached merging results did not change, or if no visual blocks were merged, then
the algorithm ends.

Algorithm 2 merging algorithm
Input: Lbefore: A list saving visual blocks before merging, i: Pointer i, j: Pointer j
Output: Lafter: A list saving visual blocks after merging

1: function MERGING

2: while Lafter .size() not change do
3: i← Lbefore[0]
4: j← Lbefore[0]
5: while j != Lbefore.size() do
6: if !merge(i,j) then i← i + 1 j← j + 1
7: end if
8: if merge(i,j) then
9: while merge(i,j) do j← j + 1

10: end while
11: Lafter .add(merge(i,j-1))
12: i← j
13: j← j + 1
14: end if
15: end while
16: end while
17: end function

Visual block merging mainly depends on the blocks’ coordinates. Two blocks can be
merged if their coordinates are adjacent. However, the merging rules vary for different
cases.

Fig. 6 presents some possible cases of the horizontal merging of visual blocks. The
rectangle with a thick line is called the reference block, and the one with a thin line is
called the fitting block. The coordinates, lengths, and widths of the reference and fitting

824 Xingchen Li et al.

blocks are (X1, Y 1), a1, and b1, and (X2, Y 2), a2, and b2, correspondingly. The con-
ditions for horizontal merging are Y 1 = Y 2 and b1 = b2. If the abscissa is larger in
the target block than in the reference block, then three cases are possible. The first case
is where the reference and target blocks are overlapped, which is the most common case
(Fig. 6(a)). The length after merging is X2 − X1 + a2. Fig. 6(b) illustrates the second
case, wherein the target block is within the reference block because the length of the
former is small. This case is generally the search box on the web page, and the length
after merging is a1. The third case is depicted in Fig. 6(c), wherein both blocks are not
overlapped. The length after merging is the same as that in the first case. In summary,
the coordinates, length, and width of the visual block after merging are (X1, Y 1), max
(a1, X2−X1 + a2), and b, respectively.

a1 a2

b

(X1, Y1) (X2, Y2)

(a)

a1 a2

b

(X1, Y1) (X2, Y2)

(b)

a1 a2

b

(X1, Y1) (X2, Y2)

(c)

Fig. 6. Visual block merging rules

3.3. Similarity Comparison

The traditional ordered matching principle possesses many limitations. For example, the
similarity of the two web pages cannot be objectively measured, and the deviation of the
visual block in the web page causes errors. In addition, the similarity matching princi-
ple must have reflexivity and symmetry. Therefore, this study proposes an optimal free
matching principle. For each visual block in the target web page, given a visual block
with coordinates, length, and width within a certain threshold in the template web page,
the blocks are considered similar.

The specific matching process is as follows:

1) Assume that (X,Y, L,W) represents the structure of each visual block, and X and Y
are the abscissa and ordinate of the visual block, correspondingly, and L and W are the

Algorithm of Web Page Similarity Comparison Based on Visual Block 825

respective length and width. The structure of the visual block of the target web page
is (GX,GY,GL,GW), while that of the template web page is (TX, TY, TL, TW).
Considering that two nodes are similar in position and the lengths and widths are only
slightly different, the nodes are considered similar. In particular, when |GX − TX|,
|GY − TY |, |GL− TL|, |GW − TW | are within a certain threshold, the visual blocks
are similar.

2) The nodes {GN1, GN2, GN3...} in the target web page are compared with the nodes
{TN1, TN2, TN3...} in the template web page. When one node in the template web
page is similar to that in the target page, the similar nodes can be added, and the
comparison of the nodes is continued. The final number of similar nodes is denoted as
SIM.

3) Assume that the total nodes of the target and template web page are G and T , respec-
tively. In most cases, the total nodes of the target page are different from that of the
template page. Therefore, the maximum values of G and T are taken. The similarity
of the two web pages is denoted as SIM/MAX(G,T).

4. Evaluation Result

The evaluation process consists of three parts. The first part is the evaluation of the extrac-
tion effect, which assesses if the extracted and merged visual blocks are visually consis-
tent with the original web page. The second part evaluates the threshold of similar visual
blocks. The similarity of two similar web pages (i.e., experimental objects) is compared
under different thresholds. The threshold of the highest similarity is selected as the thresh-
old of similar visual blocks. The last part examines the threshold of similar web pages,
in which several similar and dissimilar web pages are regarded as datasets. The threshold
with the lowest missing report and false alarm rates is taken as the threshold of similar
web pages.

4.1. Extraction Effect

To verify if the extracted and merged visual blocks of the web page are visually consistent
with the original web page, the drawing module TkInter is used to draw the visual block.
This module is the interface of the standard Tk GUI toolkit and the built-in module of
Python. The size of the web page is set as the size of the canvas. Then, the blocks in the
visual block list are drawn on the canvas. The visual effect after drawing is compared with
the original page, and the features of the web page determined by the algorithm are tested.

Fig. 7(a) presents a screenshot of Tencent. The web page is divided into blocks from
the visual angle. The red line divides the web page into various visual blocks. Fig. 7(b)
illustrates the extracted visual blocks and the distribution diagram. In this figure, the block
division results of the web page from the visual angle and the results obtained by the
algorithm are nearly the same. Therefore, the algorithm is validated.

4.2. Threshold of Similar Node

The visual block similarity threshold evaluation mainly assesses if two visual blocks are
similar, and the threshold value when the web page similarity is the largest is considered
the optimal result.

826 Xingchen Li et al.

(a)

(b)

Fig. 7. Extraction effect result

Algorithm of Web Page Similarity Comparison Based on Visual Block 827

Table 1. Visual block threshold testing table

Coordinate threshold Length-width threshold Similarity command

50 50 0.6216
50 60 0.6293
50 70 0.6293
...
190 180 0.9421

Table 1 shows a part of the data in the visual block similarity threshold test. When
different coordinate and length/width thresholds are selected, the similarity degrees of
the web pages vary. The similarity is low when the coordinate and length/width thresh-
olds are small. The similarity degree also increases with the coordinate and the length-
width thresholds. For example, when the coordinate threshold is 190 and the length/width
threshold is 180, the web page similarity is the largest, that is, nearly reaching 95%.
Therefore, 190 and 180 are taken as the corresponding coordinate and the length/width
thresholds of the similar visual blocks.

4.3. Threshold of Similar Web Pages

The web page similarity threshold is determined as follows. Some similar and dissimilar
web pages are selected as the target datasets. When the missing report and false alarm rates
of similar web pages are at the minimum, the web page similarity threshold is considered
the optimal value. The web pages of some post bars (e.g., Baidu post bar) are selected
as the test object because of the similar typesetting. A total of 3000 URLs in the Baidu
post bar are used as template web pages. These URLs are divided into 3 groups with 1000
URLs each. The final results are averaged to reduce the error. The test set includes some
web pages of post bars and other web pages. If the web page is that of a post bar but is not
considered similar to the template web page, then this web page is considered missing.
If the web page is not a post bar web page but is regarded as similar to the template web
page, then the web page is considered an error alarm.

During the comparison, the threshold of the similarity judgment starts from 0.35 and
ends at 0.8, with an interval of 0.05, thereby yielding 10 similarity thresholds (Fig. 8).
With the increase in the threshold, the false alarm and missing report rates decrease ini-
tially and then increase. When the threshold is 0.45, the error and miss rates obtain mini-
mal results. Thus, 0.45 is selected as the threshold of the web page similarity. The minimal
error and miss rates are 0.26 and 0.04, respectively.

Some popular phishing website detection methods, such as Kaspersky and IPDCM
[21], are available; from which, we cannot publicly access codes. These methods may not
achieve improved performance in this experiment because they use numerous webpage
screenshots to obtain similarity with the true page and avoid text and structure similarity
detections. In summary, the proposed algorithm is a more effective tool than other tradi-
tional tools in assessing and identifying phishing websites given its natural way of dealing
with quality factors rather than exact values.

828 Xingchen Li et al.

Fig. 8. Web pages similarity threshold testing result

5. Conclusion

This study investigates the visual block similarity of the web pages and proposes a new
algorithm for visual block extraction and similarity comparison. The proposed algorithm
analyzes the RenderLayer tree of the web page, extracts visual information by making the
matching rules, determines the feature sets of the visual blocks corresponding to a web
page by processing the visual nodes, and obtains similarity matching in accordance with
the optimal free matching principle. After testing, the final number of the acquired visual
nodes is approximately 5% of that of the original web page. In addition, to determine
the threshold of the algorithm, numerous similar web pages are selected and tested under
different threshold settings to achieve the optimal error and miss rates.

Acknowledgment This work was supported in part by the Key Research and Devel-
opment Program for Guangdong Province (2019B010136001) and the National Key Re-
search and Development Plan under Grant 2017YFB0801801, in part by the National Nat-
ural Science Foundation of China (NSFC) under Grant 61672186 and Grant 61872110.
Professor Zhang is the corresponding author.

References

1. Alpuente, M., Romero, D.: A tool for computing the visual similarity of web pages. In: Ap-
plications and the Internet (SAINT), 2010 10th IEEE/IPSJ International Symposium on. pp.
45–51. IEEE (2010)

2. Anari, Z., Anari, B.: Determining the similarity of web pages based on learning automata and
probabilistic grammar. Advances in Computer Science: an International Journal 4(3), 44–53
(2015)

Algorithm of Web Page Similarity Comparison Based on Visual Block 829

3. Artail, H., Fawaz, K.: A fast html web page change detection approach based on hashing and
reducing the number of similarity computations. Data & Knowledge Engineering 66(2), 326–
337 (2008)

4. Chiew, K.L., Chang, E.H., Tiong, W.K., et al.: Utilisation of website logo for phishing detec-
tion. Computers & Security 54, 16–26 (2015)

5. Cruz, I.F., Borisov, S., Marks, M.A., Webb, T.R.: Measuring structural similarity among web
documents: preliminary results. In: Electronic Publishing, Artistic Imaging, and Digital Typog-
raphy, pp. 513–524. Springer (1998)

6. Fu, A.Y., Wenyin, L., Deng, X.: Detecting phishing web pages with visual similarity assessment
based on earth mover’s distance (emd). IEEE transactions on dependable and secure computing
3(4), 301–311 (2006)

7. Goel, D., Jain, A.K.: Mobile phishing attacks and defence mechanisms: State of art and open
research challenges. Computers & Security 73, 519–544 (2018)

8. Jain, A.K., Gupta, B.B.: Phishing detection: analysis of visual similarity based approaches.
Security and Communication Networks 2017 (2017)

9. Joshi, S., Agrawal, N., Krishnapuram, R., Negi, S.: A bag of paths model for measuring struc-
tural similarity in web documents. In: Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 577–582. ACM (2003)

10. Liu, W., Deng, X., Huang, G., Fu, A.Y.: An antiphishing strategy based on visual similarity
assessment. IEEE Internet Computing 10(2), 58–65 (2006)

11. Marchal, S., Armano, G., Gröndahl, T., Saari, K., Singh, N., Asokan, N.: Off-the-hook: an effi-
cient and usable client-side phishing prevention application. IEEE Transactions on Computers
66(10), 1717–1733 (2017)

12. Nichele, C.M., Becker, K.: Clustering web sessions by levels of page similarity. In: Pacific-Asia
Conference on Knowledge Discovery and Data Mining. pp. 346–350. Springer (2006)

13. Pengyu, L., Lijun, J., Bin, J.: The research of the maximum length n-grams priority chi-
nese word segmentation method based on corpus type frequency information. In: Proceedings
Of The National Conference On Information Technology And Computer Science. pp. 71–74
(2012)

14. Roopak, S., Thomas, T.: A novel phishing page detection mechanism using html source code
comparison and cosine similarity. In: Advances in Computing and Communications (ICACC),
2014 Fourth International Conference on. pp. 167–170. IEEE (2014)

15. Satiabudhi, G., Andjarwirawan, J., Setiadi, R.S.: Web Page Similarity Searching Based on Web
Content. Ph.D. thesis, Petra Christian University (2012)

16. Sonowal, G., Kuppusamy, K.: Phidma–a phishing detection model with multi-filter approach.
Journal of King Saud University-Computer and Information Sciences (2017)

17. Srinivasa Rao, R., Pais, A.R.: Detecting phishing websites using automation of human behav-
ior. In: Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security. pp. 33–42.
ACM (2017)

18. Varshney, G., Misra, M., Atrey, P.K.: A phish detector using lightweight search features. Com-
puters & Security 62, 213–228 (2016)

19. Varshney, G., Misra, M., Atrey, P.K.: A survey and classification of web phishing detection
schemes. Security and Communication Networks 9(18), 6266–6284 (2016)

20. Wenyin, L., Huang, G., Xiaoyue, L., Min, Z., Deng, X.: Detection of phishing webpages based
on visual similarity. In: Special interest tracks and posters of the 14th international conference
on World Wide Web. pp. 1060–1061. ACM (2005)

21. Zhuang, W., Jiang, Q., Xiong, T.: An intelligent anti-phishing strategy model for phishing
website detection. In: International Conference on Distributed Computing Systems Workshops
(2012)

830 Xingchen Li et al.

Xingchen Li received the BS degree in information security from Harbin Institute of
Technology, Weihai, China, in 2016 and received Master degree in Computer Science and
Technology from Harbin Institute of Technology, China, in 2018. His research interests
include virtualization techniques for cloud computing and information security, etc.

Weizhe Zhang is corresponding author of this paper. He is currently a professor in the
School of Computer Science and Technology at Harbin Institute of Technology, China,
and director in the Cyberspace Security Research Center, Peng Cheng Laboratory, Shen-
zhen, China. His research interests are primarily in parallel computing, distributed com-
puting, cloud and grid computing, and computer network. He has published more than 100
academic papers in journals, books, and conference proceedings. He is a senior member
of the IEEE. Contact him at wzzhang@hit.edu.cn.

Desheng Wang received the BS degree in computer science and engineering from Harbin
Engineering University, China, in 2015. He is currently working toward the PhD degree in
the School of Computer Science and Technology, Harbin Institute of Technology. His re-
search interests include virtualization techniques for cloud computing and machine learn-
ing, etc.

Bin Zhang received his Ph.D. degree in Department of Computer Science and Technol-
ogy, Tsinghua University, China in 2012. He worked as a post doctor in Nanjing Telecom-
munication Technology Institute from 2014 to 2017. He is now a researcher in the Cy-
berspace Security Research Center of Peng Cheng Laboratory. He has published more
than 30 papers in refereed international conferences and journals. His current research
interests focus on network anomaly detection, Internet architecture and its protocols, net-
work traffic measurement, information privacy security, etc.

Hui He is currently a full professor of network security center in the Department of Com-
puter Science, China. She received the Ph.D. in department of computer science from
the Harbin Institute of Technology, China. Her research interests are mainly focused on
distributed computing, IoT and big data analysis. She is a member of the IEEE.

Received: September 15, 2018; Accepted: July 11, 2019.

	Introduction
	Related Work
	Similarity Matching Algorithm
	Extracting Visual Blocks
	Merging Visual Blocks
	Similarity Comparison

	Evaluation Result
	Extraction Effect
	Threshold of Similar Node
	Threshold of Similar Web Pages

	Conclusion
	Acknowledgment

