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Abstract. Discovering mixed-drove spatiotemporal co-occurrence patterns (MD-
COPs) is important for network security such as distributed denial of service (DDoS)
attack. There are usually many features when we are suffering from a DDoS attacks
such as the server CPU is heavily occupied for a long time, bandwidth is hoovered
and so on. In distributed cooperative intrusion, the feature information from multi-
ple intrusion detection sources should be analyzed simultaneously to find the spatial
correlation among the feature information.In addition to spatial correlation, intru-
sion also has temporal correlation. Some invasions are gradually penetrating, and
attacks are the result of cumulative effects over a period of time. So it is neces-
sary to discover mixed-drove spatiotemporal co-occurrence patterns (MDCOPs) in
network security. However, it is difficult to mine MDCOPs from large attack event
data sets because mining MDCOPs is computationally very expensive. In informa-
tion security, the set of candidate co-occurrence attack event data sets is exponential
in the number of object-types and the spatiotemporal data sets are too large to be
managed in memory. To reduce the number of candidate co-occurrence instances,
we present a computationally efficient MDCOP Graph Miner algorithm by using
Time Aggregated Graph. which can deal with large attack event data sets by means
of file index. The correctness, completeness and efficiency of the proposed methods
are analyzed.

Keywords: Network spatiotemporal co-occurrence pattern intrusion detection, mix-
ed-drove spatiotemporal co-occurrence pattern, large spatiotemporal data set, Time
Aggregated Graph (TAG), file index.

1. Introduction

In network security area, intrusion detection is the detection of any intrusion that attempts
to compromise the integrity, confidentiality, or availability of computer resources. Intru-
sion detection collects and analyzes the information of key nodes in a computer network
or system to detect the behaviors and signs of security policy violations and attacks in the
network or system, and to respond accordingly.

The first element of intrusion detection is data source, which usually includes host-
based data source and network-based data source. The current intrusion behavior is gradu-
ally changing from the messy, unorganized and single invasion behavior to the distributed,
organized and cooperative invasion behavior. In distributed cooperative intrusion, multi-
ple attackers and multiple IP addresses can spy on and attack a common target simulta-
neously. In this collaborative intrusion behavior, the invasion of the attack from multiple
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points to invasion by the invasion of the source of the information is very fragmented,
from a single intrusion detection information source may can’t see anything suspicious,
cannot determine whether have intrusion behavior, only at the same time analysis of char-
acteristic information from multiple source of intrusion detection, is likely to determine
the intrusion behavior. The correlation between the feature information of this intrusion
is called spatial co-occurrence.

In addition to spatial co-occurrence, intrusion also has temporal co-occurrence. Some
invasions are gradually penetrating, and attacks are the result of cumulative effects over a
period of time. Analysis from some intrusion behavior, for example, the characteristics of
the information can be found that ∆ t period of network packet with the same source IP
address, the address is trying to establish multiple connections with the same target host
system. For this kind of intrusion behavior, if any time just thinks of this time period in
isolation of characteristic information can reflect the attack, must consider all the feature
information ∆ t period.

Intrusion detection which takes spatial and temporal into account is mixed-drove spa-
tiotemporal co-occurrence patterns detection.

As the volume of spatiotemporal data continues to increase significantly due to both
the growth of database archives and the increasing number of spatiotemporal sensors, au-
tomatic and semi-automatic pattern analysis becomes more essential. It is meaningful and
challenging for us to extract interesting patterns from these large spatiotemporal attack
event data sets. Co-occurrence Pattern represents subsets of different object-types whose
instances are co-located together for a significant fraction of time.

Given a large spatiotemporal attack event database, a neighbor relationship and mixed-
drove interest measure thresholds, our aim is to discover mixed-drove spatiotemporal
co-occurrence patterns (MDCOPs). To mine co-occurrence patterns, Celik et al. pro-
posed MDCOP-Miner and fast MDCOP-Miner[14]. The two methods are based on the
join-based collocation algorithm proposed by Huang et al.[18]. The basic co-occurrence
pattern mining procedure involves four steps, as shown in Fig.1. First, candidate co-
occurrence instances are gathered from the spatiotemporal data sets. Then, prevalent co-
occurrence pattern sets satisfying the given prevalence thresholds are filtered. Finally,
co-occurrence patterns satisfy the given prevalence thresholds are generated. Most of the
computational time of co-occurrence pattern mining is devoted to finding co-occurrence
instances. The approach is Apriori-like algorithm, which is costly as it enumerates all
possible co-occurrence instances over all time instances. Thus, we propose adding a step
for materializing the neighbor relationships to increase the efficiency of co-occurrence
mining.

While the volume of the spatiotemporal data set is large, we find discovering the MD-
COPs in a relatively small computer memory are difficult by using the existed methods.
Mining the co-occurrence patterns is meaningful to network security.

1.1. Contributions

This study makes the following contributions:
We propose a novel method for materializing the neighbor relationships in order to

perform efficient mixed-drove spatiotemporal co-occurrence patterns detection.
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This work provides a new storage method for mining MDCOPs from large spatiotem-
poral attack data sets. The experimental results show that the proposed storage method
and the pattern mining algorithms are correct, complete and efficient.

The framework of experimental design and the comparisons of existing approaches
are provided in the paper.

Fig. 1. Basic procedure of co-occurrence pattern mining

1.2. Scope and Outline

This work is aim to addresses the co-occurrence pattern mining for large volume of spa-
tiotemporal attack data sets. Our system achieves superior performance of computation
efficiency to existing work like fast MDCOP-Miner [3]. Determining thresholds for MD-
COP interest measures and inserting object-types at arbitrary time intervals are not the
scope of this paper.

The rest part of this paper is organized as follows: Section 2 reviews related works.
Section 3 presents basic concepts to provide a formal model of MDCOP Graph and the
problem statement of mining MDCOPs. In Section 4, we presented our proposed MDCOP
mining algorithms. Analysis of the algorithms is given in Section 5. Section 6 presents
the experimental evaluation and section 7 presents conclusions and future work.

2. Related Works

Previous studies for mining spatiotemporal co-occurrence patterns can be classified into
two categories: the approaches of mining uniform groups on large attack event data sets
and the approaches of mining mixed groups on large attack event data sets. MDCOP
belongs to the latter. Audit Data Analysis and Mining is one of the known data mining
projects in an intrusion detection, which uses a module to classify the abnormal event into
false alarm or real attack proposed by Barbara′ et al. [4]. It is an online network-based
ID, which used two data mining techniques, association rule and classification. Shi-Jinn
Horng et al. [8] investigate using both a linear and a non-linear measure linear correla-
tion coefficient and mutual information, for the feature selection. Jau Tsang et al. [19]
proposed fuzzy rule-based system is evolved from an agent-based evolutionary frame-
work and multi-objective optimization. Gudmundsson et al. [10] proposed an algorithm
for detecting flock patterns in spatiotemporal datasets. Kalnis et al. [13] defined the prob-
lem of discovering moving clusters and proposed clustering-based methods to mine such
patterns. If there are many common objects between clusters in consecutive time slots,
such clusters are called moving clusters. The moving cluster patterns can be unified or a
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mixed object group [14]. However if there are no overlaps between the clusters in consec-
utive time slots, their proposed algorithms for mining moving clusters will fail to discover
MDCOPs.

The MDCOPs problem differs from the co-location pattern. Previous approaches of
MDCOP mining can use a spatial co-location mining algorithm for each time slot to find
spatial prevalent co-locations, and then apply a post-processing step to discover MD-
COPs by check their time prevalence. To mine co-locations, Huang et al. firstly proposed
the mining of co-location patterns(different subset of instances of object types are adja-
cent to each other) from spatial datasets, then they proposed a join-based approach [20];
Cao et al. proposed a co-location approach from some period in spatiotemporal datasets,
which can find out the co-location instances from continuous time slots [2]; Yoo et al.
proposed a partial join-based and a join-less approach [18][11][12] which used nearby
star and instance methods. Celik et al. [14]formalizes the problem, propose a new mono-
tonic mixed-drove interest measure to discover and mine MDCOPs, and also propose an
efficient algorithm (MDCOP-Miner).

MDCOPs represent object types co-located over space and time forming a spatial
network (edges between objects in the network indicate existence of a neighborhood re-
lationship) that dynamically changes over time. A common and naive approach to model
such a network is to use time expanded graph, as described by Köhler et al. [6] where the
network is replicated across discrete time instants. Ding et al. [5] proposed an alternative
approach where attributes at each node and edge of the graph are used to model state
and topology changes respectively. A more efficient method of modeling temporal spatial
networks was proposed by George et al. [7], by incorporating the properties of nodes and
edges in the graph as a time series. This paper also proposed efficient algorithms for com-
puting the shortest path and connectivity in time dependent networks modeled using time
aggregated graphs. The problem of mining MDCOPs with high spatial and time preva-
lence is described by Celik et al. [14]. However the approach is similar to Apriori like
and involves candidate generation, which is costly as it enumerates all possible cliques
over all time instances. A. Garaeva, M. Tang, Z. Wang, etc. [15][1] developed a frame-
work implemented in Apache Spark environment for co-location patterns mining in big
spatio-temporal data, which make evaluation of applied algorithms from the point of their
efficiency and scalability.

Considerable achievements in MDCOP mining have been obtained in the last few
years. However, dealing with large amount of spatiotemporal datasets is still challenging
due to the accuracy and efficiency issues. In this paper, we materialize the neighbor re-
lationships for efficient co-occurrence pattern mining, and solve the problem of efficient
storage of MDCOPs by using the Time Aggregated Graph model and create our own
storage model MDCOP Graph for mining MDCOPs. Finally, we provide an accurate and
efficient co-occurrence pattern mining algorithm in large spatiotemporal datasets.

3. Co-occurrence Pattern Mining

In this section, we present basic concepts to provide a formal model of MDCOP Graph
and the problem statement of mining MDCOPs. In the paper, we use multiple prevalence
measures, which use threshold-spatial prevalence and temporal prevalence to determine
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whether one pattern is co-occurrence pattern. Meanwhile, we use time aggregate graph as
data storage structure.

3.1. Mixed-drove Prevalence Measure

The focus of this study is to mine MDCOPs with multiple prevalence measures from large
spatiotemporal data sets. Co-occurrence pattern represents subsets of different object-
types whose instance are co-located together for a significant fraction time. Mining co-
occurrence patterns from spatiotemporal datasets is based on the mining of spatial co-
location patterns from spatial datasets. Co-location pattern is the dataset of the frequent
and closely adjacent spatial characteristics in the geographical space. Spatiotemporal co-
occurrence patterns are the co-location patterns which satisfy the time prevalence mea-
sure.

The basic MDCOP algorithm [14] defines two interest measures namely spatial preva-
lence θp and a time prevalence measure θtime .

The spatial prevalence measure is used to determine if the pattern is spatially prevalent
in a specific time slot. The time prevalence measure is used to determine if the pattern is
frequent in all time slots. These threshold values are mostly domain-specific. It is difficult
to determine suitable interest measure thresholds to identify MDCOPs without domain
knowledge. If the values of thresholds are too small, there are many unnecessary pat-
terns will be generated. Otherwise, there are too few patterns. It’s possible to miss some
significant candidate MDCOPs if they are too large.

If a candidate pattern satisfies the following inequality, we can take this pattern as a
spatial co-location pattern.

ProbtmεTF (s_prev(Pi, time_slot tm)) ≥ θp (1)

Where, Prob(.) is the probability of overall prevalence time slots; s_prev stands for spa-
tial prevalence measure; θp is the spatial prevalence measure. Hence, a pattern is defined
as an MDCOP if it satisfies the following inequality.

ProbtmεTF [s_prev(Pi, time_slot tm)) ≥ θp] ≥ θtime (2)

Where, Prob(.) is the probability of overall prevalence time slots; θp stands for spatial
prevalence measure; θtime is the time prevalence measure. For example, in Fig. 2a, AB is
an MDCOP because it is spatial prevalent in time slots 0, 1, 2, and 3 since its participation
indices are no less than the given threshold 0.4 in these time slots, and is time prevalent
since its time prevalence index of 1 is above the threshold 0.5. In contrast, BD is not a
MDCOP. Although it is spatial prevalent in time slot 2, it is not time prevalent since its
time prevalence index is no more than the given time prevalence threshold 0.5.
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(a)

Mixed-Drove Spatial prevalence index values Time
Co-occurrence Patterns time slot() time slot1 time slot2 time slot3 prevalence index values

AB 3/5 3/5 3/5 3/5 4/4
AC 2/4 2/4 2/4 0 3/4
BC 0 3/5 3/5 3/5 3/4

ABC 0 2/5 2/5 0 2/4
(b)

Fig. 2. (a) An input spatiotemporal data set. (b) A set of output MDCOPs

Time Aggregated Graph (TAG) Spatiotemporal network is a spatial network whose
topological relations and attribute information change with the passage of time. Spa-
tiotemporal network model has many applications, such as real-time traffic planning, op-
timal shortest path selection and so on. These applications need to create a spatiotemporal
network model which can be queried and calculated efficiently.Kohler et al. proposes a
spatiotemporal network model-time expanded graph. Spatial network for each time slot is
established in this model, which results in a large duplication of node information. With
the increase of time slots, the time-consuming of establishing time expanded graph also
significantly increased. To solve this problem, George et al. proposes a more efficient
method-time aggregate graph, which takes time series as the attribute of node and edge.
The duplication problem is solved by using this method, while it is difficult to efficiently
obtain the location relationships between target object and other objects in all time slots.
Currently, modeling spatiotemporal objects by time aggregate graph is an ideal spatiotem-
poral network model, which has low storage consumption, high query efficiency.

To take the advantage of time aggregate graph, we propose a graph based data struc-
ture to capture the information required to mine MDCOPs from the spatio-temoral data
set. This data structure is motivated by Time Aggregated Graphs (TAG) [7] which models
time varying road conditions as time series on the edges of a road network.[7] defines the
time aggregated graph as follows.

TAG = (N,E, TF, f1...fk, g1...gm, w1...wp|fi : N → RTF ;

gi : E → RTF ;wi : E → RTF )
(3)
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Where N is the set of nodes, E is the set of edges, TF is the length of the entire time
interval, f1...fk are the mappings from nodes to nodes, g1...gm are mapping from edges
to edges, and w1...wp indicate the dependent weights (eg.travel times) on the edges.

Each edge has an attribute, called an edge time series that represents the time instants
for which the edge is present. This enables TAG to model the topological changes of the
network with time.

Fig. 3a, 3b, 3c shows a network at three time instants. The network topology and
parameters change over time. For example, the edge N2-N1 is present at time slot 0, time
slot 1 and disappears at time slot 2, and its weight changes from 1 at time slot 0 to 5 at
time slot 1. The time aggregated graph that represents this dynamic network is shown in
Fig. 3d. In this figure, edge N2-N1 has two attributes, each being a series. The attribute
(0, 1) represents the time instants at which the edge is present and [1, 1, -] is the weight
time series, indicating the weights at various instants of time.

TAG models the network which has topology change with time passage, it can stores
and combines spatial and temporal information efficiently. Thus it can save a lot of mem-
ory space and easily get all approaching slot information when querying examples of
spatial relationships. Using the above-mentioned advantages of TAG model, we expand
on this model and propose spatiotemporal co-occurrence storage model MDCOP Graph.

Fig. 3. (a), (b), (c) Network at various time instants. (d) Time Aggregated Graph (TAG).
(e) Legend

3.2. Modeling MDCOP Graph

In this paper, we propose MDCOP Graph which based on TAG (Time Aggregated Graph)
network model to store instances of close relationships, and obtain information for the
process of mining co-occurrence patterns through visiting MDCOP Graph. Thus it can
avoid a large number of join operations and complex space region split, which can im-
prove the computational efficiency.

Given a set of spatiotemporal mixed object-types E, a neighborhood relation R, a set of
time slots TF, a threshold pair (θp, θtime), MDCOP Graph can be represented as a neigh-
bor graph in which a node is an object type and edge between two nodes represents the
neighbor relationship over all time slots. We use MDCOP Graph to materialize neighbor
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relationships. As we know that most of the computational time of co-occurrence pattern
mining is devoted to finding co-occurrence instances. By means of MDCOP Graph, we
don′ t need to generate all possible candidate co-occurrence instances. We just generate
real co-occurrence instances through visiting the MDCOP Graph. Thus, we can increase
the efficiency of co-occurrence mining.

Definition 3.1 Given a set of co-occurrence instances CI, instance type level graph (IG)
is used to captures the existence of co-location instances between two instance types over
time. We define instance type level graph as follows.

IG = (I, CI, TF, f0...fk−1, e0...en−1, |fi : I → RTF ; ei : CI → RTF ) (4)

Where I is the set of instances of all object-types, CI is the set of co-location instances,
TF is the length of the entire time interval, such that TF = [T0 ,...,Tn−1], f0...fk−1 are
the mappings from object-types to object-types , e0...en−1 indicate the existence of co-
occurrence instances between two instance types over time on the edges.

For example, we generate instance type level graph (Fig.4) using the data set given
in Fig. 2a. In Fig.4, we use time-series [1 1 1 0] to show that A1 and C1 are co-located
at time slot 0, time slot 1, time slot 2 and disappear at time slot 3. Therefore, we can
easily capture the existence of co-occurrence instances over time by traversing instance
type level graph.

Definition 3.2 Given a set of candidate co-occurrence patterns (CP), object type level
graph (OG) is used to indicate the participation count of particular object-types contribut-
ing to particular co-occurrence patterns. We define object type level graph as follows.

OG = (E,CP, TF, f0...fk−1, p0...pn−1, |fi : EεCPTF ; pi : EεCPTF ) (5)

Where E is the set of spatiotemporal mixed object-types, CP is the set of co-occurrence
patterns, TF is the length of the entire time interval, f0...fk−1 are the mappings from par-
ticular object-types to the particular co-occurrence patterns , p0...pn−1 indicate the partic-
ipation count of particular object-types contributing to particular co-occurrence patterns
over time on the edges.

For example, we generate object type level graph (Fig.5) using the data set given in
Fig. 2a. In Fig.2a, the co-occurrence pattern AC has co-occurrence instances sets A1, C1,
A3, C2 at time slot 0, time slot 1 and time slot 2. At time slot 3, AC has no co-location
instances. In Fig.5, since A1 and A3 are different instances of A, we used time-series [2
2 2 0] to show the participation count of object-type A contributing to co-location pattern
AC. By using object type level graph, we can get the spatial prevalence index values and
time prevalence index values.

Definition 3.3 Given instance type level graph and object type level graph, MDCOP
Graph is composed of two parts: instance type level graph and object type graph. The
instance type level and object type graphs are connected through links. We define MDCOP
Graph as follows.

MDCOPGragh = (IG,OG, TF,E, I, l0...lk−1, |li : I → ETF ) (6)
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Where IG is instance type level graph, OG is object type level graph. TF is the length
of the entire time interval, E is the set of spatiotemporal mixed object-types, I is the set
of instances of all object-types. l0...lk−1 are the mappings from object-types to their own
instances.

For example, we generate MDCOP graph (Fig.6) using the data set given in Fig. 2a.
In Fig.6, both the instance type level and object type graphs are connected through links
for easy traversal.

Fig. 4. Instance type level graph

Fig. 5. Object type level graph

Fig. 6. Object type level graph

3.3. Problem Statement

Given:
A set E of spatiotemporal object types over a common spatiotemporal framework.
A neighbor relation R over locations.
A multiple set of user defined spatial and temporal prevalence thresholds.
Find:
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Minimize cost of generate the MDCOP graph.
A set of frequent MDCOPs whose mixed-drove prevalence satisfies spatial and tem-

poral prevalence thresholds.
Objective:
Capture and represent the temporal variation of MDCOPs.
Minimize cost of candidate generation.
Minimize cost of generate the MDCOP graph.
Constraints:
To build the MDCOP graph that stores all the MDCOPs.
To find the correct and complete set of MDCOPs for any threshold value specified.

4. Mining MDCOPS

In this section, we discuss fastMDCOP-Miner and then propose two novel MDCOP min-
ing algorithms: MDCOP Graph Miner and LDMDCOP Graph Miner to mine MDCOPs.
We also give the execution trace of these algorithms.

4.1. Fast MDCOP-Miner

FastMDCOP-Miner [3] uses a spatial co-location mining algorithm for each time slots
to find spatial prevalent co-locations and prune time non-prevalent patterns as early as
possible between the time slots to discover MDCOPs. To mine co-locations, Huang et al.
proposed a join-based approach, Yoo et al. proposed a partial join-based approach and
a join-less approach [16][18][11], this approach is based on the join-based collocation
algorithm proposed by Huang et al., but it is also possible to use other approaches. Fast
MDCOP-Miner [3] will first discover all size k spatial prevalent MDCOPs and prune time
non-prevalent patterns as early as possible between the time slots to discover MDCOPs.
Then the algorithm will generate size k +1 candidate MDCOPs using size k MDCOPs
until there are no more candidates. However, this approach is Apriori like and involves
candidate generation which is costly as it enumerates all possible cliques over all time
instants.

4.2. MDCOP Graph Miner

To eliminate the drawbacks of fast MDCOP-Miner, we propose a MDCOP mining algo-
rithm (MDCOP Graph Miner) to discover MDCOPs by storing all the MDCOPs in the
MDCOP Graph.

This data structure is motivated by Time Aggregated Graphs (TAG) [7], which models
time varying road conditions as time series on the edges of a road network. In our case, we
use two different types of series over the edges. One of the series captures the existence
of co-occurrence patterns between two instances over time. Based on the existence time
series of co-occurrence patterns between pairs of instances, we aggregate the information
to object types. At the object type graph, each time series contains the participation count
of a particular object contributing to a particular co-location pattern. Both the instance
type level and object type graphs are connected through links for efficient traversal.
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Firstly, MDCOP Graph Miner will establish spatial temporal network MDCOP Graph,
initialize the spatial relationship between each time slot; then it generates k+1 candidate
spatiotemporal co-occurrence patterns; It obtains instance sets of candidate spatiotem-
poral co-occurrence patterns through querying MDCOP Graph and calculates time and
space frequent degrees, generate k+1 spatiotemporal co-occurrence patterns; Iteratively,
it repeatedly generating candidate co-occurrence patterns until there is no new candidate
co-occurrence pattern and algorithm terminate. Eventually, we get all the co-occurrence
patterns meeting temporal and spatial thresholds.

We give the pseudo code of the algorithm and provide an execution trace of it using
the data set in Fig. 2a. Algorithm1 shows the pseudo code of the MDCOP Graph Miner
algorithm. This pseudo code is used to explain two algorithms: MDCOP Graph Miner and
LDMDCOP Graph Miner which will be discussed in the next section. The choice of the
algorithm is provided by the user. In the algorithm, steps 1-14 create the MDCOP Graph.
Steps 15-21 give an iterative process to mine MDCOPs, steps 15-21 continue until there is
no candidate MDCOP to be generated. Step 22 gives a union of the results. The execution
traces of MDCOP Graph Miner are explained below.

Algorithm 1 pseudo code for the MDCOP Graph Miner
Inputs:
E: a set of spatial object types
ST: a spatiotemporal data set < object_type, object_id,
x, y, timeslot >
R: spatial neighborhood relationship
TF: a time slot frame t0,...,tn−1

θ p:a spatial prevalence
θ time: a time prevalence threshold
Output: MDCOPs whose spatial prevalence indices, i.e.,
participation indices, are no less than θ p,
for time prevalence indices are no less than θ time.
Variables:
t : time slots(t0,...,tn−1)
k:co-occurrences size
Tk: set of instances of size k co-occurrences
SPk: set of spatial prevalent size k co-occurrences
TPk: set of time prevalent size k co-occurrences
Ck: set of candidate size k co-occurrences
MDPk: set of mixed-drove size k co-occurrences
MDG: graph stores all the MDCOPs
Address: address for storing time series to the file
Method:

k = 2
Ck (0) = gen_candidate_co_occ(E)
for each time slot t in TF

Tk (t) = gen_co_occ_inst(Ck (t),ST, R)
set timeSeries [t] =1 for Tk (t)
SPk (t) = find_spatial_prev_co_occ(Tk (t), θ p)
TPk (t) = find_time_index(SPk (t))
MDPk (t) = find_time_prev_co_occ(TPk (t), θ time)
Ck (t) = MDPk (t)

if(alg_choice "LDMDCOP Graph Miner")
Address = gen_co_occ_address (Tk (t) )
access the MDG file by the addresses
set timeSeries [t] =1 for Tk (t) if required

if(alg_choice == "MDCOP Graph Miner")
MDG = gen_MDCOP_Graph(MDPk)
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while (not empty MDPk)
Ck +1 = gen _candidate_co_occ ( MDPk)
Tk +1= gen _instancesTree (Ck +1,MDG)
SPk+1 = find_spatial_prev_co_occ(Tk+1, θ p)
TPk +1 = find_time_index(SPk+1 )
MDPk+1 = find_time_prev_co_occ(TPk+1, θ time)

k = k+1
return union( MDP2 ,..., MDPk)

The execution trace of the MDCOP Graph Miner is given in Fig.7. This data set in
Fig.2a. Contains four object-types A, B, C, and D and their instances in four time slots
(i.e., A has four instances). The instances of each object-type have a unique identifier, such
as A1. To discover MDCOPs, we use a monotonic composite interest measure which is
a combination of the spatial prevalence and time prevalence measure. The spatial preva-
lence measure shows the strength of the spatial co-location when the index is greater than
or equal to a given threshold [3][18].The time prevalence measure shows the frequency
of the pattern over time.

In step1, by dividing each entry in Fig. 7a with the corresponding number of instances
for an object, we get the participation ratio of an object type in co-location. For example,
the participation index of collocation AB is [3/5 3/5 3/5 3/5], which is the minimum par-
ticipation ratio of type A and B in all time slots. We prune time non-prevalent patterns
whose participation indices are less than a given threshold as early as possible. For exam-
ple, there are four time slots and the time prevalence threshold is 0.5.In this case, a size
k pattern should be present for at least two time slots to satisfy the threshold. If the time
prevalence index of a pattern is 0 for the first (or any) three time slots, there is no need to
generate it and check its prevalence for the rest of the time slots even if it is time persistent
for the remaining time slots. Spatial prevalent patterns AB, AC, and BC are selected as
MDCOPs since they are time prevalent (their time prevalence indices satisfy the given
time prevalence threshold 0.5). In contrast, spatial prevalent patterns AD, BD and CD are
pruned since they are time non-prevalent.

In step2, three sub-graphs on the bottom of Fig. 7b are created. It also creates links
from the instance types to the object type, for example, Link between A3 and A if A3
is part of at least one co-occurrence. The links between the object and the instance type
help in traversing the data set efficiently to calculate the spatial prevalence index values.
Connections between the object type graph and the instance type graph are missing to
reduce clutter and the series in the object graph has not been represented for the same
reason. After the algorithm has been executed, the series on edge A and AB would be
[3/4 3/4 3/4 3/4] because of co-locations A1B1, A2B1, A3B2 andA3B3. Note that A3
is counted only once at each time interval though it appears in two co-locations at every
time instant.

In step3, the candidate MDCOP ABC is generated through AB, AC and BC. Gener-
ally, the number of candidate patterns is large. Then if we generate temporal time preva-
lence index for every candidate pattern, candidate pattern whose temporal time prevalence
index is less than a given threshold can be pruned. For example, ABC is a candidate pat-
tern, the temporal time series of ABC is [0 1 1 0] equals to time series of AB [1 1 1 1]
& AC [1 1 1 0] & BC [0 1 1 1], the time prevalence index is 0.5 which is no less than
the given threshold. Thus, we generate instances of candidate pattern ABC. By modeling
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the instances-trees for candidate patterns, the instances of candidate pattern ABC can be
generated.

Step1: Generate size 2 co-occurrence patterns.
Object Candidate Paticipation Paticipation Paticipation Time Time
Type MDCOP Count Rations Index Series prevalence index

A AB 3 3 3 3 3/4 3/4 3/4 3/4 3/5 3/5 3/5 1 1 1
4/4

B AB 3 3 3 3 3/5 3/5 3/5 3/5 3/5 1
A AC 2 2 2 0 2/4 2/4 2/4 0

2/4 2/4 2/4 0
1 1 1

3/4
C AC 2 2 2 0 2/3 2/3 2/3 0 0
A AD 1 0 0 2 1/4 0 0 2/4

1/4 0 0 2/4
0 0 0

1/4(prune)
D AD 1 0 0 2 1/4 0 0 2/4 1
B BC 0 3 3 3 0 3/5 3/5 3/5

0 3/5 3/5 3/5
0 1 1

3/4
C BC 0 3 3 3 0 3/3 3/3 3/3 1
B BD 0 0 2 1 0 0 2/5 1/5

0 0 2/5 1/5
0 0 1

1/4(prune)
D BD 0 0 2 1 0 0 2/4 1/4 0
C CD 0 0 1 - 0 0 1/3 -

0 0 1/4 - 0 0 0 - (prune)
D CD 0 0 1 - 0 0 1/4 -

(a)

Step2: Generate MDCOP Graph.

(b)

Step3: Generate instances-tree.

(c)

Step 4: Generate size 3 co-occurrence patterns
Object Candidate Paticipation Paticipation Paticipation Time Time
Type MDCOP Count Rations Index Series prevalence index

A ABC 0 2 2 0 0 2/4 2/4 0
0 2/5 2/5 0

0 1 1
2/4B ABC 0 2 2 0 0 2/5 2/5 0

C ABC 0 2 2 0 0 2/3 2/3 0 0
(d)

Fig. 7. Execution trace of the MDCOP Graph Miner algorithm. (a) Step 1. (b) Steps 2.
(c) Steps 3. (d) Steps 4
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In step4, the participation indices of pattern ABC are 2/5 in time slots 1 and 2 and its
time prevalence index 0.5 equals to the threshold. Since there are not enough subsets to
generate the next superset patterns, the algorithm stops at this stage and outputs the union
of all size MDCOPs, i.e., A B, AC, BC, and ABC.

4.3. LDMDCOP Graph Miner

Most of existing spatiotemporal co-occurrence patterns mining algorithms are only work
on memory. Due to the advance of geo-sensor technology, spatiotemporal data increased
dramatically. The demand of mining spatiotemporal co-occurrence patterns in large datasets
is now gradually urgent.

In practical applications, such as now have 300MB armed vehicles date, when a ve-
hicle moves, its co-occurrence pattern also present movement in a similar trajectory. By
mining spatiotemporal co-occurrence patterns of moving vehicle data, we can infer mil-
itary strategy through co-occurrence patterns. As another example, the public security
bureau of Zhejiang province has 2GB of crime data, we can identify many interesting co-
occurrence patterns from the data, such as fraud and gambling is a co-occurrence pattern,
then the police can infer the offender’s whereabouts. However, in the above practical ap-
plication, the amount of spatiotemporal data is huge, existing mining algorithms cannot
obtain useful co-occurrence patterns efficiently.

For solving the above problems, we use MOCOP Graph to store the data sets of in-
stances; the instance set is stored in the hard disk file. In the calculation process, we only
load the necessary data to memory in order to save the space. Meanwhile, we establish
index for the instances in document to improve data query efficiency.

In this section, we propose a new algorithm, called LDMDCOP Graph Miner, which
can handle large data sets by using file index. MDCOP Graph is an efficient storage
method, which can capture the information required to mine MDCOPs from the data sets.
When the volume of the data sets is large, it consumes a lot of space to store MDCOP
Graph. Since the capacity of memory is limited, there may be no enough space to store
large amount of data sets or big MDCOP Graph. As a result, we use file index to store big
MDCOP Graph. This approach will still have two problems. One is how to store the big
MDCOP Graph in the file; the other is how to capture the information required for mining
MDCOPs from the MDCOP Graph in the file.

In order to solve these problems, we use adjacency matrix to store the MDCOP Graph.
The advantage of adjacency matrix is the ability to determine the existence of a particular
edge in constant time, and access the storage media only once. According to this method,
we can calculate the address for a particular edge to store its time series in the file and
also access the time series by the same address, there is no need to store the address of
the time-series, we calculate the address according to the same expression which used to
calculate the address for storing. The expression is as follows.

address(Ri, Cj) = Ri ×N + Cj − E(Ri, Cj) (7)

Where Ri is the row number, Cj is the column number, N is the total number of instance,
E (Ri , Cj) is the number of patterns whose instances are of the same type.

Physical address can be obtained according to this formula. So long as we can get
the required time sequence through visiting the file only once. By indexing methods to
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achieve the storage of MDCOP Graph in file, while efficiently obtaining the required
information.

Firstly, LDMDCOP Graph Miner will establish spatial temporal network MDCOP
Graph, initialize the spatial relationship between each time slot; then generate k+1 can-
didate spatiotemporal co-occurrence patterns, calculate Pi and TPi, prune the patterns
which don’t meet spatial and temporal thresholds, then generate k+1 spatiotemporal co-
occurrence patterns; It repeats the above operate until there is no new candidate co-
occurrence pattern; Eventually we get all the co-occurrence patterns meeting temporal
and spatial thresholds.

The difference between LDMDCOP Graph Miner and MDCOP Graph Miner is that
MDCOP Graph Miner has the different storage structure and storage media. LDMDCOP
Graph Miner storage MDCOP Graph as adjacency matrix in document, while MDCOP
Graph Miner storage MDCOP Graph as adjacent table in memory. Other steps are basi-
cally the same.

The pseudo code of the LDMDCOP Graph Miner is given in Algorithm 1. When
the LDMDCOP Graph Miner is chosen, the algorithm will activate steps 10, 11, 12 and
deactivate steps 13 and 14. We use adjacency matrix to store the MDCOP Graph. At
the same time, the addresses for storing time series of co-occurrence instances could be
calculated and the addresses also are used to access the file for getting the information
required to mine MDCOPs.

The execution trace of gen_MDCOP_Graph in LDMDCOP Graph Miner is explained
as algorithm 2.

Algorithm 2 pseudo for gen_MDCOP_ Graph in
LDMDCOP Graph Miner

Inputs:
ST: a spatiotemporal data set < object_type, object_id,
x, y, timeslot >
TF: a time slot frame t0,...,tn−1

t:time slot number
MDPk: set of mixed-drove size k co-occurrences
Output:
MDG File: MDCOP Graph file
Variables:
Address:index table
eofAdress:end address of the current file
logAddress:logical address
phyAddress:physical address
Method:
BEGIN

FOR each co-occurrence patterns Pi of MDP2(t)
FOR each co-located instances (Ai,Bj)

of Pi
logAddress = gen_Address ( Ai , Bj )

IF (Address[logAddress] == 0)
Address[logAddress] = eofAddress

eofAddress += TF
END IF

phyAddress = Address[logAddress]
set timeSeries[t] = 1 for AiBj
update timeSeries in MDG File

END FOR
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END FOR
END

The method to store MDCOP Graph in LDMDCOP Graph Miner is described as al-
gorithm 2. It stores the nearest relationships between instances of co-occurrence patterns
in each timeslot. It generates the logical address logAddress between time series of in-
stances through gen_Address and lookup index table. Then, it obtain physical address
phyAddress according to logical address logAddress; finally the time series of instances
are instored in the files.

As described in algorithm 2, for each co-location pattern of each co-occurrence pat-
tern, firstly generate its logical address (algorithm 3); if this co-location pattern doesn’t
have physical address, then generate physical address; update the end address of current
file; once this co-location pattern has physical address, then obtain its physical address
through index table and update its time series; finally store the updated time series in
MDG file.

The difference between LDMDCOP Graph Miner and MDCOP Miner is the storage
structure for MDCOP Graph. This chapter below will focus on the description of the
process storing MDCOP Graph by adjacency matrix and index storage, as to mine spatial-
temporal co-occurrence patterns from data sets in figure 2. (a).

According to table 1, we can create index for the adjacency matrix, which has been
shown in table 2. The logical address is generated by the former formula, while physical
address is the storage address of time series. We can efficiently obtain physical address
by indexing table, so as to achieve quick indexing for required information.

Algorithm 3 pseudo for gen_Address
Inputs:
ST: a spatiotemporal data set < object_type, object_id,
x, y, timeslot >
TF: a time slot frame t0,...,tn−1

type1:type1
type2:type2
ins1:instance 1
ins2:instance 2
Output:
Address: storage address between instance 1 and 2
Variables:
N:types of different instances
typeIns:instance set of each type
typeInsNum: instance number of each type
insNum:instance number
deleteIns:the number of instances of patterns
with same type
BEGIN
WHILE(!ST.eof())

typeIns[typeId].push(insId)
END WHILE
FOR each type i in E

N += typeIns[i].size()
END FOR
FOR each type i in E

FOR each instance j of i
IF( i== 0)
insNum[i][j] = j
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ELSE
insNum[i][j] = insNum [i-1]

[ typeIns[i-1].size() -1] +j+1
END IF

END FOR
END FOR
FOR each type i in E

FOR each instance j of i
deleteIns[i][j] += insNum[i+1][0]

END FOR
END FOR
Address = insNum[type1][ins1] ∗ N
+ insNum[type2][ins2]- deleteIns[type1][ ins1]
END

Table 1. MDCOP Graph adjacency matrix

B1 B2 B3 B4 B5 C1 C2 C3 D1 D2 D3 D4
A1 1111 0000 0000 0000 0000 1110 0000 0000 0000 0000 0000 0000
A2 1111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
A3 0000 1111 1111 0000 0000 0000 1110 0000 0000 0000 0000 0000
A4 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
B1 × × × × × 0111 0000 0000 0000 0000 0000 0000
B2 × × × × × 0000 0000 0000 0000 0000 0000 0000
B3 × × × × × 0000 0111 0000 0000 0000 0000 0000
B4 × × × × × 0000 0000 0111 0000 0000 0000 0000
B5 × × × × × 0000 0000 0000 0000 0000 0000 0000
C1 × × × × × × × × 0000 0000 0000 0000
C2 × × × × × × × × 0000 0000 0000 0000
C3 × × × × × × × × 0000 0000 0000 0000

Table 2. Index Table

Instances A1B1 A1C1 A2B1 A3B2 A3B3 A3C2 B1C1 B3C2 B4C3
Logical Address 0 5 12 25 26 30 48 63 71
Physical Address 0 4 8 12 16 20 24 28 32

5. Analytical Evaluation

This section gives the analysis of correctness and completeness for the MDCOP mining
algorithms.

5.1. Correctness

LEMMA 1: MDCOP Graph Miner and LDMDCOP Graph Miner are complete.
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Proof: The MDCOP Graph Miner and LDMDCOP Graph Miner are complete if they
find all MDCOPs that satisfy a given participation index threshold and time prevalence
threshold. We can show this by proving that none of the functions in the algorithm miss
any patterns.

The gen_candidate_co_occ function does not miss any patterns. The input of this
function is size k MDCOPs, and the output is candidate size k + 1 MDCOPs. The
gen_InstancesTree function does not miss any patterns. This function generates instances
of candidate size k + 1 MDCOPs if they are in the neighborhood distance and forming
a clique.We can prove this with the completeness of the Breadth First Search algorithm
which enumerates all connected edges of a given instance level sub-graph. Further, the
links from the object type nodes to the instance level nodes are visited. This guarantees
that no instance level sub-graph is missed by the algorithm. Further, using the time series
on the instance level sub-graphs, the participation ratios of object types in their respective
co-occurrences are updated for every object instance visited by the BFS.

5.2. Completeness

LEMMA 2: MDCOP Graph Miner and LDMDCOP Graph Miner are correct.
Proof: MDCOP graph is correct if the participation indices of each co-occurrence is

calculated according to [17][9][14]for all time instances. First, all edges in the instance
level sub-graph are traversed only once by the BFS and hence are accounted only once for
the participation index of the co-location. Second, if there is a case where an instance Bi
co-occurrences with Aj and Ak where Aj and Ak are of the same object type A, then the
existence series of B in AB has to be considered only once for calculating participation
ratio of B in AB. We use these participation indices weed out candidates not meeting the
given thresholds.

Hence, the MDCOP Graph Miner and LDMDCOP Graph Miner are correct.

5.3. Complexity

LEMMA 3: MDCOP Graph Miner Graph Miner is more effective than fastMDCOP-
Miner.

Proof: For fastMDCOP-Miner, we just assume that Tf is the cost time of fastMDCOP-
Miner. Just as shown in the following formula.

Tf = Tneighbor_pairs(ST ) + Tf (2) +
∑
k>2

Tf (k) (8)

Where ST is spatiotemporal data set, Tf (2) is the time for calculating co-occurrence pat-
terns under k=2; Tf (k) is the time for calculating these patterns when k >2, we can cal-
culate Tf (k) by the following formula.

Tf (k) = Tgen_candidate(Pk−1) + Tgen_co_occ_inst(Ck)

+ Tfind_spatial_prev(Tk) + Tfind_spatial_prev(SPk)

≈ Tgen_co_occ_inst(Ck)

(9)
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Where Pk−1 represents co-occurrence patterns under (k − 1) size; Ck represents candi-
date co-occurrence patterns under size; Tk represents candidate co-occurrences pattern
instances under k size; SPk indicates co-location patterns under k size.

For MDCOP Graph Miner, as the same, we assume Tg indicates the total cost time.
Tg can be calculated by the following formula.

Tg = TMDCOP _Graph(ST ) + Tg(2) +
∑
k>2

Tg(k) (10)

Where ST is spatiotemporal data set, Tg(2) is the time for calculating co-occurrence pat-
terns under k=2; Tg(k) is the time for calculating these patterns when k>2.As the same,
Tg(k) just can be calculated by this formula.

Tg(k) = Tgen_candidate(Pk−1) + Tgen_instanceTree(Ck)

+ Tfind_spatial_prev(Tk) + Tfind_spatial_prev(SPk)

≈ Tgen_instancesTree(Ck)

(11)

Pk−1 represents co-occurrence patterns under (k − 1) size; Ck represents candidate co-
occurrence patterns under k size; Tk represents candidate co-occurrences pattern instances
under k size; SPk indicates co-location patterns under k size.

To compare the total cost time advantage between fastMDCOP-Miner and MDCOP
Graph Miner, firstly, we can aim at the cost time for initializing the neighboring relation-
ships and generating co-occurrence patterns when k=2. Obviously, MDCOP Graph Miner
is more costly than fastMDCOP-Miner as the former needs more extra time to generate
MDCOP Graph. The results appear as shown below.

Tneighbor_pairs(ST ) + Tf (2) < TMDCOP _Graph(ST ) + Tg(2) (12)

It’s worth nothing that Tgen_candidate, Tfind_spatial_prev and Tfin_time_prev are equal
in formulas Tf(k) and Tg(k). And these three costs just can be ignored comparing to
Tgen_co_occ_inst.

Then, the comparison of the cost for generating co-occurrence patterns is under k>2.
The ratio is as follows.

Tf (k)

Tg(k)
≈ Tgen_co_occ_inst(Ck)

Tgen_instancesTree(Ck)
≈ |Ck| × tjoin
|Ck| × tscan

≈ tjoin

tscan
(13)

Where tjoin indicates the cost of join operation to generate candidate co-occurrence pat-
terns; tscan indicates the cost of generating candidate co-occurrence patterns through
searching MDCOP Graph.

If the spatial temporal data sets we input is intensive, tscan � tjoin. And with the
growth of spatial frequency threshold or temporal frequency threshold, this ratio tends to
be bigger, there are more spatialtemporal co-occurrence patterns required to be generated.

Through the above analysis, assuming the average count of instances in each time slot
is N, the total number of co-location patterns under k=2 is Nco-lo; average number of
co-occurrence patterns is Nins; the maximum length of candidate co-occurrence patterns
is I; TF represents the total number of time slots.

For fast MDCOP-Miner, the time complexity of Tneibor_pairs(ST ) is
O(N ∗N ∗ TF ); and time complexity respectively of Tf (2) and Tf (k) are O(Nco− lo)
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(which can be ignored) and O(NinsI). Therefore, the total time complexity of fast-
MDCOP-Miner is [O(N ∗N ∗ TF )+ O(Nco− lo)+O(NinsI)].

For MDCOP Graph Miner, the time complexity of TMDCOP_Graph(ST ) is
O(N ∗N ∗ TF +Nco− lo). And time complexity of Tg(2) and Tg(k) respectively are
O(Nco− lo) and O(NinsI − 1). The total time complexity of MDCOP Graph Miner is
[O(N ∗N ∗ TF +Nco− lo)+O(Nco− lo)+O(NinsI − 1)].

By comparing these two total time complexity, we can come to a conclusion that the
latter is smaller than the former. In other word, MDCOP Graph Miner is more effective
than fastMDCOP-Miner.

As shown in the methods, we can get conclusion that LDMDCOP Graph Miner Graph
Miner is effective in mining MDCOP patterns under big data sets. For this miner method,
let Tl represents the total time LDMPCOP Graph Miner costs. So Tl can be described by
this formula.

Tl = TMDCOP _Graph(ST ) + Tl(2) +
∑
k>2

Tl(k) (14)

Where ST indicates the data set; Tl(2) is the cost time for calculating spatialtemporal
co-occurrence patterns when k=2; Tl(k) just represents the total time for generating co-
occurrence patterns when k > 2.

Tl(k) = Tgen_candidate(Pk−1) + Tgen_co_occ_inst(Ck)

+ Tfind_spatial_prev(Tk) + Tfind_time_prev(SPk)

≈ Tgen_co_occ_inst(Ck)

(15)

Also, Pk−1 represents co-occurrence patterns under (k − 1) size;Ck represents candi-
date co-occurrence patterns under k size; Tk represents candidate co-occurrences pattern
instances under k size; SPk indicates co-location patterns under k size. And comparing to
Tgen_co_occ_inst, we can just ignore Tgen_candidate, Tfind_spatial_prev and Tfin_time_prev.

Assume that hard disk I/O time-consuming is M-fold to memory I/O time-consuming.
The time complexity of TMDCOP_Graph(ST) is O(N ∗N ∗M ∗ TF ); for Tl(2) is
O(Nco− lo); for Tl(k) is O(Ninsk − l ∗M). The total time complexity for LDMD-
COP Graph Miner is O(N ∗N ∗M ∗ TF )+ O(Nco− lo)+ O(Ninsk − l ∗M).

LDMDCOP Graph Miner can effectively mine spatialtemporal co-occurrence patterns
from big spatial and temporal data sets, which can’t be reached by MDCOP Graph Miner
and na?ve method. Meanwhile, we can get correct and complete sets of spatial-temporal
co-occurrence patterns.

6. Experimental Results

We use Real Data Sets and Synthetic to evaluate the proposed algorithm. The real data
includes 15 time snapshots and 21 distinct vehicle types and their instances. The minimum
instance number is 2, the maximum instance number is 78, and the average number of
instances is 19. To evaluate the performance of the algorithms, spatiotemporal data sets
were generated based on the spatial data generator proposed by Huang et al. [3]. Synthetic
data sets were generated for spatial frame size D ×D.For simplicity,the data sets were
divided into regular grids whose side lengths had neighborhood relationship R.
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6.1. Experimental Results for Real Data Sets

We evaluated the effect of the number of time slots on the execution time of the MDCOP
algorithms using the real data set. The participation index, time prevalence index, and
distance were set at 0.2, 0.8, and 100 m respectively. Experiments were run for a minimum
of 1 time slot and a maximum of 14 time slots. Results show that the MDCOP Graph
Miner requires less execution time than the fast MDCOP-Miner (Fig. 8a). As the number
of time slots increases, the ratio of the increase in execution time is smaller for MDCOP
Graph Miner than for the fast MDCOP-Miner. It shows that MDCOP Graph Miner has
time cost advantage to fast MDCOP-Miner.

The participation index, time prevalence index, number of time slots, and distance
were set at 0.2, 0.8,15, and 100 m, respectively. Results show that the MDCOP Graph
Miner outperforms the fast MDCOP-Miner when the number of object-types increases
(Fig. 8b). It is observed that the increase in execution time for the fast MDCOP-Miner is
bigger than that of the MDCOP Graph Miner as the number of object-types increases for
the real data set.

(a) (b)

Fig. 8. (a) Effect of number of time slots and object types using real data set

6.2. Experimental Results for Synthetic Datasets

Effect of the Spatial Prevalence Threshold. We evaluated the effect of the spatial preva-
lence threshold on the execution times of MDCOP mining algorithms. The fixed param-
eters were time participation index, distance, and number of time slots, and their values
were 0.8, 20 m, and 100, respectively. Experimental results show that the MDCOP Graph
Miner this paper proposed is more computationally efficient than the fast MDCOP-Miner
(Fig. 9a). The execution time of the MDCOP Graph Miner decreases as the spatial preva-
lence threshold increases, and obviously MDCOP Graph Miner is running less time than
fast MDCOP-Miner with all spatial prevalence.

We also evaluated the effect of the spatial prevalence threshold on the execution time
of the LDMDCOP Graph Miner using synthetic data sets. The participation index, dis-
tance and number of time slots, were set at 0.8, 20 m, 100, respectively. The results
showed that the execution time of the LDMDCOP Graph Miner decreases as the time
prevalence threshold increases (Fig. 9b).

Effect of the Time Prevalence Threshold We evaluated the effect of the time prevalence
threshold on the execution times of MDCOP mining algorithms. The fixed parameters
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(a) (b)

Fig. 9. (a), (b) Effect of the spatial prevalence threshold using synthetic data sets

were spatial participation index, distance, and number of time slots, and their values were
0.4, 20 m, and 100, respectively. Experimental results show that the MDCOP Graph Miner
this paper proposed is more computationally efficient than the fast MDCOP-Miner (Fig.
10a). The execution time of the MDCOP Graph Miner decreases more than fast MDCOP-
Miner as the spatial prevalence threshold increases.

We also evaluated the effect of the time prevalence threshold on the execution time of
the LDMDCOP Graph Miner using synthetic data sets. The participation index, distance
and number of time slots, were set at 0.5, 20 m, 100, respectively. The results showed
that the execution time of the LDMDCOP Graph Miner decreases as the time prevalence
threshold increases (Fig. 10b).

(a) (b)
Fig. 10. ((a), (b) Effect of the time prevalence threshold using synthetic data sets

7. Conclusions and Future Work

In the exception detection, there are many data attributes in the data packet captured in
the network. There are a lot of useless and redundant attributes, As the dimension of
data object increases, the cost of intrusion detection system increases exponentially. It
will not only consume a large amount of storage space, but also greatly increase the time
and space complexity of the intrusion detection program. Excessive dimensions will not
only increase the resource consumption of the system, but also reduce the accuracy of
detection.

In order to improve the traditional spatiotemporal co-occurrence pattern mining tech-
niques in mixed-drove spatiotemporal co-occurrence patterns detection. We designed the
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method to improve calculation efficiency. In this paper, we presented a novel and com-
putationally efficient algorithm (the MDCOP Graph Miner) for mining MDCOPs with
large attack dataset. MDCOP Graph Miner represents the close relationship between the
instances with MDCOP Graph structure; obtain information for mining co-occurrence
patterns efficiently through accessing MDCOP Graph and design an effective pruning
strategy simultaneously. Experiments show that MDCOP Graph Miner algorithm can not
only get the complete and correct spatiotemporal co-occurrence patterns, but also improve
computational efficiency.

Although MDCOP Graph Miner algorithm improves the efficiency in mixed-drove
spatiotemporal co-occurrence patterns detection, but for large spatial and temporal attack
data processing and analysis capabilities, or lack of. In order to solve this problem, on
the basic of MDCOP Graph Miner, we presented an improved MDCOP Graph Miner
algorithm (the LDMDCOP Graph Miner) which can deal with large spatiotemporal at-
tack data sets. LDMDCOP Graph Miner takes MDCOP Graph as the storage structure for
close relationships between instances, and storage MDCOP Graph on the hard disk. In
the process of calculation, only the necessary attack data is loaded into memory, so as to
solve attack data storage problems. Meanwhile, LDMDCOP Graph Miner makes index
for MDCOP Graph, which improves the data query efficiency. Experiments show that LD-
MDCOP Graph Miner algorithm can not only get the complete and correct mixed-drove
spatiotemporal co-occurrence patterns detection, as well as have high computational effi-
ciency.

In the future, we will extend the MDCOP graph and the subsequent mining algorithm
for insertions of object attack types at arbitrary time interval. We hope to investigate the
idea of multi-scale relationship for different co-occurrence patterns detection.
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