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Abstract. There is only one guiding solution in the search equation of Gaussian
bare-bones artificial bee colony algorithm (ABC-BB), which is easy to result in
the problem of premature convergence and trapping into the local minimum. In or-
der to enhance the capability of escaping from local minimum without loss of the
exploitation ability of ABC-BB, a new triangle search strategy is proposed. The
candidate solution is generated among the triangle area formed by current solution,
global best solution and any randomly selected elite solution to avoid the premature
convergence problem. Moreover, the probability of crossover is controlled dynam-
ically according to the successful search experience, which can enable ABC-BB
to adapt all kinds of optimization problems with different landscapes. The experi-
mental results on a set of 23 benchmark functions and two classic real-world en-
gineering optimization problems show that the proposed algorithm is significantly
better than ABC-BB as well as several recently-developed state-of-the-art evolution
algorithms.

Keywords: artificial bee colony, triangle search, dynamic parameter, engineering
optimization.

1. Introduction

With the continuous development of science and technology, many global optimization
problems constantly exist in all most of engineering and science fields, such as queuing
system [46]and structural design [4][16]. Unfortunately, many of these problems are of-
ten characterized as non-convex, discontinuous or non differentiable, thus it is difficult to
deal with them with traditional optimization algorithms. Evolution algorithms (EAs), as a
powerful tool, are playing an increasingly important role in solving such kind of problems,
such as Particle Swarm Optimization (PSO) [42], Ant Colony Optimization (ACO) [18],
Differential Evolution (DE) [43], Artificial Bee Colony (ABC) algorithm [30]. ABC is a
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new EA proposed by Karaboga, which is drawn inspiration from the intelligent foraging
behavior of honey bees. The comparison results indicate that ABC performs competi-
tively and effectively when compared to the selected state-of-the-art EAs, such as DE
and PSO [31]. Owing to its simple structure, easy implementation and outstanding per-
formance, ABC has received increasing interest and has been widely used in many engi-
neering optimization problems since its invention such as network problems [36], image
problems [9], engineering problems [29], clustering problems [20][32][34].

However, similar to other EAs, ABC also tends to suffer from the problem of poor
convergence. The possible reason is that the solution search equation which is used to
generate new candidate solutions, has good exploration capability but poor exploitation
capability [21][49], and thereby it causes the problem of slow convergence speed. There-
fore, the performance of ABC can be improved by enhancing the exploitation ability and
finding better balance between exploration and exploitation. A large number of improved
ABC variants have been presented by exploiting the valuable information from the current
best solution or other good solutions. Firstly, Zhu and Kwong proposed [49] a global best
(gbest)-guided ABC (GABC) algorithm based on the inspiration of PSO. In GABC, the
information of the gbest solution is incorporated into the solution search equation of ABC
to improve the exploitation. However, as claimed in [25], the search equation of GABC
may cause an oscillation phenomenon and thus may also degrade convergence since the
guidance of the last two terms may be in opposite directions. Afterwards, Zhou [48] pro-
posed an improved ABC with Gaussian bare-bones search equation (ABC-BB for short)
algorithm based on the utilization of the global best solution to make up the defect of
GABC. Moreover, they proposed an ensemble algorithm composed of ABC-BB and gen-
eral opposition learning initialization strategy (GOBL), named GBABC. In ABC-BB,
an important feature of the newly proposed search equation is that positions of the new
food sources are sampled through a Gaussian distribution with dynamical mean value and
variance value. The experimental results demonstrate the effectiveness of ABC-BB and
GBABC in solving complex numerical optimization problems when compared with other
algorithms.

However, in ABC-BB and GBABC, there is only one guiding individual in the search
equation of Gaussian bare-bones artificial bee colony algorithm (ABC-BB), which is easy
to result in the problem of premature convergence. In order to overcome this drawback, a
new triangle search strategy is proposed in this paper. The candidate solution is generated
among the triangle area formed by current solution, global best solution and randomly se-
lected elite solution, which is beneficial to augment the search area and prevent premature
convergence. Moreover, the probability of crossover is controlled dynamically accord-
ing to the successful search experience, which can enable ABC-BB to adapt all kinds
of optimization problems with different landscapes. The experimental results show that
the proposed algorithm is significantly better than ABC-BB as well as several recently-
developed variants of PSO, DE and ABC.

The rest of this paper is organized as follows. In section 2, the related works are briefly
reviewed, including the basic ABC and some improved ABCs. In section 3, we present
the proposed approach in detail. Section 4 presents and discusses the experimental results.
Finally, the conclusion is drawn in section 5.
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2. Related Works

2.1. Basic ABC

The ABC algorithm is a swarm-based stochastic optimization method, which is inspired
by the waggle dance and intelligent foraging behavior of honey bees. In ABC, the position
of a food source denotes a possible solution of the optimization problem, and the nectar
amount of each food source denotes the quality (fitness) of the corresponding solution.
In order to find the best food source, three different types of bees, i.e., employed bee,
onlooker bee and scout bee, are responsible for the different search tasks. Firstly, the first
half of the colony consists of employed bees, which are responsible for randomly search-
ing better food source in the neighborhood of the corresponding parent food source and
then passing information of the food sources to onlooker bees. Secondly, the second half
of the colony is composed of onlooker bees, which further search the better food sources
according to the information provided by employed bees. Thirdly, if the quality of a food
source is not improved by a preset number of times (limit), this food source is abandoned
by its employed bee, and then this employed bee becomes a scout bee that begins to seek
a new random food source. The original ABC algorithm includes four phases, i.e., ini-
tialization phase, employed bee phase, onlooker bee phase and scout bee phase. After the
initialization phase, ABC turns into a loop of employed bee phase, onlooker bee phase
and scout bee phase until the termination condition is satisfied. The details of each phase
are described as follows.

Initialization phase: Similar to other EAs, ABC also starts with an initial population
of SN randomly generated food sources. Each food source xi=(xi,1,xi,2,. . . ,xi,D) are
generated randomly according to Eq.(1).

xi,j = aj + rand (0, 1) (bj − aj) (1)

where SN is the number of food sources, and SN is equal to the number of employed
and onlooker bees; D is the dimensionality (variables) of the search space; aj and bj are
the lower and upper bounds of the jth variable respectively; rand(0, 1) is a random real
number in range of [0,1]. Then, the fitness values of the food sources are calculated by
Eq.(2).

fiti =

{
1/(1 + fi), fi ≥ 0
1 + |fi| , fi < 0

(2)

Employed bee phase :In this phase, each employed bee generates a new food source vi =
(vi,1, vi,2, . . . , vi,D) in the neighborhood of its parent position xi = (xi,1, xi,2, . . . , xi,D)
using Eq.(3).

vi,j = xi,j + φi,j(xi,j − xk,j) (3)

where k ∈ {1, 2, ..., SN} and j ∈ {1, 2, ...D},are randomly chosen indexes; k has to be
different from i;φi,j is a random number in the range [-1,1]. If the new food source vi is
better than its parent xi, then xi is replaced with vi.

Onlooker bee phase:After receiving the information from the employed bees, the on-
looker bees begin to select food sources for exploitation. The probability of selecting a
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food source depends on its nectar amount, which can be calculated as follows.

pi = fiti/
∑SN

i=1
fiti (4)

Where pi is the selection probability and fiti is the fitness value of the ith food source.
Once an onlooker bee completes its selection, it would also produce a modification on its
chosen food source using Eq.(3). As in the case of the employed bees, the greedy selection
method is employed to retain a better one from the old food source and the modified food
source as well.

Scout bee phase:If a position xi cannot be improved for at least limit times, then
that food source is assumed to be abandoned. Then, the scout produces a food source
randomly as in Eq.(1) to replace xi.

2.2. Improved ABCs

The solution search equation plays an important role in ABC. Eq.(3) indicates that the so-
lution search equation of ABC is good at exploration but poor at exploitation. To improve
the exploitation ability and utilize the beneficial information of the current best solution,
Zhu and Kwong [49] proposed a new search equation (names GABC), shown in Eq.(5).

vi,j = xi,j + φi,j .(xi,j − xk,j) + ψi,j .(xbest,j − xi,j) (5)

Where the third term in the right-hand side of Eq.(5) is a new added term called gbest
term, xbest,j is the jth element of the global best solution, is a uniform random number
within [0,C], and C is a nonnegative constant and is suggested to set to 1.5. Although
this new search equation has been shown superior to the original one, its mechanism
of utilizing the gbest can still cause inefficiency to the search ability of the algorithm
and slow down convergence speed. Because the guidance of the last two terms may be
in opposite directions, and this can cause an oscillation phenomenon [25]. Therefore, in
order to address these issues in Eq.(5), Zhou et al. [48] designed a Gaussian bare-bones
search equation inspired by the concept of BBPSO, shown in Eq.(6).

vi,j =

{
N((xi,j + xbest,j)/2, |xi,j − xbest,j |), if randj ≤ CR

xi,j , otherwise
(6)

Where N(.) represents a Gaussian distribution with mean and variance ; xbest is the
global best solution of current population, randj is a uniformly distributed random num-
ber within the range [0,1]; CR is a new introduced parameter which controls how many
elements in expectation can be derived from its parent xi for vi. Since there is only one
dimension of xi to be updated for vi in the original search equation, the introduction
of CR is helpful to inherit more information from xbest to enhance the exploitation. In
Eq.(6), new candidate solutions are generated in the search space formed by the current
solution xi and the global best solution xbest. Compared with the original search equation
Eq.(3), and the Eq.(5), the Gaussian bare-bones search equation Eq.(6) has two advan-
tages. First, Eq.(6) takes advantages of the global best solution to guide the search of new
candidate solutions, which is beneficial to enhance the exploitation ability of ABC. Sec-
ond, the oscillation phenomenon can be avoided because Eq.(6) can be considered as one
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single term. To better balance the exploration and exploitation, Eq.(6) is only used in the
onlooker bee phase, while the employed bee phase still use the original solution search
equation Eq.(3) for generating new candidate solutions. By adopting the new equation
Eq.(6) in the onlooker bee phase, the newly proposed algorithm is named ABC-BB. More-
over, Zhou [48] also proposed a general opposition learning strategy (GOBL) in the scout
bee phase. By combining the ABC-BB and GOBL, they [48] proposed a new ensemble
algorithm (GBABC). Similarly, Cui et al. [15] also proposed a novel search equation to
avoid the oscillation phenomenon of GABC, shown in Eq.(7).

vi,j =

{
xi,j + φi,j .(xi,j − xk,j), if rand < P
xi,j + ψi,j .(xbest,j − xi,j), otherwise

(7)

Where P is a parameter defined by the user. xbest is the current best solution of the
population, and xi is the ith food source. xk is a randomly selected food source from
the population, which is different from xi. is the uniformly distributed random number
in the range of [-1, 1] and is a uniform random number in the range of [0, 1.5]. j is
randomly selected from 1, 2, . . . ,D. Obviously, with the guidance from only one term, the
novel search strategy can easily avoid the oscillation phenomenon. Moreover, parameter
P could be used to control how to appropriately exploit the valuable information of the
current best solution. In 2015, Gao et al. [23] also proposed a kind of Gaussian search
equation, shown in Eq.(8).

vi,j = N((xk,j + xbest,j)/2, |xk,j − xbest,j |) (8)

Where k is a randomly chosen index from 1,2,SN with the constraint that k 6= i, the
meaning of the other symbol is the same as Eq.(7). Gao et al. [23] proposed a novel
ensemble ABC variants by combining Eq.(8), CABC [25], parameter adaption strategy
and fitness-based neighborhood mechanism, named BCABC. The experimental results
show that the performance of BCABC is better than some newly proposed state-of-the-art
algorithms.

3. The Proposed Algorithm

In this section, we will firstly propose a novel enhanced ABC with triangle search strategy
and parameter strategy, then the pseudo code of the novel ABC variants will be given.

3.1. The New Triangle Search Strategy

In the search equation Eq.(6) of ABC-BB, the new candidate vi,j is generated in the line
determined by the current solution xi,j and the gbest xbest,j solution. Fig.1(a) demonstrate
the evolution process of Eq.(6). However, we can see from Fig.1(a) that there is only
one guiding individual (gbest) in the search equation Eq.(6), which is easy to result in
the problem of premature convergence and locally convergence because the population
is always guided by the global best solution monotonically. In order to overcome this
drawback, a new search equation based on triangle search strategy is proposed in this
paper, shown in Eq.(9).

vi,j =

{
N(

xi,j+xbest,j+xe,j

3 ,
|xi,j−xbest,j |+|xbest,j−xe,j |+|xe,j−xi,j |

3 ), if randj ≤ CR
xi,j , otherwise

(9)
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Where CR is the crossover probability, the meaning of N(.) and xbest are the same as
Eq.(6). xe is a randomly chosen from the elite solutions (the top p · SNsolutions in cur-
rent population, p ∈ (0, 1). In Eq.(9), the candidate solution vi,j is generated among the
triangle area determined by the current solution, the global best solution and a randomly
selected elite solution, which is beneficial to augment the search area, increasing informa-
tion sharing and thereby prevent premature convergence. The search equation of Eq.(9) is
given in Fig.1(b).

Li et at.[35] indicated that ”the more information is efficiently utilized to guide the
flying, the better performance the PSO algorithm will have”. Now that Eq.(9) uses more
elite solutions to guide the search, we have reason to believe that the novel search equation
will decrease the premature problem of ABC-BB and enhance the performance of ABC-
BB.

In EABC-BB, the mutation strategy uses more information of elite solutions. Because
of its randomness characteristic, it may hold down the premature problem of ABC-BB
and enable ABC-BB have more chance to explore more peaks denoted by different elite
solutions.

(a) ABC-BB (b) EABC-BB

Fig. 1. Evolution process of a solution according to (a):Eq.(6) and (b):Eq.(9) in 2-D para-
metric space.

3.2. Parameter Adaption Strategy

Like other DE variants, the parameter CR also greatly affects the performance of ABC-
BB [48]. The experimental results of literature [48] show that a higher value of CR is
more suitable for solving unimodal problems, while a lower one is better for multimodal
problems. Therefore, it is difficult to determine the optimal control parameters because
they are problem dependent. In this paper, a simple self-adaptive strategy is proposed
to dynamically update CR. In some well-known self-adaptive DE algorithms, such as
SaDE [41] and JADE [47], the initial value of CR is independently generated by a normal
distribution of mean 0.5 and standard deviation 0.1. After a predefined number of gener-
ations, the CR is updated according to the search experiences of successful crossover
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probabilities. By following this idea, a new self-adaptive CR strategy is proposed as fol-
lows:

CR = N(S̄CR, 0.1) (10)

Where N(S̄CR, 0.1) represents a normal distribution whose mean and standard deviation
are S̄CR and 0.1, respectively. S̄CR is set to be 0.3 considering that it is suitable for CR in
literature [48], then the value will be adjusted dynamically at the end of each generation
as follows:

S̄CR= mean(SCR) (11)

where mean(.) is the general arithmetic average; and SCR is the set of all successful
CR at generation g.

By combining the novel search equation Eq.(9) and the adaptive parameter adaption
strategy, a novel ABC variants, named enhanced ABC-BB (EABC-BB for short), is pro-
posed. The pseudo code of EABC-BB is described in Algorithm 1, where FEs is the
number of consumed fitness function evaluations, and max FEs, as the stopping criterion,
is the maximal number of fitness function evaluations. triali records the unchanged times
of xi’s fitness value.

Clearly, Compared to ABC-BB, EABC-BB only modifies the search equation and
the parameter adaption strategy. Therefore, EABC-BB does not increase the ABC-BB’s
complexity any more, both EABC-BB and the ABC-BB have the same time complexity
O(gmax · SN· D), where gmax is the maximum number of generations.

Algorithm 1:Pseudo code of the proposed EABC-BB
Initialization:Generate SN solutions that contain D variables according to Eq.(1), FEs=0
while FEs< max FEs

for i=1 to SN //employed bee phase
Generate a new solution vi using Eq.(3), then calculatef(vi)
if f (vi)<f (xi)

Replace xi by vi and triali=0
else

triali=triali +1
end if

end for //end employed bee phase
Select the top p.SN solutions as elite solutions from population

for i=1 to SN //onlooker bee phase
Select a solution xe from elite solutions randomly to search
Generate a new candidate solution ve in the neighborhood of xe using Eq.(9) and calculate f(ve)

if f (ve)< f (xe)
Replace xe by ve and triali=0

else
triale=triale +1

end if
end for //end onlooker bee phase
FEs = FEs+ SN × 2 Select the solution xmax with maximum trial value //Scout bee phase

if trial(max)>limit //only one food source with max trial value can be initialized
Replace xmax by a new solution generated according to Eq.(1), FEs=FEs+1, trial (max)=0;

end if //end scout bee phase
end while
Output the food source with the smallest objective value
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4. Computational Study

In this section, the experimental results will be given. Specifically, in section 4.1, the
benchmark functions will be given, then in section 4.2, the new parameter p will be an-
alyzed. In section 4.3, the proposed EABC-BB will be compared with other recently-
proposed ABC variants. The section 4.4 give the comparisons between the EABC-BB
and some newly proposed state-of-the-art EAs. At last, the new EABC-BB will be ap-
plied to solve two well-known engineering optimization problems.

4.1. Benchmark Functions

In this section, 23 well-known benchmark functions [48] with different dimensions (D=30
and D=50, respectively) are employed to validate the performance of EABC-BB. The
13 test functions are scalable problems. Among these problems, F01-F04 are unimodal
func-tions, and F05 is the Rosenbrock function which is multimodal when D>3. F06 is
a step function which has one minimum and is discontinuous, while F07 is a noisy quar-
tic function. F08-F13 are multimodal functions with many local minima. The remain-
ing 10 functions (F14-F23) are shifted and/or rotated types taken from the CEC 2005
competition[44]. The definitions of these functions are given in [48].

4.2. Adjusting the Parameter p

In EABC-BB, only one parameter p is used whose value may affect the performance.
Therefore, in the subsection, we investigate different p values to select the best one
for maximizing the performance of EABC-BB. The available p values are in the range
[0.05,0.2] in steps of 0.05, i.e., there are four choices for p in total. F01-F13 are selected
as test functions. All the selected 13 functions are tested at D=30, the maximal number of
fitness function evaluations (max FEs) is set to 5,000·D. The number of food sources SN
and limit are set at 30 and 100, respectively. Each function is run 30 times, and the mean
error (f (x)-f (x*)), x* is the global optimum) and standard deviation values are recorded.
The experimental results are listed in Table 1. In the last line of Table 1, in order to com-
pare the significance between two parameters values, the Wilcoxon singed-rank test [17]is
conducted. The Wilcoxon signed-rank test is a non-parametric statistic hypothesis test,
which can be used as an alternative to the paired t test when the results cannot be assumed
to be normally distributed. “†”, “‡” and ”≈” indicate the EABC-BB with p=0.1 is better
than, worse than, and similar to the EABC-BB with other p values. As seen from Table
1, the EABC-BB at p=0.1 performs best, while a higher or lower p value will weaken the
performance of EABC-BB. Therefore, the parameter p is set at 0.1 in the following all
experiments.

4.3. Comparison with Other ABCs

This subsection presents a comparative study of EABC-BB with MGABC [15], BC-
ABC [23], ABC-BB [48] at both D=30 and 50. These three algorithms are all proposed
recently and have relatively good performance according to their reports. Moreover, each
of the three algorithms have proposed a kind of improved search equations, respectively.



Enhanced Artificial Bee Colony with Novel Search Strategy and Dynamic Parameter 947

Table 1. The impact of different p values on the EABC-BB performance for 13 test func-
tions

Func
p=0.05

Mean error(std dev)
p=0.15

Mean error(std dev)
p=0.2

Mean error(std dev)
p=0.1

Mean error(std dev)
F01 1.45E-34(2.51E-34)† 1.69E-76(2.92E-76)† 2.79E-76(3.78E-76)† 4.66E-81(3.29E-80)
F02 4.86E-11(7.39E-11)† 1.87E-56(3.25E-56)‡ 8.02E-48(1.38E-47)‡ 1.69E-41(1.08E-40)
F03 2.05E+02(1.64E+02)† 1.88E+03(1.79E+03)† 2.63E+03(6.39E+02)† 1.15E+02(2.16E+02)
F04 2.25E+01(1.33E+02)† 5.36E-03(6.73E-03)‡ 3.71E-03(2.37E-03)‡ 6.40E-01(9.95E-01)
F05 1.16E+02(7.20E+01)† 1.75E+00(2.36E+00)‡ 1.12E+01(4.49E+00)‡ 1.52E+01(4.44E+00)
F06 0.00E+00(0.00E+00)≈0.00E+00(0.00E+00)≈0.00E+00(0.00E+00)≈0.00E+00(0.00E+00)
F07 5.13E-03(1.25E-03)† 8.71E-03(3.10E-03)† 8.65E-03(2.42E-03)† 2.74E-03(3.56E-03)
F08 3.94E+01(6.83E+01)† 3.94E+01(6.83E+01)† 1.33E-02(9.96E-09)† 3.82E-04(6.84E-12)
F09 0.00E+00(0.00E+00)≈0.00E+00(0.00E+00)≈0.00E+00(0.00E+00)≈0.00E+00(0.00E+00)
F10 3.04E-14(2.14E-14)† 7.99E-15(0.00E+00)† 7.99E-15(0.00E+00)† 3.39E-15(4.24E-15)
F11 7.37E-03(1.27E-02)† 0.00E+00(0.00E+00)≈0.00E+00(0.00E+00)≈0.00E+00(0.00E+00)
F12 3.32E-26(5.74E-26)† 1.57E-32(4.53E-32)† 1.57E-32(7.31E-32)† 6.28E-33(7.77E-33)
F13 6.97E-32(1.18E-31)† 1.50E-33(5.24E-34)† 1.50E-33(2.38E-33)† 5.99E-34(7.42E-34)
†‡≈ 11/0/2 7/3/3 7/3/3 –

Note that the GBABC proposed in literature [48] is added an additional initialization
method (General Opposite Based Learning, GOBL) at ABC-BB, this is unfair to the other
algorithms because they are all randomly initialized. Therefore, We only use the ABC-BB
for the comparison.

For a fair comparison, all the competitive algorithms have the same parameter set-
tings, i.e., SN=30, limit=100, Max FEs=5000·D for F01-F13 and max FEs=10,000·D for
F14-F23.For other specific parameters, C=1.5 and P=0.3 for MGABC, CR=0.3 for ABC-
BB, which are the same as in the original literatures. Each algorithm is run 30 times
per function, and the mean error and standard deviation values are presented in Tables
2 and 3 for D=30 and 50, respectively. Moreover, to compare the significance between
two algorithms, the paired Wilcoxon signed-rank[17] test is used. “†”, “‡” and ”≈” indi-
cated EABC-BB is better than ,worse than, and similar to its competitor according to the
Wilcoxon signed-ranked test at α=0.05.

For D=30, from the results presented in Table 2, it is clear that EABC-BB performs
significantly better than the other three competitors on the majority of test functions. To be
specific, EABC-BB outperforms MGABC on 17 out of 23 test functions, while MGABC
only achieves better result on the F05 (Rosenbrock) and F19 (Shifted Rosenbrock). As
F05 and F19 are Rosenbrock and shifed Rosenbrock functions and their global optimum
is inside a long, narrow, parabolic shaped flat valley, the variables are strongly dependent,
and the gradients do not generally point towards the optimum. If the population is guided
by the global best solution or some other good solutions, the search will fall into some un-
promising areas[14]. Therefore, EABC-BB is beaten by MGABC at these two functions.
As a multi strategies ensemble algorithm, BCABC also performs better than EABC-BB
on functions F01, F05, F16 and F19, while EABC-BB beats it on the other 16 functions.
For ABC-BB, EABC-BB wins on16 functions and only loses on function F04 and F19.
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Table 2. The results achieved by MGABC, BCABC, ABC-BB and EABC-BB at
D=30 (Mean error±std dev)

Func. MGABC BCABC ABC-BB EABC-BB
F01 1.66E-62±4.05E-62† 3.46E-85±7.21E-84‡ 4.89E-48±2.28E-48† 4.66E-81±3.29E-80
F02 2.43E-32±1.48E-32† 3.92E-36±5.81E-37† 2.36E-29±6.17E-29† 1.69E-41±1.08E-40
F03 5.36E+03±1.20E+03† 2.17E+03±1.29E+03† 3.51E+03±2.19E+02† 1.15E+02±2.16E+02
F04 1.06E+00±2.37E-01† 1.55E+00±3.62E+00† 2.32E-02±5.17E-03‡ 6.40E-01±9.95E-01
F05 5.95E-01±1.02E+00‡ 5.30E+00±3.17E+00‡ 2.15E+01±3.66E+00† 1.52E+01±4.44E+00
F06 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
F07 2.37E-02±5.24E-03† 1.01E-02±8.83E-02† 1.84E-02±8.21E-03† 2.74E-03±3.56E-03
F08 3.82E-04±2.64E+01≈ 3.82E-04±4.83E-12≈ 3.82E-04±5.75E-12≈ 3.82E-04±6.84E-12
F09 0.00E+00±0.00E+00≈ 2.43E-12±6.17E-13† 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
F10 3.67E-14±3.43E-15† 7.72E-14±5.85E-14† 1.46E-14±2.59E-15† 3.39E-15±4.24E-15
F11 0.00E+00±0.00E+00† 6.79E-12±3.27E-12† 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
F12 1.57E-32±2.80E-48† 1.57E-32±8.38E-38† 1.57E-32±7.09E-46† 6.28E-33±7.77E-33
F13 1.49E-33±2.87E-33† 1.35E-32±8.13E-32† 1.35E-32±7.96E-48† 5.99E-34±7.42E-34
F14 5.96E-14±1.27E-14† 5.68E-14±2.73E-14† 6.82E-14±2.77E-14† 4.11E-14±1.72E-14
F15 6.47E+03±1.39E+03† 6.17E+03±3.66E+03† 3.67E+02±2.26E+02† 9.14E-02±2.96E-01
F16 8.88E+06±2.09E+06† 1.54E+06±5.23E+06‡ 6.11E+06±1.33E+06† 4.83E+06±4.89E+06
F17 3.29E+04±4.94E+03† 7.52E+03±4.81E+03† 4.92E+03±2.92E+03† 3.14E+03±1.14E+03
F18 8.38E+03±1.73E+03† 2.73E+03±4.63E+02† 2.04E+03±6.73E+02† 1.86E+03±8.12E+02
F19 1.36E+01±2.14E+01‡ 7.42E+01±3.99E+01‡ 6.42E+01±8.17E+01‡ 8.19E+01±8.35E+01
F20 4.91E-01±2.83E-01† 2.20E-02±3.89E-02† 2.32E-02±3.57E-02† 2.11E-02±5.64E-02
F21 2.09E+01±4.80E-02≈ 2.09E+01±3.37E-02≈ 2.09E+01±6.86E-02≈ 2.09E+01±5.59E-02
F22 5.40E-13±1.27E-14† 6.82E-13±4.16E-13† 7.57E-14±3.62E-14† 5.22E-14±1.55E-14
F23 2.14E+02±2.30E+01† 1.12E+02±4.82E+01† 1.22E+02±3.46E+01† 1.07E+02±2.13E+01
†/‡/≈ 17/2/4 16/4/3 16/2/5 -

In order to investigate the scalability of EABC-BB, we also compare EABC-BB with
all the competitors on the 23 test functions with 50D. The experimental results are given
in Table 3. As seen from Table 3, EABC-BB consistently gets significantly better results
than its competitors. Overall, EABC-BB outperforms MGABC, BCABC and ABC-BB
on 15, 18 and 15 out of 23 functions. As can be seen from Tables 2 and 3, it is clear that
EABC-BB is the best algorithm among four algorithms.

4.4. Comparison with Some Newly Proposed EAs

To further investigate the performance of EABC-BB, we compare EABC-BB with four
newly proposed EAs, including DE and PSO variants and an ensemble algorithm GBABC:

– sinusoidal differential evolution algorithm (sinDE) (Draa et al. 2015) [19]
– Gaussian bare-bones artificial bee colony (GBABC) (Zhou et al. 2016), note that

GBABC=ABC-BB+GOBL [48].
– Self regulating particle swarm optimization algorithm (SRPSO) (Tanweer et al. 2015)

[45]
– Social Learning Particle Swarm Optimization (SLPSO) (Cheng et al. 2015) [10]

For a fair comparison, the control parameters of four competitive EAs are set to the
suggested values offered by their corresponding literatures.
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Fig. 2. Convergence performance of different ABCs on 4 functions

The stopping criterion is the same as previous subsections. Each algorithm is run 30
times per function, and the mean error and standard deviation values are given in Table
5. From Table 5, we can see that EABC-BB obtains significantly better results on the
majority of test functions compared with other competitors. To be specific, sinDE wins
on 5 test functions compared with EABC-BB, but on the other 17 test functions EABC-
BB performs better.

SRPSO adopt self regulation strategy to control the premature convergence problem,
which is similar to EABC-BB. Therefore, SRPSO has excellent performance. But in con-
trast to EABC-BB, SRPSO outperforms EABC-BB on only 6 test functions, but loses on
15 functions. SLPSO performs better than EABC-BB on only 2 functions, while EABC-
BB outperforms it on other 21 test functions. GBABC is composed of ABC-BB and
GOBL strategy, it outperforms EABC-BB on 5 functions and loses on 14 test functions
compared with EABC-BB.

Overall, it is clear that EABC-BB is the best algorithm among 5 newly improved
algorithms.

The convergence curves of MGABC, BCABC, ABC-BB and EABC-BB on four rep-
resentative functions are shown in Fig.2. As seen from Fig.2, EABC-BB has faster conver-
gence ability than other algorithms. The reason why EABC-BB have an advantage over
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Table 3. The results achieved by MGABC,BCABC,ABC-BB and EABC-BB at
D=50 (Mean error±std dev)

Func. MGABC BCABC ABC-BB EABC-BB
F01 3.22E-61± 2.25E-61† 5.85E-09±1.17E-08† 3.86E-41±4.51E-41† 6.84E-63± 1.53E-62
F02 2.84E-31± 1.63E-31‡ 1.70E-09±3.41E-09† 2.87E-26±1.01E-26† 1.20E-29± 1.64E-29
F03 2.37E+04± 7.16E+02† 1.70E-09±3.58E+03† 3.53E+04±3.11E+03† 2.14E+04± 9.16E+03
F04 2.28E+01± 4.08E+00† 1.09E+01±6.97E-01† 1.25E+00±6.47E-01† 1.22E+00± 5.98E-01
F05 1.25E+00±1.92E+00‡ 1.90E+01±3.42E+01‡ 9.60E+01±4.94E+01† 5.32E+01± 2.78E+01
F06 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
F07 0.26E+00± 4.34E-02† 4.37E-02±2.35E-02† 3.82E-02±6.45E-03† 1.43E-02± 1.68E-03
F08 2.27E-11± 3.48E-12† 2.09E+04±1.83E-10† 2.10E+04±6.83E+01† 0.00E+00± 0.00E+00
F09 0.00E+00±0.00E+00≈ 6.13E-04±1.10E-03† 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
F10 7.37E-14± 4.58E-15† 5.02E-06±1.00E-05† 3.01E-14±1.77E-15† 1.86E-14± 3.55E-15
F11 0.00E+00±0.00E+00≈ 6.36E-03±5.70E-03† 0.00E+00±0.00E+00≈ 0.00E+00±6.29E-03
F12 9.42E-33±0.00E+00† 5.49E-11±1.09E-10† 9.42E-33±0.00E+00† 4.99E-33±1.08E-33
F13 1.50E-33±0.00E+00≈ 4.58E-33±5.37E-33† 1.50E-33±0.00E+00≈ 1.50E-33±0.00E+00
F14 1.56E-13± 2.84E-14† 5.80E-09±1.16E-08† 1.27E-13±2.84E-14† 5.68E-14±0.00E+00
F15 2.97E+04± 3.60E+02† 2.63E+04±3.55E+03† 1.93E+04±4.60E+03† 6.36E+03±6.08E+03
F16 3.07E+07± 3.83E+06‡ 3.19E+07±2.88E+06‡ 3.20E+07±7.64E+06‡ 4.00E+07±1.02E+07
F17 1.16E+05± 1.03E+04† 1.15E+05±1.41E+04† 4.96E+04±5.55E+03‡ 5.61E+04±2.95E+03
F18 2.07E+04± 1.28E+03† 2.02E+04±9.02E+02† 6.88E+03±2.38E+03‡ 7.49E+03±4.9E+03
F19 4.67E+00± 6.93E+00‡ 4.12E+01±5.38E+01‡ 6.85E+01±7.17E+01‡ 8.04E+01±8.63E+00
F20 5.52E-01± 2.39E-01† 3.95E-02±4.29E-02† 5.61E-06±7.78E-06† 1.52E-02±1.74E-02
F21 2.11E+01± 2.39E-02† 2.11E+01±2.33E-02† 2.11E+01±2.89E-02† 2.11E+01±2.35E-02
F22 1.13E-13±0.00E+00† 4.79E-09±7.37E-09† 1.27E-13±2.84E-14† 7.95E-14±3.11E-14
F23 6.72E+02± 8.41E+01† 2.73E+02±3.91E+01‡ 3.08E+02±2.20E+01† 2.75E+02±2.51E+01
†/‡/≈ 15/4/4 18/4/1 15/4/4 –

Table 4. Parameter settings for sinDE, SRPSO, SLPSO, GBABC and EABC-BB

Algorithms Parameter settings
sinDE NP = 30, freq = 0.25
SRPSO N = 30, winitial = 1.05, wfinal = 0.5, c1 = c2 = 1.49445, Vmax = 0.06078 ∗Range
SLPSO M = 30
GBABC SN = 30, limit = 100, CR = 0.3
EABC-BB SN = 30, limit = 100, p = 0.1

other algorithms can be found from the novel search equation Eq.(9) and the parameter
adaption strategy (see Eq.(10)). By contrast the mean value of the normal distribution of
Eq.(9) with that of Eq.(6), we can found that the ratio of the current solution xi,j is 1/2
in Eq.(6) because there are only two solutions (xiand the global best solution xbest), but
the ratio of xi,j in Eq.(9) is 1/3 because there are three solutions (xi, the elite solution xe
and the global best solution xbest). That is to say, the EABC-BB is guide by more elite
solutions and has stronger exploitation ability. Meanwhile, because different elite solu-
tions have equal chance to be a leader, thus the premature convergence phenomenon in
ABC-BB can be effectively avoided and the novel search equation can enable EABC-
BB explore different function peaks denoted by different elite solutions. Moreover, the
parameter CR adaption strategy can also enhance the performance of ABC-BB.
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Table 5. The comparison results between EABC-BB and other EAs at D=30

Func. index sinDE SRPSO SLPSO GBABC EABC-BB

F01 Mean error 3.07e-53† 3.08e-74† 3.60e-37† 2.63e-49† 4.66E-81
std dev 8.70E-53 1.30E-75 8.31E-37 5.27e-49 3.29E-80

F02 Mean error 1.72e-38† 8.23e-48‡ 1.80e-16† 2.53e-31† 1.69E-41
std dev 4.00E-38 3.87E-48 3.14E-16 2.69e-31 1.08E-40

F03 Mean error 1.37e+03† 3.59e+00‡ 1.38e+03† 4.48e+01‡ 1.15E+02
std dev 4.30E+02 3.44E+00 3.13E+03 7.18E+01 2.16E+02

F04 Mean error 3.50e+00† 4.22e-02‡ 1.39e+01† 1.39e-07‡ 6.40E-01
std dev 3.81E+00 3.05E-02 9.32E+01 1.88e-07 9.95E-01

F05 Mean error 5.19e+01† 3.00e+01† 3.50e+01† 3.63e+00† 1.52E+01
std dev 2.05E+01 3.15E+01 2.60E+01 3.40E+00 4.44E+00

F06 Mean error 0.00e+00≈ 0.00e+00≈ 2.75e-06† 0.00e+00≈ 0.00E+00
std dev 0.00E+00 0.00E+00 2.25E-06 0.00E+00 0.00E+00

F07 Mean error 3.97e-03† 8.93e-03† 3.34e-02† 9.82e-05† 2.74E-03
std dev 9.98E-04 2.08E-03 8.66E-03 7.06e-05 3.56E-03

F08 Mean error 4.47e+02† 9.93e+02† 3.95e+02† 3.82e-04† 3.82E-04
std dev 3.18E+02 2.72E+02 5.57E+02 4.54e-13 6.84E-12

F09 Mean error 1.56e+01† 3.06e+01† 2.02e+01† 0.00e+00≈ 0.00E+00
std dev 3.01E+00 4.52E+00 1.80E+01 0.00E+00 0.00E+00

F10 Mean error 7.99e-15† 3.07e-14† 9.00e-14† 4.44e-16‡ 3.39E-15
std dev 0.00E+00 3.17E-15 8.89E-14 0.00E+00 4.24E-15

F11 Mean error 2.44e-50† 6.89e-03† 3.69e-16† 0.00e+00≈ 0.00E+00
std dev 6.88E-50 1.00E-02 6.96E-14 0.00E+00 0.00E+00

F12 Mean error 1.85e-34‡ 2.07e-32† 4.33e-13† 1.57e-32† 6.28E-33
std dev 5.23E-34 4.63E-02 6.40E-13 5.47e-48 7.77E-33

F13 Meanerror 3.15e+02† 5.49e-32† 2.10e-33† 1.35e-32† 5.99E-34
std dev 1.26E+02 6.45E-32 3.64E-33 5.47e-48 7.42E-34

F14 Mean error 3.29e+03† 6.13e-13† 1.49e-14† 6.44e-14† 4.11E-14
std dev 1.88E+03 4.92E-14 3.35E-14 1.93e-14 1.72E-14

F15 Mean error 2.06e+03† 4.42e-04‡ 3.31e+03† 2.94e+02† 9.14E-02
std dev 4.43E+02 5.82E-04 1.85E+03 1.11E+02 2.96E-01

F16 Meanerror 5.18e+01‡ 5.37e+06† 1.57e+07† 2.80e+06‡ 4.83E+06
std dev 2.28E+01 4.18E+06 1.14E+07 1.02E+06 4.89E+06

F17 Mean error 3.70e+03† 5.39e+01‡ 6.52e+03† 7.38e+03† 3.14E+03
std dev 4.86E-13 4.22E+01 2.73E+03 1.46E+03 1.14E+03

F18 Mean error 2.11e+01‡ 3.39e+03† 7.26e+03† 2.43e+03† 1.86E+03
std dev 3.10E-02 7.87E+02 1.89E+03 4.72E+02 8.12E+02

F19 Mean error 7.85e+00‡ 2.72e+01‡ 4.62e+02† 3.64e+01‡ 8.19E+01
std dev 2.50E+00 2.80E+01 3.31E+02 4.94E+01 8.35E+01

F20 Mean error 5.56e+01† 1.87e-02† 2.41e+03† 1.86e-02† 1.61E-02
std dev 1.22E+01 1.14E-02 3.21E+03 1.63e-02 5.64E-02

F21 Mean error 6.60e+01† 2.09e+01≈ 2.05e+01‡ 2.09e+01≈ 2.09E+01
std dev 3.32E+01 3.34E-02 1.18E+01 8.62e-02 5.59E-02

F22 Mean error 5.19e+04† 1.65e+01† 5.50e+01† 6.63e-14† 5.22E-14
std dev 3.66E+04 1.93E+00 1.56E+01 2.12e-14 1.55E-14

F23 Mean error 5.63e+00‡ 1.51e+02† 6.81e+01‡ 1.28e+02† 1.07E+02
std dev 6.58E-01 3.60E+01 8.08E+00 1.77E+01 2.13E+01

†/‡/≈ – 17/5/1 15/6/2 21/2/0 14/5/4 –

4.5. Application to Two Real Optimization Problems

This section is about the performance evaluation of EABC-BB algorithm on the two well-
known non-linear optimization problems. The explanations of the two problems and the
obtained results via EABC-BB are given in the following sub-section in details.
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Pressure Vessel Design (PVD) Problem This benchmark engineering problem is an
engineering optimization problem. In this problem,the total cost, including a combination
of welding cost, material and forming cost, is to be minimized. The welded beam is fixed
and designed to support a load. The involved variables are the thickness Ts(x1), thickness
of the head Th(x2), the inner radius R(x3), and the length of the cylindrical section of
the vessel L(x4).The problem can be expressed as follows:

x = (x1, x2, x3, x4)T := (Ts, Th, R, L)T (12)

minf(x) = 0.6224x1x2x3x4 + 1.7781x2x
2
3 + 3.1661x21x4 + 19.84x21x3 (13)

g1(x) = 0.019x3 − x1 ≤ 0 (14)

g2(x) = 0.00954x3 − x2 ≤ 0 (15)

g3(x) = 1, 296, 000− πx23x4 −
4

3
πx33 ≤ 0 (16)

g4(x) = x4 − 240 ≤ 0 (17)

x ∈ R4 : (0, 0, 10, 10)T ≤ x ≤ (99, 99, 200, 200)T (18)

As can be seen, the PVD problem is a constraint problem with four constraints, i.e., g1,
g2, g3 and g4. As the ABC algorithm originally developed for unconstrained continuous
global optimization problems, it also requires a constraint handling method while dealing
with the constrained global optimization problems. This paper adopts the penalty function
method introduced in literature [5] to transfer the constraint problem to a unconstrained
problem.

The parameters setting are the same as literature [5], i.e.: the maximum function eval-
uations (Max FEs ) is set at 500,000,the population size (SN) is set at 100.Finally, the
results were obtained after running the EABC-BB algorithm 20 times for each problem.
The experimental results are given in Table 6. From Table 6, it is clear that EABC-BB
is the best algorithms to solve the PVD problem, since the EABC-BB algorithm has the
ability to produce better results than the previous literature with all of the aforementioned
constraint handling methods. It’s worthy to note that DGABC is another DE and ABC
hybrid algorithm, which is second to EABC-BB in PVD problem. Similar to GBABC,
in DGABC a chaotic opposition-based population initialization method is employed, but
to make a fair comparison, all algorithms except for GBABC adopt random initialization
strategy.

Because GBABC has compared with some state-of-the-art EAs [48], the comparison
with GBABC can be looked on as the comparison with these EAs indirectly.

According to Table 6, the best solution obtained by EAB-BB is x=[0.77817354 0.3847-
4404 40.31987228 199.99647520], its constraints are g1(x)=-4.996000058099526E-09,
g2(x)=-9.245844880001464E-05, g3(x)=-0.024784596171230 and g4(x)= -40.0035248-
00000008. We can see that the solution x satisfy all constraints.
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Table 6. Experimental results for the pressure vessel design (PVD) problem. The experi-
mental results of the first nine algorithms are taken from [5]

Literature/ methods x1(best) x2(best) x3(best) x4(best) f (best) f (worst) f (average) std.dev.
Baykasoglu [5] 0.8125 0.4375 42.0975 176.648 6059.83 6823.602 6149.727 210.70
Coello [12] 0.8125 0.4375 40.3239 200.000 6288.74 - - -
Coello and Mezura-Montes [13] 0.8125 0.4375 40.0973 176.654 6059.94 - - -
Mezura-Montes et al. [39] 0.8125 0.4375 42.0983 176.637 6059.71 6846.628 6355.343 256.00
Mezura and Coello [38] 0.8125 0.4375 42.0984 176.636 6059.71 - 6379.938 210.00
Akhtar et al. [3] 0.8125 0.4375 41.9768 182.284 6171.00 - - -
He et al. [28] 0.8125 0.4375 42.0984 176.636 6059.71 - - -
Parsopoulos and Vrahatis [40] - - - - 6154.71 9387.770 8016.370 745.80
Aguirre et al. [1] 0.8125 0.4375 42.0984 176.636 6059.71 - 6071.013 15.10
He and Wang [26] 0.8125 0.4375 42.0912 176.746 6061.07 6363.804 6147.133 86.45
He and Wang [27] 0.8125 0.4375 42.0984 176.636 6059.71 6288.677 6099.932 86.20
Cagnina et al. [8] 0.8125 0.4375 42.0984 176.636 6059.71 - 6092.049 12.17
Maruta et al. [37] 0.8125 0.4375 42.0984 176.636 6059.71 7332.841 6358.156 372.7
Kim et al. [33] 0.8125 0.4375 42.0984 176.636 6059.71 6060.074 6059.727 0.065
Chun et al. [11] 0.8125 0.4375 42.0984 176.636 6059.71 6090.526 6060.330 4.357
Akay and Karaboga [2] - - - - 6059.71 - 6245.308 205.00
Brajevic and Tuba [7] 0.8125 0.4375 42.0984 176.636 6059.71 - 6192.116 204.00
Gandomi et al. [22] 0.8125 0.4375 42.0984 176.636 6059.71 6318.950 6179.130 137.20
Baykasoglu and Ozsoydan [6] 0.8125 0.4375 42.0984 176.636 6059.71 6090.526 6064.336 11.28
WSA [5] 0.7865 0.3934 40.7526 194.78 5929.62 5984.756 5958.410 15.07
SLPSO [10] 0.7884 0.3897 40.8542 192.688 5903.20 6425.556 6139.762 215.4
SRPSO [45] 0.9638 0.4764 49.9397 98.8235 6284.45 6290.601 6287.521 2.326
sinDE [19] 0.8713 0.4327 44.7686 147.183 6144.05 6309.273 6277.016 68.69
MGABC [15] 0.7788 0.3849 40.3404 199.741 5888.75 5941.013 5893.319 21.25
BCABC [23] 0.7924 0.3917 41.0587 189.959 5910.16 6051.407 5975.132 37.45
ABC-BB [48] 0.7828 0.3881 40.5345 197.198 5903.80 5972.571 5941.527 37.83
GBABC [48] 0.7834 0.3869 40.5319 197.07 5901.55 5975.849 5941.258 38.43
ABC-elite [14] 0.7796 0.3851 40.3643 199.385 5891.19 5933.783 5900.800 16.72
DGABC[24] 0.779 0.3851 40.3613 199.421 5887.12 5939.237 5919.170 24.78
EABC-BB 0.7781 0.3847 40.3198 199.996 5885.34 5914.163 5888.892 17.34

The Frequency Modulated (FM) Sound Wave Synthesis Problem The FM sound wave
synthesis plays an important role in modern music systems. It provides a simple and
efficient method creating complex sound timbres. This subsection applies the proposed
EABC-BB method to optimize the parameters of an FM synthesizer. The details of the
problems are described as follows.

The FM sound synthesis aims to optimize the parameter of an FM synthesizer with a
D-dimensional vector x. In this paper, we only consider the case of D=6 by the suggestions
of the literature[48]. The objective of this problem is to optimize a six-dimensional vector
x={a1,w1,a2,w2,a3,w3} of the sound wave given in Eq.(19). The problem is to generate
a sound similar to the object sound. The formulas for the estimated sound wave and the
target sound are given as follows:

y(t) = a1 × sin(w1t · θ + a2 × sin(w2t · θ + a3 × sin(w3t · θ))) (19)

y0(t) = 1.0× sin(5.0t · θ−1.5× sin(4.8t · θ + 2.0× sin(4.9t · θ))) (20)

where θ = 2π/100, xi ∈ [−6.4, 6.35].
The goal of this problem is to minimize the sum of squared errors between the esti-

mated sound and the target sound, as given by Eq.(20).This problem is a highly complex
multimodal one having strong epistasis, with minimum value f (x)=0.
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Table 7. Comparison of EABC-BB with different methods for the FM sound wave syn-
thesis problem

Algorithms Mean Std dev Best Worst
ABC 6.78 6.52 1.76 11.83
SLPSO 6.91 4.42 4.12 12.78
SRPSO 6.74 5.96 0 13.53
sinDE 6.49 0.58 5.92 7.89
GABC 4.88 5.23 0.036 11.82
MGABC 5.58 5.92 7.72E-05 14.36
BCABC 4.54 4.49 3.12E-16 12.23
ABC-BB 2.85 2.68 0.27 11.83
GBABC 2.23 3.52 0.22 10.28
ABC-elite 0.77 2.14 1.62E-12 8.94
DGABC 0.26 3.12 0 9.72
EABC-BB 0.072 1.51 0 5.82

f =

100∑
t=0

(y(t)− y0(t))
2 (21)

In the experiment, EABC-BB as well as the other 11 EAs are applied to solve this
problem. For all algorithms, the parameters are set according to suggestions of the litera-
ture [48], i.e., SN=30, max FEs=200,000. Each algorithm is run 30 times, and the mean
and standard deviation values are reported in Table 7. From the results, it is clear that
EABC-BB performs better than other 11 EAs in terms of the quality of the final solu-
tions. Similar to the PVD problem, in order to make a fair comparison, we use DGABC
without chaotic opposition strategy. DGABC also shows relatively good performance in
FM problem, which shows again that the DE and ABC hybrid algorithm is an effective
method to improve the performance of ABC and DE.

5. Conclusions

This paper presents an enhanced ABC-BB (EABCBB for short), which aims to over-
come the premature convergence problem of ABC-BB. In EABC-BB, the solution search
equation of onlooker bees is replaced with trigonometry based search equation. In this
equation, the candidate is generated around the current solution, the global best solution
and a randomly selected elite solution. By doing so, more function peaks represented by
different elite solutions can be explored and the premature convergence problem of ABC-
BB thereby can be effectively decreased. The reason is that the trigonometry method can
keep up the population diversity and improve the exploration capability without lowering
the exploitation ability of ABC-BB. Meanwhile, in order to overcome the crossover (CR)
parameter sensitive problem in ABC-BB, a simple self-adaptive strategy is proposed to
dynamically update CR according to the search experiences of successful CR probabil-
ities. A comprehensive set of experiments is conducted on 23 benchmark functions and
two well-known real-world engineering optimization problems to verify the performance
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of our proposed approach EABC-BB. Some other well-known ABCs and state-of-the-art
EAs, such as newly developed PSO variants and DE variants, are used for comparison.
The experimental results demonstrate that our approach achieve better performance in
term of solution accuracy and convergence speed, thus we may reasonably conclude that
the proposed EABC-BB is a new competitive algorithm. It is worthy note that another DE
and ABC hybrid algorithm DGABC also show excellent performance in aforementioned
two engineering optimization problems, which demonstrates again that the DE and ABC
hybrid algorithm is a promising research direction if the algorithm is well designed.
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6. Baykasoğlu, A., Ozsoydan, F.B.: Adaptive firefly algorithm with chaos for mechanical design
optimization problems. Applied soft computing 36(11), 152–164 (2015)

7. Brajevic, I., Tuba, M.: An upgraded artificial bee colony (abc) algorithm for constrained opti-
mization problems. Journal of Intelligent Manufacturing 24(4), 729–740 (2013)

8. Cagnina, L.C., Esquivel, S.C., Coello, C.A.C.: Solving engineering optimization problems with
the simple constrained particle swarm optimizer. Informatica 32(3), 319–326 (2008)

9. Chen, J., Yu, W., Tian, J.: Image contrast enhancement using an artificial bee colony algorithm.
Swarm and Evolutionary Computation 38(2), 287–294 (2017)

10. Cheng, R., Jin, Y.: A social learning particle swarm optimization algorithm for scalable opti-
mization. Information Sciences 291(3), 43–60 (2015)

11. Chun, S., Kim, Y.T., Kim, T.H.: A diversity-enhanced constrained particle swarm optimizer
for mixed integer-discrete-continuous engineering design problems. Advances in Mechanical
Engineering 5(1), 1–11 (2015)

12. Coello, C.A.C.: Use of a self-adaptive penalty approach for engineering optimization problems.
Computers in Industry 41(2), 113–127 (2000)

13. Coello, C.A.C., Mezura-Montes, E.: Use of dominance-based tournament selection to handle
constraints in genetic algorithms. Intelligent Engineering Systems through Artificial Neural
Networks 11(1), 177–182 (2001)



956 Zhenxin Du and Keyin Chen

14. Cui, L., Li, G., Lin, Q.: A novel artificial bee colony algorithm with depth-first search frame-
work and elite-guided search equation. information sciences. Information Sciences 367(3),
1012–1044 (2016)

15. Cui, L., Zhang, K., Li, G.: Modified gbest-guided artificial bee colony algorithm with new
probability mode. Soft Computing 22(1), 1–27 (2017)

16. Deng, Y.H.: What is the future of disk drives, death or rebirth? ACM Computing Surveys 43(3),
1–27 (2011)

17. Derrac, J., S, G., Molina, D.: A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and
Evolutionary Computation 11(1), 3–18 (2011)

18. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating
agents. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics 26(1), 29–41
(1996)

19. Draa, A., Bouzoubia, S., Boukhalfa, I.: A sinusoidal differential evolution algorithm for nu-
merical optimisation. Applied Soft Computing 27(2), 99–126 (2015)

20. Du, Z., Han, D., Li, K.C.: Improving the performance of feature selection and data cluster-
ing with novel global search and elite-guided artificial bee colony algorithm. The Journal of
Supercomputing (2019), https://doi.org/10.1007/s11227-019-02786-w

21. Du, Z., Han, D., Liu, G.: An improved artificial bee colony algorithm with elite-guided search
equations. Computer Science and Information Systems 14(3), 751–767 (2017)

22. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach
to solve structural optimization problems,. Engineering with Computers 29(1), 17–35 (2013)

23. Gao, W., Chan, F., L., H.: Bare bones artificial bee colony algorithm with parameter adaptation
and fitness-based neighborhood. Information Sciences 316(3), 180–200 (2015)

24. Gao, W., L., H., J., W.: Enhanced artificial bee colony algorithm through differential evolution.
Applied Soft Computing 48(11), 137–150 (2016)

25. Gao, W., Liu, S., Huang, L.: A novel artificial bee colony algorithm based on modified search
equation and orthogonal learning. IEEE Transactions on Cybernetics 43(3), 1011–1024 (2013)

26. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained
engineering design problems. Engineering Applications of Artificial Intelligence 20(1), 89–99
(2007)

27. He, Q., Wang, L.: A hybrid particle swarm optimization with a feasibility-based rule for con-
strained optimization. Applied Mathematics and Computation 186(2), 1407–1422 (2007)

28. He, S., Prempain, E., Wu, Q.H.: An improved particle swarm optimizer for mechanical design
optimization problem. Engineering Optimization 36(5), 585–605 (2004)

29. Jafrasteh, B., Fathianpour, N.: A hybrid simultaneous perturbation artificial bee colony and
back-propagation algorithm for training a local linear radial basis neural network on ore grade
estimation. Neurocomputing 38(2), 287–294 (2017)

30. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. APPLIED
MATHEMATICS AND COMPUTATION 214(1), 108–132 (2009)

31. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimiza-
tion: artificial bee colony (abc) algorithm. Advances in Engineering Software 39(3), 459–471
(2007)

32. Karaboga, D., Ozturk, C.: A novel clustering approach: artificial bee colony (abc) algorithm.
Applied Soft Computing 11(2), 652–57 (2011)

33. Kim, T.H., Maruta, I., Sugie, T.: A simple and efficient constrained particle swarmoptimization
and its application to engineering design problems. Journal of Mechanical Engineering Science
224(2), 389–400 (2010)

34. Kumar, Y., Sahoo, G.: A two-step artificial bee colony algorithm for clustering. Neural Com-
puting and Applications 28(3), 537–551 (2017)



Enhanced Artificial Bee Colony with Novel Search Strategy and Dynamic Parameter 957

35. Li, Y., Z., Z., Lin, S.: Competitive and cooperative particle swarm optimization with infor-
mation sharing mechanism for global optimization problems. Information Sciences 293(3),
370–382 (2015)

36. Lozano, M., Garcı́a-Martı́nez, C.: Optimizing network attacks by artificial bee colony. Infor-
mation Sciences 377(1), 30–50 (2017)

37. Maruta, I., Kim, T.H., Sugie, T.: Fixed-structure h∞ controller synthesis: a metaheuristic
approach using simple constrained particle swarm optimization. Automatica 45(3), 553–559
(2009)

38. Mezura-Montes, E., Coello, C.A.C.: Useful infeasible solutions in engineering optimization
with evolutionary algorithms. In: Mexican International Conference on Artificial Intelligence.
pp. 652–662. Springer, Verlag Berlin Heidelberg (2005)

39. Mezura-Montes, E., Coello, C.C., Landa-Becerra, R.: Engineering optimization using a simple
evolutionary algorithm. In: Proceedings of the 15th IEEE International Conference on Tools
with Artificial Intelligence. pp. 149–156. IEEE, Sacramento, CA, USA (2003)

40. Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for solving constrained
engineering optimization problems. In: International Conference on Natural Computation. pp.
582–591. Springer, Berlin, Heidelberg (2005)

41. Qin, A.K., Huang, V.L.: Differential evolution algorithm with strategy adaptation for global nu-
merical optimization. IEEE transactions on Evolutionary Computation 13(2), 398–417 (2009)

42. R., E., J., K.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth Inter-
national Symposium on Micro Machine and Human Science. pp. 39–43. Ieee, Nagoya, Japan
(1995)

43. Storm, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimiza-
tion over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

44. Suganthan, P.N., Hansen, N., J., L.J.: Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization. Technical Report, Singapore. Nanyang
Technological University, Nanyang Technological University (2005)

45. Tanweer, M.R., Suresh, S., Sundararajan, N.: Self regulating particle swarm optimization algo-
rithm. Information Sciences 294(3), 182–202 (2015)

46. Wei, Y.H., Xu, C., Hu, Q.Y.: Transformation of optimization problems in revenue management,
queuing system, and supply chain management. International Journal of Production Economics
146(2), 588–597 (2013)

47. Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution with optional external archive.
IEEE Transactions on evolutionary computation 13(5), 945–958 (2009)

48. Zhou, X., Wu, Z., Wang, H.: Gaussian bare-bones artificial bee colony algorithm. Soft Com-
puting 20(3), 907–924 (2016)

49. Zhu, G., S., K.: Gbest-guided artificial bee colony algorithm for numerical function optimiza-
tion. Applied Mathematics and Computation 217(7), 3166–3173 (2010)

Zhenxin Du received the B.S. degree in computer science from Zhejiang Sci-tech Univer-
sity in 2011. He is is a lecturer of computer science and engineering at Hanshan Normal
University. His main research interests include computation intelligence, data mining and
cloud computing.

Keyin Chen (corresponding author) received the Ph.D degree from South China Agricul-
tural University. He is currently a post doctor of agricultural electrification and automa-
tion engineering at Nanjing Institute of Agricultural Mechanization and also at the same
time is lecturer of electrical engineering engineering at Hezhou University. His research
interests include agricultural robot, machine vision and bionic intelligence technology.

Received: September 23, 2018; Accepted: August 27, 2019.




	Introduction
	Related Works
	Basic ABC
	Improved ABCs

	The Proposed Algorithm
	The New Triangle Search Strategy
	Parameter Adaption Strategy

	Computational Study
	Benchmark Functions
	Adjusting the Parameter p
	Comparison with Other ABCs
	Comparison with Some Newly Proposed EAs
	Application to Two Real Optimization Problems
	Pressure Vessel Design (PVD) Problem
	The Frequency Modulated (FM) Sound Wave Synthesis Problem


	Conclusions
	Acknowledgements


