
Computer Science and Information Systems 11(4):1209–1228 DOI: 10.2298/CSIS130828028C

PaaS Manager: A Platform-as-a-Service Aggregation
Framework

David Cunha1, Pedro Neves1, and Pedro Sousa2

1 Portugal Telecom Inovação, SA
3810-106 Aveiro, Portugal

davidgoncalvescunha@gmail.com, pedro-m-neves@ptinovacao.pt
2 Centro ALGORITMI / Department of Informatics

University of Minho, 4710-057 Braga, Portugal
pns@di.uminho.pt

Abstract. The advent of Cloud Computing opened new opportunities in several ar-
eas, namely in the application development processes. As consequence, nowadays,
PaaS (Platform-as-a-Service) service model allows simpler and flexible deployment
strategies of applications, avoiding the need for dedicated networks, servers, stor-
age, and other services. Within this context, several PaaS providers exist in the
market, but each one having specific characteristics, proprietary technologies and
Application Programming Interfaces (APIs). Based on such assumptions, this work
addresses the challenge of devising a PaaS aggregation solution with the objective
of unifying the information and management processes of applications created in
PaaS environments. The proposed solution, denominated as PaaS Manager, take the
form of a PaaS API aggregator aiming to struggle the existing lock-in in the PaaS
market. In this perspective, this paper describes the specification, development and
test of the proposed PaaS Manager solution. As result of this framework, end-users
are able to select the most appropriate PaaS platform for an application, interacting
with any supported vendor through a unique deployment and management interface.

Keywords: Platform-as-a-Service (PaaS), Interoperability, PaaS APIs.

1. Introduction

The advent of Cloud Computing technologies has greatly fostered the efforts to make
real the vision of computing as a utility [19], thus being a very attractive market for the IT
industry. In this perspective, cloud aware technological solutions allow that computational
resources and applications be delivered through a pay-per-use model [1], making this
approach more flexible and cost-effective from the customers perspective. In practice,
this model allows end-users to have access to the services when needed, independently of
their locations, also being only charged by the providers in accordance with the effective
levels of use [2].

Generally, there are three commonly recognized service models for cloud computing:
IaaS (Infrastructure as a Service), PaaS (Platform as a Service) and SaaS (Software as a
Service). In the last years, several PaaS products appeared in the market, trying to offer
attractive software development platforms to customers. This includes several polyglot
PaaS alternatives, covering a wide range of technologies, but also specialized PaaS fo-
cused on very specific languages and developing frameworks. In this perspective, existent



1210 David Cunha, Pedro Neves and Pedro Sousa

PaaS platforms give ground to several technologies such as Java, Ruby, PHP, .NET, Ruby
on Rails, JavaEE, MySQL, NoSQL, among many other examples. As obvious, in this
mixed technological market, distinct vendors use distinct business models and underpin
their products in distinct developments tools and inherent APIs. This variety of PaaS so-
lutions supply developers with distinct alternative solutions for their particular needs [3]
but, on the other hand, once a given vendor is selected the developer may somehow get
locked to such platform and its proprietary features. Such divergent offerings with varying
capabilities, configurations, and vendor-specific restrictions, can result in what is usually
denominated as vendor lock-in problems [11][4][7]. As a simple example, developers
may face a vendor lock-in problem when trying to deploy or migrate their applications to
a distinct PaaS provider since the APIs used by each provider differ.

As result, interoperability between could service providers emerged has a relevant
concern within the general topic of inter-cloud [12]. In fact, the deployment of cloud in-
teroperability solutions will allow to attain the ability to manage, monitor and migrate
applications among distinct vendors, thus abstracting the intrinsic differences from each
PaaS provider [16]. All these capabilities will effectively contribute to foster the adoption
of cloud aware platforms, also decreasing the reticences that some organizations might
still have in the adoption of cloud solutions. The research efforts made in the could inter-
operability field started by mainly addressing the IaaS could layer, with approaches such
as the OGF’s OCCI or the Apache DeltaCloud API. Meanwhile, several R&D projects
have also focused on some interoperability and portability aspects of Cloud Computing
at the PaaS layer. As example, the 4CaaSt project [15] pursued an advanced PaaS Cloud
platform which supports the optimized and elastic hosting of Internet-scale multi-tier ap-
plications. The CumuloNimbo [10] aims to attain a scalable PaaS Service enabling secure
and un-partitioned data transactions resulting in consistent applications. The CONTRAIL
project [9] allows that resources belonging to different operators be integrated into a sin-
gle homogeneous federated Cloud that users can access seamlessly. The mOSAIC project
[13], encompassing both IaaS and PaaS layers, aims to create, promote and exploit an
open-source Cloud API and platform targeted for designing and developing multi-Cloud-
oriented applications.

More recently, some players such as Oracle, Rackspace, RedHat, CloudBees, Huawei,
Cloudsoft Corporation and Software AG, also fostered preliminary efforts for the speci-
fication of an open-source API, denominated as CAMP (Cloud Application Management
for Platforms)3. The objective of such API is the creation, monitoring and management of
applications and databases across multiple PaaS vendors. Even considering such efforts,
it is not yet clear if such standards will be effectively adopted and implemented in the
future by many relevant vendors in this competing market. Moreover, vendors are always
trying to differentiate their products from competitors offering new functionalities and
technological solutions. In this perspective, it is commonly accepted that heterogeneous
PaaS solutions be always expected to exist in the market.

In this context, this work presents a framework focusing on the aggregation of sev-
eral relevant public PaaS solutions based on their similarities. The framework, named as
PaaS Manager, takes the form of a novel abstraction layer exposing a common API for
developers [6], thus addressing the interoperability between providers and the portability
of applications in order to reduce the vendor lock-in. Such harmonized API supported

3 https://www.oasis-open.org/committees/tc home.php?wg abbrev=camp



PaaS Manager: A Platform-as-a-Service Aggregation Framework 1211

by the PaaS Manager enables the management of applications across different PaaS offer-
ings. Moreover, and as will be discussed later, it also allows the development of additional
value-added services ruling the interactions between end users and PaaS platforms.

In the presented aggregation framework, four providers were selected (CloudBees,
Cloud Foundry, Iron Foundry and Heroku) to belong to an interoperable PaaS ecosystem.
As far as we know, this is one of the first works in this area presenting an implemented
and tested system aggregating several PaaS offerings. Moreover, some of the assumptions
and objectives underpinning this work are also corroborated and complemented by other
recently proposed multi-PaaS application management approaches [18].

The remainder of this paper is organized as follows. Section 2 makes a brief summary
of the Platform-as-a-Service platforms selected to integrate the proposed solution. Section
3 describes the proposed framework, highlighting the PaaS Manager architecture, which
modules and operations are then described in detail in Section 3.3. After that, an example
of an use-case scenario is described in Section 4. Section 5 overviews an illustrative per-
formance analysis of the implemented PaaS Manager prototype. Finally, the conclusions
and future work topics are discussed in Section 6.

2. Platform-as-a-Service

In the last years, the IaaS service model was recognized as a good example of the success-
ful use of cloud aware solutions in enterprise computing environments. However, the in-
herent characteristics of the PaaS service model [14] also opened additional opportunities
for the organizations in the area of application development processes. In fact, the PaaS
model is by nature application oriented, allowing to abstract organizations from many
configurations and maintenance tasks inherently associated with the application deploy-
ment processes. As consequence, simpler and flexible applications deployment strategies
could be attained by organizations, allowing to effectively concentrate the efforts on im-
proving the application quality and on delivering more value to end customers [3].

In general, a PaaS provider intends to supply an integrated and easy to use environ-
ment allowing to develop, test, monitor and host applications. As consequence, organi-
zations using PaaS platforms take advantage of a reduced complexity and time allocated
to the application deployment lifecycle, also being able to benefit from the auto-scalable
features of cloud infrastructures. In practice, with PaaS aware solutions it is possible to
speedup the deployment of service prototypes without a large initial investment. Thus,
innovation could be easily pursued even by simple organizations without significant eco-
nomic resources.

In the next sections, we overview and briefly characterize the PaaS platforms that were
selected to integrate the devised PaaS Manager aggregation framework.

2.1. Selected PaaS Ecosystem

The PaaS market integrates several alternative platforms, including offers made by rele-
vant players such as Amazon, Google and Windows. Besides such relevant titans, other
interesting PaaS platforms also emerged in the last years, namely: i) Java-based PaaS
CloudBees, ii) Salesforce.com’s Heroku, and the open-source solutions: iii) VMware’s
Cloud Foundry and iv) Tier 3’s Iron Foundry. These last four PaaS platforms were chosen



1212 David Cunha, Pedro Neves and Pedro Sousa

to integrate our ecosystem due to their heterogeneity and their relevance acquired within
the developers’ community. Furthermore, the API libraries of the selected PaaS are open-
source, thus being able to be used and integrated in the development of other software
products. A brief overview of such platforms is now provided.

CloudBees CloudBees4 was founded in 2010 and it is a PaaS entirely directed to the de-
velopment of Java-based applications. It provides two services, one being directed to the
application development and testing (DEV@Cloud), and other targeted only to the appli-
cation deployment and execution (RUN@CLoud). This PaaS platform offers an extensive
range of add-ons and tools which can help developers during the application lifecycle,
such as, Maven, Jenkins, New Relic, AppDynamics and others.

Heroku Heroku5 came in 2007 as a Ruby oriented PaaS. After being acquired by Sales-
force.com in 2010, Heroku supports much more technologies and it is becoming one of
the most used PaaS in the market. Currently, it is estimated that more than 1.5 million
of applications are hosted in Heroku. One reason for this success is the extensive cata-
log of add-ons that allows users to add various types of services: logging, billing, testing,
monitoring etc. Unlike the aforementioned vendors, Heroku provides only Git6 for source
code deployment. Hence, Git is becoming a de facto in PaaS market being more and more
supported by platforms’ providers.

Cloud Foundry Cloud Foundry7 is a PaaS platform that has a dissimilar approach in the
market by being fully open-source and multi-cloud. Launched in 2011 by VMware, Cloud
Foundry offers a polyglot environment without being attached to a single infrastructure
vendor. Users have the opportunity to change the PaaS source code and seat it on any
infrastructure service at their disposal, whether public or private. With this multi-cloud
and open source paradigm, Cloud Foundry has received extensive recognition. Behind this
success, there is a strong community of users and organizations as well as PaaS solutions
based on Cloud Foundry like AppFog, Stackato and the .NET extension Iron Foundry.

Iron Foundry Iron Foundry8 is a PaaS platform totally based on Cloud Foundry which
differs from the former by supporting .NET deployment environments and Microsoft SQL
databases.

2.2. PaaS Ecosystem Characterization

This section briefly overviews some technical characteristics of the aforementioned PaaS
solutions. Within this context, each platform is analyzed regarding the following features:
supported programming languages, development frameworks, database support, user in-
terfaces, underlying IaaS platform and associated monitoring capabilities.

4 http://www.cloudbees.com/
5 http://www.heroku.com/
6 http://git-scm.com/
7 http://cloudfoundry.com/
8 http://ironfoundry.org/



PaaS Manager: A Platform-as-a-Service Aggregation Framework 1213

Table 1 summarizes and compares the mentioned features on each of the PaaS plat-
forms currently supported by the devised PaaS Manager framework.

Table 1. Description of the selected PaaS platforms

Provider Prog. Frameworks Databases User IaaS Monitoring
Languages Interface

CloudBees Java Grails MySQL Web GUI AWS Web GUI
JRuby Java Web SDK, API HP New Relic
Scala Play! Plugin Eclipse OVH.com Logs

Spring priv. IaaS
Cloud Java Grails MongoDB CLI, API Multi-Cloud API

Foundry Node.js Java Web MySQL Eclipse Logs
Ruby Spring Postgres

Rails Redis
Node

Sinatra
Iron Java Grails MongoDB CLI, API Multi-Cloud API

Foundry Node.js Java Web MySQL Eclipse Logs
Ruby Spring Postgres
PHP Rails Redis
.NET Node SQL Server

Sinatra
ASP .NET

Heroku Java Grails Postgres Web GUI AWS New Relic
Node.js Django MySQL CLI, Git Logs
Ruby Spring Redis, etc. API

Python Rails Eclipse
Sinatra

3. PaaS Manager

The PaaS Manager framework is a layer which supports the fundamental operations im-
plemented by the providers’ native APIs from our ecosystem, thus abstracting the plat-
forms’ differences for developers. This common management approach is intended to fit
the many developer’s requirements in a PaaS environment, namely: create and manage
applications and databases, acquire information concerning applications and databases,
monitor applications in real-time and migrate applications between vendors, if feasible.

Within the context of this work, four providers were selected (CloudBees, Cloud
Foundry, Iron Foundry and Heroku) to belong to an interoperable PaaS ecosystem. All
such vendors have different APIs, monitoring and deployments tools except Cloud Foundry
and Iron Foundry which share the same API implementation but use distinct technologies.

3.1. PaaS Manager Functionalities Overview

In order to accomplish the objectives of this work the selected PaaS platforms’ APIs and
inherent management processes were broadly studied. As result, nineteen key operations
were specified based on the encountered similarities. In cases where the similarity factor
was reduced, certain developments needed to be conducted in order to sustain a complete
transparency for developers. In other cases, when some exposed method was not shared



1214 David Cunha, Pedro Neves and Pedro Sousa

with the remaining providers from the ecosystem, an aggregation could not be made by the
PaaS Manager. Besides the similarity factor, the selection took into account the provision
of fundamental application lifecycle processes. Figure 1 summarizes some of the major
actions and states associated with the traditional application lifecycle.

CREATED	
   DEPLOYED	
   RUNNING	
   STOPPED	
  
createApp! deployApp! startApp!

startApp!

stopApp!

deleteApp!

Fig. 1. Application Lifecycle Diagram

The PaaS Manager framework allows that developers interact with any supported ven-
dor using for that purpose the defined API methods. The methods include simple tasks
such as create, deploy, start, stop, delete and monitor applications. Furthermore, other
advanced functionalities are also available, allowing to restart, scale manually, update
or migrate applications, along with create and delete databases in any supported vendor.
In certain transactions, transformations were necessary including Git support for source
code deployment due to Heroku, as equally merging various methods from the same API
to achieve a unified operation. The scalability and semantics were also unified now being
possible to scale an application horizontally across more instances. Regarding the mon-
itoring process each vendor supports different paradigms: CloudBees and Heroku only
provide the collection of monitoring metrics through NewRelic API, which is an Appli-
cation Performance Management widely used in cloud environments; Cloud Foundry and
Iron Foundry simply expose a monitoring operation with basic metrics through the native
API. To accomplish a seamless portability of applications, an algorithm was implemented
to enable the migration to a new platform if it supports the dependencies needed to the
application to run properly. From the wide range of supported operations, some of the
fundamental processes will be detailed over the Section 3.3.

3.2. PaaS Manager Logical Architecture

Figure 2 presents the PaaS Manager logical architecture and the integrating modules
which support the defined operational processes. A detailed description of each mod-
ule will be given at Section 3.3. The PaaS Manager architecture has a modular design that
allows the entire system to remains fully operational even if some vendor or monitoring
API is not operating correctly. Consequently, each API has been implemented by distinct
modules and managed by single entities. Finally, a REST interface exposes the specified
operations to be invoked by any HTTP client application.



PaaS Manager: A Platform-as-a-Service Aggregation Framework 1215

Fig. 2. PaaS Manager Architecture

3.3. PaaS Manager Modules

This section describes in detail the design and the implementation strategy of the main
modules supporting the PaaS Manager shown in Figure 2. The next sections overview the
following components: the PaaS Manager API, the Management Resources module, the
Information Resources module and the Monitoring Engine.

PaaS Manager API The selected PaaS vendors from the defined ecosystem provide a
RESTFul API for developers. In this perspective, it made perfect sense that the PaaS Man-
ager API was also REST compliant. This API is the element that exposes the supported
features and abstracts occurring transformations in background. The interface can be eas-
ily implemented by any HTTP client leveraging a lightweight and web oriented approach
with JSON representations. Each specified method has a respective URI which gives the
possibility to manipulate resources through GET, POST, PUT and DELETE HTTP verbs.
Within the addresses design, REST good practices defined by Roy T.Fielding [8] were
considered to keep the user interaction simple and intuitive as possible. As part of the
authentication and authorization all the requests to the PaaS Manager API are secured via
an api-key that identifies the logged user. On the other hand, the authentication and autho-
rization with vendors are done through an unique account enabling the PaaS Manager to
act as a mediator between users and platforms providers. Consequently the end user does
not need to register in any vendor before using the supported cloud services.

As previously mentioned, with the PaaS Manager developers have the ability to man-
age their applications through the entire life-cycle. The operations presented in Figure 1



1216 David Cunha, Pedro Neves and Pedro Sousa

are part of a wide range of services which were divided into 2 groups: i) Management
Services and ii) Information Services. Each group combines a set of operations isolating
the features related with the management of applications and databases, with the opera-
tions related with acquisition of information. Therefore this fragmentation encourages the
development of third-party modules that focus only on the desired features. Table 2 de-
picts the list of methods supported by the PaaS Manager and the mapping to the respective
operations invoked on each PaaS API provider.

Table 2. PaaS Manager API methods (Management & Information Services)

Management Description CloudBees Cloud Foundry Heroku
Services Iron Foundry

createApp create an application - createApplication createApp
in a specific PaaS

deployApp deploy the application application uploadApplication Git
source code DeployArchive

migrateApp migrate an application application uploadApplication Git
to another PaaS DeployArchive

startApp start an application application startApplication set
Start Application Maintenance

Mode = 0
stopApp stop an application application stopApplication set

Stop Maintenance
Mode = 1

restartApp restart an application application restartApplication restart
Restart

deleteApp delete an application application deleteApplication destroy
Delete Application

scaleApp manual scaling application updateApplication scaleProcesses
Scale Instances

updateApp update the application application uploadApplication Git
source code DeployArchive

createService bind a database databaseCreate createService addAddon
to an application bindService

deleteDatabase remove a database databaseDelete deleteService removeAddon
unbindService

Information Description CloudBees Cloud Foundry Heroku
Services Iron Foundry

getAppStatus application health applicationInfo getApplication listProcesses
getCrashes

getAppStatistics application real-time New Relic API getApplicationStats New Relic API
statistics

getAppInfo application basic applicationInfo getApplication listApps
information getCrashes listProcesses

getAppListInfo list of applications applicationInfo getApplication listApps
getCrashes listProcesses

getServiceInfo database basic databaseInfo getService listAppsAddons
information

getServiceApp list of databases databaseInfo getService listAppsAddons
ListInfo

getAppLogs application logs tailLog - getLogs
getPaaSOffering PaaS supported technologies - - -

Management Resources The Management Resources which integrates Figure 2 is a de-
cision module responsible for forwarding the message to the desired method implemented
by a specific PaaS adapter. In terms of management services, four adapters are defined:



PaaS Manager: A Platform-as-a-Service Aggregation Framework 1217

CloudBees Mgmt, Cloud Foundry Mgmt, Iron Foundry Mgmt and Heroku Mgmt. These
adapters have all the logic that implements the methods related with management tasks
(create, deploy, start, stop, etc.) and exposed by each PaaS API. Besides interacting di-
rectly with the vendors APIs and returning unified JSON responses, these adapters are
integrated with other key elements, for instance, the PaaS Manager database and a Git
Server. The central database keeps state of created applications, storing the application
framework identifier and the vendor name where the application is hosted.The Git server
maintains repositories for each hosted application enabling users to keep multiple versions
of source code. Git repositories are essential for some of the crucial operations supported
by PaaS Manager in particular, create, deploy, update and migrate applications. As il-
lustrative examples, the deployment (Deploy App) and migration (Migrate App) methods
supported by the PaaS Manager are now described in detail.

A) Deploy App: In order to unify the deployment process the PaaS Manager only sup-
ports Git. Thus, developers do not need to worry about the different tools offered by each
vendors before deploying their applications. Figure 3 illustrates the process performed
during the deployment operation.

Fig. 3. PaaS Manager - Deployment Process

The request received by the API is instantly sent to the Management Resources, which
performs a search in the central database in order to acquire the platform identification
where the application was created with a previous operation (createApplication). Upon
the outcome, the Management Resources invokes the specific PaaS adapter which in turn
runs git-add and git-commit commands in the application repository. After this process
is accomplished, the deployment is carried based on the PaaS supported paradigm. With
CloudBees, the repository is examined until the adapter finds the application web archive
(.war). For Cloud Foundry and Iron Foundry the process is similar for Java-based appli-
cations, however, for other environments only a .zip file containing all the source code



1218 David Cunha, Pedro Neves and Pedro Sousa

is sent to the platform API. Finally, with Heroku the deployment is accomplished run-
ning the git-push command towards the remote repository previously created with the
createApplication operation. In case of success, a monitoring worker starts in order to ex-
tract real-time statistics to the central database. The monitoring engine adopted strategy
will be analyzed later.

B) Migrate App: The portability of applications is becoming crucial in the developers’
point of view. The decision of migrating may be based on seeking a PaaS environment that
would give a better performance or a more advantageous business model for the planned
activity. This work does not intend to define any standard model that would be shared
by heterogeneous vendors, but rather aims to adapt a solution to what is already exposed
by each platform API. Therefore, it requires a prior analysis if the platform to where
the application will be migrated supports the required technologies for the application
run properly. From the defined ecosystem, only Heroku allows to retrieve the application
source code via Git commands, particularly git-pull. However, the remaining PaaS don’t
support any form of access after the deployment process is accomplished. Hence it was
essential to maintain all the applications source codes and respective versions in a central
Git server. This approach may question the architecture scalability, although, the dele-
tion of applications performed by the developers will enforce the removal of unnecessary
repositories keeping the system clean and efficient.

Fig. 4. PaaS Manager - Migration Process

Figure 4 summarizes the main steps that are performed during an application migra-
tion process. The request done towards the PaaS Manager API is forwarded to the Man-
agement Resources module. The central database is queried in order to return the PaaS
identification where the application is hosted, as well as the application’s framework (e.g,



PaaS Manager: A Platform-as-a-Service Aggregation Framework 1219

Ruby on Rails, Spring, Zend). After the specific adapter has access to this information,
it analyzes whether the new vendor to where the application will be migrated supports
the required technologies. In the case of correlation, the application code kept in the Git
server is deployed on the new platform by invoking the needed operations. The applica-
tion status in the new PaaS is queried, which in case of success triggers the removal of the
same application in the previous provider. To complete the migration process, the applica-
tion’s information in the central database is updated and the monitoring engine associated
to the new platform is started. However, if the application is not running correctly, the
adapter activates the removal process keeping the initial application running in the first
provider. At the moment, the PaaS Manager does not support the migration of database
data and does not maintain application state when a migration process occurs. To over-
come these limitations, the PaaS Manager should synchronize the entire database data to
a central location and auto-configure the application source code files in order to connect
to the newly created database. Nevertheless, the PaaS Manager supports an operation that
returns the databases access credentials for import and export data operations.

Information Resources The Information Resources module of Figure 2 is a decision
module that implements methods related to acquisition of information concerning appli-
cations and databases. Likewise the Management Resources module, four PaaS adapters
were defined: CloudBees Info, Cloud Foundry Info, Iron Foundry Info and Heroku Info.
These adapters have all the logic that implements the methods related to acquisition of in-
formation (get application info, get database info, monitoring, logs, etc.) and exposed by
each PaaS API. In brief, the specified operations give all the essential information about
the behavior of developers’ applications in specific hosting environments. As an illustra-
tive example, the Get App Status process is described in Figure 5. The Get App Status
operation gives the possibility to check the status of an application. In order to set simple
and unified semantics, four possible states were specified: running, stopped, crashed and
unknown. Firstly, the request made to the PaaS Manager API is instantly routed to the
Information Resources module, which directs the message to the specific PaaS adapter.
Finally, the adapter’s logic invokes the platform API operation, mapping the result to one
of the four states aforementioned.

Monitoring Engine Monitoring processes could give important feedback about how a
piece of software reacts and behaves in a specific environment with hundred or thousands
of users’ requests. Within such purposes, several studies conducted in this area tried to
define monitoring frameworks and metrics models which could be standardized and con-
sequently shared among cloud providers [17]. The metrics list is quite extensive, includ-
ing parameters such as availability, response time, RAM, CPU usage, database requests,
web transactions, threads, user sessions, among others [5]. The definition of a common
monitoring standard would unify SLAs even in heterogeneous environments. However,
the PaaS service model is in its infancy and currently each vendor still provides different
metrics and tools for monitoring software.

As discussed in section 3.1, CloudBees and Heroku have partnered with NewRelic,
on the other hand, Cloud Foundry and Iron Foundry provide a native monitoring sup-
port. In this perspective, unlike the remaining methods supported by the PaaS Manager,



1220 David Cunha, Pedro Neves and Pedro Sousa

Fig. 5. PaaS Manager - Get App Status Process

the defined monitoring process is vendor-oriented and collects real-time metrics exhib-
ited by each platform. After the application has been deployed in one of the platforms,
a background job is launched and kept alive until the application is stopped or until it is
removed. This process is defined by a synchronous sampling towards the provider’s mon-
itoring tool (New Relic API or native API). The samples are then stored in the central
database and can be queried through the PaaS Manager API. The module responsible for
carrying this process is the Monitoring Engine, which implements the above described
monitoring strategy (as depicted in Figure 6).

Fig. 6. PaaS Manager - Monitoring Process



PaaS Manager: A Platform-as-a-Service Aggregation Framework 1221

4. Illustrative Use-case Scenario: Cloud Service Broker

There is a wide range of services that could take advantage of the devised PaaS Manager
platform. In fact, new modules may be built to interact with the PaaS Manager API in
order to use the returned information for specific purposes. This section only describes a
simple illustrative use-case resorting to the implemented PaaS Manager framework. This
illustrative use-case, deployed with the objective of validating the PaaS Manager func-
tionalities, also highlights the usefulness of the PaaS Manager in both users and corporate
point-of-views.

This service architecture, depicted in Figure 7, integrates a Cloud Service Broker, the
PaaS Manager, and distinct client interfaces: web, command-line interface and Git for
deploying the application source code. The Cloud Service Broker assists the user in the
application lifecycle making the process more comfortable and attractive through a sin-
gle interface. Furthermore, the Could Service Broker also acts as a recommender engine
which can be based on distinct and configurable rules. As example, based on the technical
profile of a given application, the recommendation system can recommend which PaaS
is more suitable for the objectives of such application. Through the web or command-
line interface the user has access to the management and information operations as well
as the recommendation process. For that purpose, a given user can fill a form with the
technical profile of the application (e.g. runtimes, frameworks and databases required).
Consequently the Cloud Service Broker invokes a specific PaaS Manager method (the
getPaaSOffering operation) returning the technologies supported by each platform from
the ecosystem. The recommender engine of the Cloud Service Broker analyses the re-
turned information comparing it with information entered in the technical profile of the
application. As result, it is possible to exhibit an ordered list with the recommended PaaS
platforms for such application.

The use case described in Figure 7 is currently available for use providing an easy
and intuitive interface with the selected PaaS vendors. Thus, from the user point of view,
interacting with this simple recommendation architecture does not add significant com-
plexity, but provides end-users with an attractive and valuable service able to deal with
multi-PaaS platforms.

In the above mentioned example, the recommendation engine has considered the tech-
nical requirements of an application as the main input to recommend a given PaaS. Never-
theless, it is important to highlight that the recommendation engine can also be extended
to consider other recommendation rules. As example, business constraints can be added to
the recommendation process in order to find the most cost-effective PaaS platform. Other
advanced approaches can also be considered, such as include notifications when certain
thresholds in the monitoring values of the PaaS platforms are exceeded (e.g. response
times, application performance metrics, etc.). This will allow, for instance, to inform the
users about which PaaS platforms are effectively appropriated to comply with specific
service level agreements that could have been previously defined.

5. Performance Analysis

This section presents preliminary performance analysis tests conducted in order to evalu-
ate some fundamental operations from the PaaS Manager framework. As illustrative ex-



1222 David Cunha, Pedro Neves and Pedro Sousa

Fig. 7. Illustrative Use-case: Cloud Service Broker

amples, from the several operations supported by the PaaS Manager results from four spe-
cific illustrative methods are presented, namely: i) createApp, ii) deployApp, iii) getApp-
Status and iv) migrateApp.

The Apache JMeter tool9 was used for performing load tests simulating the simulta-
neous access of several users to the PaaS Manager framework. The main metric analyzed
was the response time. Obviously this metric is highly variable and depends on several
factors such as network conditions, the application server, computational resources, in-
trinsic PaaS characteristics, etc. In this perspective, it is important to emphasize that the
purpose of this analysis is not to directly compare the efficiency of each provider, but only
to trace a preliminary picture of the PaaS Manager architecture’s performance. Thus, the
acquired values can be seen as preliminary references of the system behavior. The ma-
chine used for hosting the software and database was a Intel R© DualCoreTM2GHz with
3GB of RAM and Ubuntu 12.04 as operating system.

In the results presentation, each test was divided into two series: PaaS Manager and
PaaS Manager+PaaS API, which respectively isolate the time consumed only by the PaaS
Manager internal processing modules, from the time consumed by the internal processing
plus the request to the specific PaaS API. The obtained values were used as reference for
understanding the overhead added by PaaS Manager in each operation, and the scalability
of the solution with different numbers of users in critical tasks. For some of the selected

9 http://jmeter.apache.org/



PaaS Manager: A Platform-as-a-Service Aggregation Framework 1223

methods tests were performed with 10 and 3010 simultaneous users. On each figure, the
plotted numbers are the average values obtained among all the users, complemented by
the corresponding standard deviation interval.

5.1. Create App

The createApp process initializes a Git repository for the application and prepares the
execution environment in the specific PaaS provider.

The results with 10 simultaneous users are presented in Figure 8 a). For the PaaS
Manager series, Heroku and Cloudbees have response times under 60 ms, and Cloud
Foundry and Iron Foundry have average response times around a value of 500 ms. This
discrepancy exists because the internal logic of the operation createApp is different for
each platform. Obviously, the series PaaS Manager+PaaS API depends fundamentally
on the response of the native API. In this case, Heroku showed the highest value obtained
on the ecosystem, about 2000 ms to complete the request. Cloud Foundry Iron Foundry
have average values in the order of 1200 ms, while CloudBees, the only PaaS that does
not support this operation through a unique API operation, does not have any assigned
result. The same operation was also tested with 30 concurrent users, in Figure 8 b), and no
significant differences were observed, with the response time values having the same order
of magnitude as in the previous experience. Such results suggest that the PaaS Manager
architecture does not significantly degrades its performance even in the presence of an
higher level of simultaneous users.

47,1 

474,2 483,5 

57,2 

1189,2 
1168,1 

2023,3 

0

500

1000

1500

2000

2500

CloudBees CloudFoundry IronFoundry Heroku

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 

PaaSManager PaaSManager+PaaS API

30,5 

487,1 508,9 

35,1 

1182 

1296,9 

1925,8 

0

500

1000

1500

2000

2500

CloudBees CloudFoundry IronFoundry Heroku

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 

PaaSManager PaaSManager+PaaS API

Fig. 8. Create App Process Response Time (ms) for a) 10 users, b) 30 users.

5.2. Deploy App

The deployApp process, detailed in Figure 3, covers various steps including the uploading
of the application’ source code from the Git repository to the selected PaaS provider, and
the starting of the monitoring engine for collecting metrics in real-time. In the experi-
ments, the used application was a simple Java web service (8 MB) that could be deployed
in any of the supported providers.
10 This specific maximum number of users was chosen from preliminary experiences which showed

that possible throttling effects may occur when higher levels of requests are made to the PaaS
vendors APIs.



1224 David Cunha, Pedro Neves and Pedro Sousa

The results with 10 simultaneous users are presented in Figure 9 a). The PaaS Man-
ager series shows response time values roughly between 600 and 1200 ms. The PaaS
Manager+PaaS API series reveals samples with response times greater than 90 seconds
for CloudBees case, from which more than 90% of the response time was used by the
provider’s API for processing the deployment request. The remaining providers showed
lower values, with Heroku having values around 63 seconds and Cloud Foundry/Iron
Foundry around 6 seconds. In both cases the PaaS Manager series showed substantially
lower values, meaning that the PaaS Manager does not induce a significant overhead in
the traditional deployment process. The same operation was also tested with 30 concur-
rent users, in Figure 9 b), and no significant differences from the test with 10 users were
observed, thus giving preliminary indications corroborating the scalability of the devised
architecture.

686,6 1274,1 1135,2 673,6 

94655,9 

6606,9 6489,7 

63551,6 

0

20000

40000

60000

80000

100000

120000

CloudBees CloudFoundry IronFoundry Heroku

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 

PaaSManager PaaSManager+PaaS API

869,6 1139,1 1288,6 824,2 

94587,4 

6541,9 6813,3 

64753,7 

0

20000

40000

60000

80000

100000

120000

CloudBees CloudFoundry IronFoundry Heroku

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 

PaaSManager PaaSManager+PaaS API

Fig. 9. Deployment Process Response Time (ms) for a) 10 users, b) 30 users.

5.3. Get App Status

The getAppStatus process, detailed earlier in Figure 5, acquires state information about
an application, thus providing essential information for developers.

The results with 10 simultaneous users are presented in Figure 10 a). The PaaS Man-
ager series shows response time values which roughly vary between 60 and 600ms, de-
pending on the used platform. Such series values includes the acquisition of the plat-
form identifier and the message forwarding to the respective adapter. In the PaaS Man-
ager+PaaS API series, that also includes the request to the provider’s native API, Heroku,
Cloud Foundry and Iron Foundry reveal the highest values around 1200 and 1300ms. In
the two former cases, the adapters perform a log-check for each instance where the ap-
plication executes in order to detect operating errors. This procedure justifies the increas-
ing of the response time comparatively to the getting status process performed explicitly
through the provider’s API.

The same operation was also tested with 30 concurrent users, in Figure 10 b), where it
is visible some slightly higher response times in the CloudFoundry and IronFoundry PaaS
Manager series. However, considering the increase made in the number of concurrent
users, it is reasonable to assume that the architecture still presents an acceptable behavior
as regards the scalability perspective.



PaaS Manager: A Platform-as-a-Service Aggregation Framework 1225

66,3 

640,2 

519,8 

68,7 

761,4 

1263,5 
1357,9 1273,3 

0

200

400

600

800

1000

1200

1400

1600

CloudBees CloudFoundry IronFoundry Heroku

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 

PaaSManager PaaSManager+PaaS API

66,6 

868,5 870,3 

81,2 

1250,7 
1369,6 

1611,8 

1201,8 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

CloudBees CloudFoundry IronFoundry Heroku

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 

PaaSManager PaaSManager+PaaS API

Fig. 10. Get App Status Process Response Time (ms) for a) 10 users, b) 30 users.

5.4. Migrate App

The migrateApp operation, previously detailed in Figure 4, includes several procedures
for enabling the portability of applications between different providers. Initially, it is con-
firmed wether the platform to where the application will be migrated supports the re-
quired technologies for the application run properly. In case of success, the application
is deployed in the new platform whereas the existing application in the previous PaaS is
eliminated.

In this specific test, the focus was only given to evaluate the migrateApp response
time part that is due to the PaaS Manager framework, i.e. the steps from 1 to 5 of Figure
4 depicting the global migration process. For that purpose, several tests were performed
testing all possible cases of migration between all the PaaS providers pairs of the sup-
ported ecosystem (i.e. twelve migration cases). For each individual migration case, thirty
individual tests were performed being the corresponding average values analyzed. Table 3
summarizes the obtained results, were it is possible to observe the PaaS Manager average
response times approximately varying between 1200 and 1300 ms for all PaaS migra-
tion cases. Such response time values introduced by the PaaS Manager layer can be also
considered has having lower impact in the global migration process. In fact, the global
migration process integrates much more time consuming operations, as the case of the
deployApp method previously overviewed.

Table 3. migrateApp process - PaaS Manager Response Time part (ms)

PaaS Manager [migrateApp] CloudBees Cloud Foundry Iron Foundry Heroku

CloudBees — 1271,5 1191,4 1221,6
Cloud Foundry 1260,7 — 1195,5 1262,2
Iron Foundry 1287,7 1195,3 — 1319,0

Heroku 1213,2 1203,7 1230,4 —



1226 David Cunha, Pedro Neves and Pedro Sousa

6. Conclusions and Future Work

The main contribution of this work was the definition and development of an abstraction
layer (PaaS Manager) that unifies the acquisition of information and the management of
applications created in PaaS environments. This subject has been very discussed in the
research area of interoperability and portability between cloud environments. However,
despite the existence of some European projects and initiatives from large companies, this
work is one of the first implementations with practical results. Furthermore, the developed
architecture was integrated with a recommender system and respective web interface for
recommending the best platform provider for the user’s application.

The design of the solution involved an analysis of the APIs from the selected platforms
as well as the definition of the key operations that the abstraction layer should bear. This
activity allowed the specification of several modules: Management Resources, mainly for
creating and deploying applications; Information Resources, for acquiring information
about applications and databases; and the Monitoring Engine, an indispensable element
for the collection of statistics in real-time. All these features are then exposed through
a RESTful API that abstracts the differences between the supported PaaS providers. In
order to evaluate the PaaS Manager in real scenarios several load tests were conducted.
The results showed that the architecture does not introduce a significant overhead in most
of the supported operations and that it behaves well with concurrent access from several
users. In short, the topic discussed throughout this work has been receiving great attention
by the community, waiting for new initiatives and projects that intend to give users the
opportunity to control multiple platforms providers in a unified way.

As future work, there are several topics that could be addressed to enrich the PaaS
Manager functionalities and to overcome some of its current limitations. As example, the
security aspects of the PaaS Manager could be matter of improvements. For that pur-
pose, secure mechanisms and protocols can be integrated to rule the interactions between
the end users and the devised platform. Another interesting topic is related with fault-
tolerance aspects of the proposed PaaS aggregation framework. In this perspective, we
envisage scenarios resorting to load balancing mechanisms and to the replication of the
PaaS Manager entity in order to improve both the performance and fault-tolerance levels
of the proposed framework. Furthermore, it is also intended to wide the currently sup-
ported PaaS ecosystem to other PaaS offerings.

In a distinct perspective, there are also additional possibilities to enrich the methods
supported by the PaaS Manager. In particular, the focus will be the development of oper-
ations for importing and exporting data from databases, as well as the study of techniques
for migrating databases between PaaS providers. Moreover, there are other essential op-
erations for any software development project that are not currently exposed in the APIs
offered by the selected PaaS platforms (e.g. testing and debugging operations). However,
such methods could be also integrated in the PaaS Manager whenever they are made
available on the APIs offered by the selected PaaS vendors.

Acknowledgments. This work has been supported by FCT - Fundação para a Ciência e Tecnologia
within the Project Scope: PEst-OE/EEI/UI0319/2014.



PaaS Manager: A Platform-as-a-Service Aggregation Framework 1227

References

1. Armbrust et al., M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (Apr 2010)
2. Buyya et al., R.: Cloud computing and emerging it platforms: Vision, hype, and reality for

delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (Jun 2009)
3. Beimborn, D., Miletzki, T., Wenzel, S.: Platform as a service. Business & Information Systems

Engineering 3(6), 381–384 (Oct 2011)
4. Bitzer, J.: Commercial versus open source software: the role of product heterogeneity in com-

petition. Economic Systems 28(4), 369–381 (December 2004)
5. Cheng, X., Yuliang, S., Qingzhong, L.: A multi-tenant oriented performance monitoring, de-

tecting and scheduling architecture based on SLA. In: Joint Conferences on Pervasive Comput-
ing. pp. 599–604. JCPC 2009, IEEE Internet Computing, Tamsui, Taipei (2009)

6. Cunha, D., Neves, P., Sousa, P.: A platform-as-a-service api aggregator. In: World Conference
on Information Systems and Technologies. pp. 807–818. WorldCIST’13, Springer, Algarve,
Portugal (2013)

7. Durkee, D.: Why cloud computing will never be free. Commun. ACM 53(5), 62–69 (May 2010)
8. Fielding, R.T.: REST: Architectural Styles and the Design of Network-based Software Archi-

tectures. Ph.D. thesis, University of California, Irvine (2000)
9. Harsh, P., Jégou, Y., Cascella, R.G., Morin, C.: Contrail virtual execution platform challenges in

being part of a cloud federation - (invited paper). In: Abramowicz, W., Llorente, I.M., Surridge,
M., Zisman, A., Vayssière, J. (eds.) ServiceWave. Lecture Notes in Computer Science, vol.
6994, pp. 50–61. Springer (2011)

10. Jiménez-Peris, R., Patiño-Martı́nez, M., Magoutis, K., Bilas, A., Brondino, I.: Cumulonimbo:
A highly-scalable transaction processing platform as a service. ERCIM News 2012(89) (2012)

11. Kolb, S., Wirtz, G.: Towards Application Portability in Platform as a Service. In: Proceedings
of the 8th IEEE International Symposium on Service-Oriented System Engineering (SOSE).
IEEE, Oxford, United Kingdom (April 7–10 2014)

12. Loutas, N., Kamateri, E., Bosi, F., Tarabanis, K.: Cloud computing interoperability: The state
of play. In: Proceedings of the 2011 IEEE Third International Conference on Cloud Computing
Technology and Science. pp. 752–757. CLOUDCOM ’11, IEEE Computer Society, Washing-
ton, DC, USA (2011)

13. Martino, B.D., Petcu, D., Cossu, R., Goncalves, P., Máhr, T., Loichate, M.: Building a mosaic
of clouds. In: Guarracino, M.R., Vivien, F., Träff, J.L., Cannataro, M., Danelutto, M., Hast, A.,
Perla, F., Knüpfer, A., Martino, B.D., Alexander, M. (eds.) Euro-Par Workshops. Lecture Notes
in Computer Science, vol. 6586, pp. 571–578. Springer (2010)

14. Mell, P., Grance, T.: The nist definition of cloud computing. Tech. Rep. 800-145, National
Institute of Standards and Technology (NIST), Gaithersburg, MD (September 2011)

15. Oliveros, E., Garcia, S.: 4caast value proposition, white paper (October 2011)
16. Petcu, D.: Portability and interoperability between clouds: challenges and case study. In: Pro-

ceedings of the 4th European conference on Towards a service-based internet. pp. 62–74. Ser-
viceWave’11, Springer-Verlag, Berlin, Heidelberg (2011)

17. Shao, J., Wang, Q.: A performance guarantee approach for cloud applications based on mon-
itoring. In: Proceedings of the 2011 IEEE 35th Annual Computer Software and Applications
Conference Workshops. pp. 25–30. COMPSACW ’11, IEEE Computer Society, Washington,
DC, USA (2011)

18. Zeginis, D., D’Andria, F., Bocconi, S., Cruz, J.G., Martin, O.C., Gouvas, P., Ledakis, G., Tara-
banis, K.A.: A user-centric multi-paas application management solution for hybrid multi-cloud
scenarios. Scalable Computing: Practice and Experience 14(1) (2013)

19. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges.
Journal of Internet Services and Applications 1(1), 7–18 (May 2010)



1228 David Cunha, Pedro Neves and Pedro Sousa

David Cunha received the MSc degree in Computer Networks Engineering and Services
at the University of Minho in 2012. He worked at Portugal Inovacao in Cloud Computing
Services area at the Platforms and Multi-Service Networks department.

Pedro Neves received his M.S. and PhD degrees in Electronics and Telecommunications
Engineering from the University of Aveiro, Portugal, in 2006 and 2012 respectively. From
2003 to 2006 he joined the Telecommunications Institute (IT), Portugal, and participated
in the DAIDALOS-I and DAIDALOS-II European funded projects. In 2006 he joined Por-
tugal Telecom Inovacao, Portugal, and participated in several European funded projects
(e.g. WEIRD, HURRICANE, FUTON, MEDIEVAL, Cloud4SOA, Mobile Cloud Net-
working and CoherentPaaS). He has been involved in six book chapters, as well as more
than 30 scientific papers in major journals and international conferences. His research
interests are focused on cloud and network services management, including the infras-
tructure and platform layers.

Pedro Sousa graduated in Systems and Informatics Engineering at the University of
Minho, Portugal, in 1995. He obtained a MSc Degree (1997) and a PhD Degree (2005),
both in Computer Science, at the same University. In 1996, he joined the Computer
Communications Group of the Department of Informatics at University of Minho, where
he is an Assistant Professor and performs his research activities within the Algoritmi
R&D Center. His main research interests include Networking Technologies and Protocols,
Quality of Service, Traffic Engineering, P2P, Mobility in IP networks, Cloud Services and
Software, Network and Services Optimization. The researcher is also currently involved
in some multidisciplinary projects in the field of Intelligent Systems for Network Opti-
mization. He is member of the IEEE professional association and IEEE Communications
Society.

Received: August 29, 2013; Accepted: April 17, 2014.


	Introduction
	Platform-as-a-Service
	Selected PaaS Ecosystem
	CloudBees
	Heroku
	Cloud Foundry
	Iron Foundry

	PaaS Ecosystem Characterization

	PaaS Manager
	PaaS Manager Functionalities Overview
	PaaS Manager Logical Architecture
	PaaS Manager Modules
	PaaS Manager API
	Management Resources
	Information Resources
	Monitoring Engine


	Illustrative Use-case Scenario: Cloud Service Broker
	Performance Analysis
	Create App
	Deploy App
	Get App Status
	Migrate App

	Conclusions and Future Work

