
Computer Science and Information Systems 11(4):1249–1269 DOI:10.2298/CSIS130921029T

Rule based strategies for large extensive-form games: A

specification language for No-Limit Texas Hold’em agents

Luís Filipe Teófilo
1,2

, Luís Paulo Reis
1,3

, Henrique Lopes Cardoso
1,2

, Pedro Mendes
2

1 LIACC – Artificial Intelligence and Computer Science Lab.

R. Campo Alegre 1021 4169-007 Porto, Portugal
2 FEUP – Faculty of Engineering, University of Porto – DEI

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
3 EEUM – School of Engineering, University of Minho – DSI

Campus de Azurém 4800-058 Guimarães, Portugal

luis.teofilo@fe.up.pt, lpreis@dsi.uminho.pt, hlc@fe.up.pt

Abstract. Poker is used to measure progresses in extensive-form games research

due to its unique characteristics: it is a game where playing agents have to deal

with incomplete information and stochastic scenarios and a large number of

decision points. The development of Poker agents has seen significant advances in

one-on-one matches but there are still no consistent results in multiplayer and in

games against human experts. In order to allow for experts to aid the improvement

of the agents’ performance, we have created a high-level strategy specification

language. To support strategy definition, we have also developed an intuitive

graphical tool. Additionally, we have also created a strategy inferring system,

based on a dynamically weighted Euclidean distance. This approach was validated

through the creation of simple agents and by successfully inferring strategies from

10 human players. The created agents were able to beat previously developed

mid-level agents by a good profit margin.

Keywords: expert systems, knowledge representation, decision support systems,

computer poker, rule based strategies, specification language

1. Introduction

Poker is probably the most popular card betting game in the world. It is played by

millions around the world and has become a very profitable industry. Given its growing

popularity and the amounts of money involved (billions of dollars), Poker also became a

research subject in very different domains such as Mathematics, Artificial Intelligence

or Sociology.

Poker’s key features such as incomplete knowledge, risk management, need for

opponent modeling and dealing with unreliable information, have turned this game into

an important topic in Computer Science, especially for artificial intelligence. These

features make it possible to use this game as an easy tool to measure progress in

artificial intelligence research. This is so as to assess new approaches one only has to

test them against the former ones – these tests can be easily performed using simulation

tools.

1250 Luís Filipe Teófilo et al.

Since the number of online players keeps on growing, several tools have been created

to assist them during playing. Most of these tools are statistics-based applications that

store information about played games, thus creating statistical knowledge about

opponents. This can be used to help players making the decisions that are more lucrative

at long term. Most of these systems classify the opponents’ playing style – the

extraction of this information is usually trivial since it is based on simple measurements

like the absolute frequencies of opponents’ actions, for instance. However, such systems

neither suggest which action should be taken against those opponent profiles nor do

they allow for configuring those suggestions with user-defined rules. The introduction

of a recommendation system could enable potential users to customize their own

strategy so as to collect suggestions about their preferred way to play. Thus, the user

could consistently make better decisions regardless of external factors such as the

devolution caused by fatigue. The creation of an agent that automates decisions can

reduce this error even further, where no user interaction is required.

Besides the goal of assisting Poker players on making their own agents, these type of

systems – expert systems – can be used as a basis for the creation of an agent capable of

overcoming the best human players, a scientific goal that was not yet achieved in

extensive-form games with the size of Poker: for the simplest version of Texas Hold’em

Poker (Limited betting and 2 players) there are about 3.589 × 10
13

 possible decision

points [1].

The goal of this work is to create a software agent that follows user-defined strategies

in order to promote assisted-playing. The agent’s strategy should be configurable

through high-level instructions, by a strategy specification language. Those instructions

should be prompted by a graphical user interface to allow for users without

programming skills to define a customized Texas Hold’em Poker agent.

This work has been divided into the following goals:

─ Creation of a language of concepts that includes key notions behind poker strategies

and agent behavior – PokerLang;

─ Build a graphical user interface for this language – PokerBuilder – which eases the

creation of new PokerLang files;

─ Automatic generation of PokerLang strategies from human player logs – this has the

purpose of imitating good players’ strategies, if enough data is available;

─ Development of a Poker agent that follows the language specification;

─ Evaluate the interface usability and the performance of the developed Poker agent.

The rest of the paper is organized as follows. Section 2 presents this work’s

background and the notation used throughout the paper. Section 3 presents recent

methodologies to develop agents and to represent information in Poker. Section 4

presents the specification of PokerLang. Section 5 presents PokerBuilder – a graphical

application built to aid the creation of PokerLang files. Section 6 describes the

procedure we have used to create an inference system of PokerLang strategies, from

past games. Section 7 describes the implementation of an agent that follows PokerLang

strategies. Section 8 presents some experiments and results. Finally, Section 9

concludes and points directions for future research.

Rule based strategies for large extensive-form games 1251

2. Definitions and Background

The goal of this work is to create a language that conceptualizes strategies for a well-

known and popular extensive-form game – No Limit Texas Hold’em Poker. An

extensive-form game is a generic representation of a sequential decision problem in

form of a tree where each edge represents a decision and each node represents a

sequence of performed actions (history). The history is hereinafter denoted by h

considering that h ∈ H, being H the set of all possible game sequences according to the

game’s rules. Also consider h’ a history-prefix where h = h’ || x. Therefore, a game G

can be represented as the following tuple:

HZZN,u:NHH,Z,N,A,a:G  Q (1)

Z is a subset of H and represents the game’s terminal nodes i.e. the nodes where the

game ends. N represents the set of players in the game and A is the set of all possible

actions.

An extensive-form game also requires the definition of three functions. Function a

gives the set of all possible actions for a given node (or history) where for any particular

node z ∈ Z we have that a(z) = ∅ and for any particular node h ∈ H\Z we have that

a(h) ≠ ∅. Function p returns the acting player of any game sequence. Finally, function u

returns the utility (or score) of a given player at a terminal node.

Next, we present the specific characteristics of a Poker game, with emphasis in the

variant used in this work – No Limit Texas Hold’em Poker.

2.1. No-Limit Texas Hold’em

Poker is a class of card and betting games played by two or more players, without

cooperation, i.e., each player plays for himself and against all others. Poker has

innumerous sets of rules called variants; regardless of the played variant the goal of

Poker is always to maximize utility in a sequence of games and not just to win a

particular game. Due to its stochastic nature, it is impossible to mathematically ensure

victory in a particular game. For this reason, a certain player is good when he or she

manages to maximize profit when he or she is lucky and minimize prejudice when he or

she is unlucky – where being lucky means getting a good set of cards.

2.2. Scoring in Texas Hold’em Poker

At the beginning of a game G, each player i ∈ N is given a set of two playing cards

(private cards) which we will denote as Pi ⊂ D, where D is the deck – set of all playing

cards (usually a regular 52 card deck without Jokers) – and ∀i,j ∈ N: Pi ∩ Pj = ∅. The

private cards Pi are only visible to player i and may never be unveiled to other players.

At certain moments of the game, some shared cards are revealed – we will denote S ⊂ D

the set of shared cards and Sr ⊆ S the set of visible shared cards at round r ∈ {preflop,
flop, turn, river}, where ∀i ∈ N: Sr ∩ Pi = ∅, for all r. The shared cards are always

visible to all players and are used in combination with the private cards to determine a

1252 Luís Filipe Teófilo et al.

particular player’s score. For any No Limit Poker variant, Spreflop ⊂ Sflop ⊂ Sturn ⊂ Sriver =
S, and for the game rules considered in this paper we have: |Spreflop| = 0, |Sflop| = 3, |Sturn| =

4, |Sriver| = 5.

In Poker, the score of a player i is given by the best w ⊂ Pi ∪ S: |w| = 5 where

score(w) is maximized, being score : [D]
5
 → ℕ+ a function that returns the score of a 5

card set. Therefore, for any remaining pair of players i and j, player i wins against

player j if    kscorewscore
SPkSPw ji

55][][
maxmax


 .

The score of 5 card sets is divided in ranks (High Card, Pair, Two Pairs, Three of a

Kind, Straight, Flush, Full House, Four of a Kind and Straight Flush), each of which is

divided into several sub-ranks. The total number of sub-ranks is 7462,

therefore  ]7461,0[,][5  wscoreDw .

2.3. Rules and utility

After dealing the cards, the game begins. The game is played in turns that are grouped

in four Rounds (Pre-Flop, Flop, Turn and River). In each player’s turn, he or she can

choose one of the following actions, that may increase or not the pot value (prize):

─ Call – match the highest bet. If no bets were made, this action is known as Check.

─ Raise – increase the highest bet. If the players bets his/her entire stack, this action is

known as All-In.

─ Fold – forfeit the game and the pot.

A round ends when all players have bet the same amount (but each one must act at

least once in that round). When the last round finishes, the player with the highest

ranked set of cards wins the game and collects the pot. Alternatively, it is also possible

to win the game by inducing opponents to fold by making bets that they are not willing

to match. Thus, since players’ cards (pocket cards) are hidden, it is possible to win the

game with a lowered score hand. This particular feature of the game’s rules makes it

difficult to assess a player’s decision.

Regardless of the winning situation,  


Ni
ziuZz 0,: , making Poker a zero-

sum game. However, usually in online Poker the game is not zero-sum due to the

casino’s profit margin]1,0[e . Considering 0e , the real utility of player i in node z is

usually given by    eziu  1, if  ziu , is positive and  ziu , otherwise. In this paper

we assume 0e . In order to complete the definition of a Poker game, we define the

new game tuple as specified in equation 2.

  SSNxxRHZ

SHvHc

Hr

HNb

HNs

upaSPANZH

G r

r

N

P 















:

:,Q:

,2:

Q,:

,Q:

,,,,,,,,,

0

0

 (2)

Rule based strategies for large extensive-form games 1253

First, the sets P and S (described in section 2.2) were included and they respectively

correspond to the private and community card sets (PPi i  :). Functions s, b, c, v,

and r were added to the original definition of G. Function s denotes the amount of

remaining cash and b the amount of cash betted by a particular player for a given history

h, which means that    hibhis ,,  for any i and h is the amount of cash of player i at

the start of the game. Function c returns the value of the current maximum bet. Function

v returns the visible shared cards for a given history. Finally, r is the function that

determines the set of remaining players for a given history (it excludes the players that

have folded). Given these functions, we can determine the utility of a player. The value

of the pot in h is  
N

i

hib , . Given Texas Hold’em rules, player i’s utility in a terminal

node z is:

        ZzNiNzibzibzibziu
N

i


















  ,,,min,,, (3)

Given these definitions we can also detail the a function, for which we consider that

0QA . The No Limit variant of Texas Hold’em Poker is characterized for having no

limits in bets – the players can raise up to their remaining money:

                 0,,,,,min:  hhpshhpbhchhpshaHh (4)

where 0 corresponds to a fold action, the lower limit to a call and the higher limit to all-

in. The lower and the upper limit might be equal, if the player doesn’t have enough cash

to call – in that case, the player goes all-in.

3. Related Work

The first successful approaches to create Poker agents consisted of hard-coded strategy

definitions, which involves specifying the action that should be taken for a given

information set [2]. An information set is the name of a decision point in Poker;

contrarily to other games, a player in Poker does not have the full game state

information. Poker information sets    IIhvPhI hiihi  ,, ,, are composed of the

game’s action sequence, the player’s private cards and the visible community cards.

Other features can be extrapolated from h. Following approaches were based on

simulation techniques [3], i.e. generating random game instances in order to obtain a

statistical average and decide the action. These approaches led to the creation of agents

that empirically proved out to be capable of defeating weak human opponents.

One great breakthrough in the domain of Computer Poker and other extensive-form

games research was the development of the Counter Factual Regret Minimization

Algorithm (CFR) [4]. CFR allows for the computation of a Nash Equilibrium

approximation strategy in large games such as Poker through self-play. This could be

done before through linear programming methods (e.g. Simplex), but CFR is much

faster since the processing time is proportional to the number of information sets instead

of the number of game states (about 6 orders of magnitude less). Several approaches

1254 Luís Filipe Teófilo et al.

based on CFR, like Restricted Nash Response [5] and Data-biased response [6] backed

up the first victories against Poker experts [7]. The main problem about CFR is that it is

only proved to compute a Nash-Equilibrium approximation for two players. However,

the strategies generated for more than two players still proved to be robust empirically.

Another problem is that these types of strategies are fixed which means that they are

unable to dynamically adapt to the changing game conditions.

Other recent methodologies based on pattern matching [8] and cased based reasoning

[9] applied to Poker inspired this work, namely the PokerLang strategy inferring system

described on Section 6. These approaches generate Poker agents based on past games

played by human experts. As stated before, the number of possible decision points in

Poker is enormous. For that reason, these approaches based their strategies on the

concept of information set similarity. In [9], two information sets have a degree of

similarity equal to the average similarity of the game features. In [8], instead of the

average, the degree of similarity was calculated through the Euclidean distance between

sets of features. Being i and j two information sets, Ff  a game feature and ff ji , the

values of feature f on those information sets, the distance is given by:

    
F

f

ff jijieuclidean
2

:, (5)

The Monte Carlo Search Tree algorithm [10] and reinforcement learning approaches

[11] are other techniques that have been successfully applied to the domain of Computer

Poker. A more throughout description of the most recent works can be found in the

reviews [12, 13].

The approach followed in this work consists of defining the agent’s strategy through

a high level specification language. One example of a similar work is the Poker

Programming Language (PPL) [14]. The main issue about PPL, however, is that it only

considers low level features of Poker, which means that it takes a long time to specify a

complete strategy. Moreover, the absence of advanced game concepts makes it only

possible to create very basic and static strategies which can be easily beaten by an

average opponent.

4. PokerLang

Due to its stochastic nature, Poker players use rather different strategies with similar

game conditions. A strategy is used under certain information sets that are described by

specific features f ∈ F (being F the set of game features that can influence a decision at

a certain point of the game) such as the card probabilities (hand strength), player’s cash,

number of opponents, playing order, among others. We refer to these features as the

game’s features – characteristics of the information set that influence player decisions.

A strategy T can be conceptualized as a set of tactics. A tactic t ∈ T is a mapping

between a set of information sets and a set of actions:

AAIIAIt  '''': (6)

Rule based strategies for large extensive-form games 1255

I’ and A’ represent two types of game abstraction: information set abstraction and

action abstraction (respectively). This is done by transforming F into F’, where the

features of F’ are simplified so that II ' . The information set abstraction is

particularly essential because Poker has so many information sets that it would not be

possible, with current hardware, to store the corresponding action for each one. For a

similar reason, action abstraction is also handy; in No Limit Poker there is a continuous

interval of possible decisions (see Equation 4)). Usually this interval is discretized into a

fixed number of possible decisions: fold, call, intervals of raise values and all-in (betting

the remaining cash). Using a fixed number of decisions facilitates search-tree strategy

based algorithms, because it greatly reduces the horizontal and vertical expansion of the

decision tree by reducing its branching factor.

In order to specify these concepts, we have created a high-level language–

PokerLang – whose syntax and grammar was based on Coach Unilang [15]. Coach

Unilang was successfully used in the robotics soccer domain. The generic approach of

this language allows for its easy adaptation to other domains.

The language root starts by defining the concept of strategy: a strategy is a set of

tactics each of which is a tuple composed by an activation condition and a behavior for

that tactic. The activation condition consists of abstracting decision points or

information to define I’. They correspond to a set of verifications of the visible game

features (through evaluators) or predictions about uncertain events (through predictors).

A tactic’s behavior is the procedure followed by the player when the activation

condition is met (the behavior itself has a second layer of verifications that can abstract

the information set even further). The tactic’s behavior could be either user-defined or

language predefined (based on common expert tactics). In the next sub-sections we

describe PokerLang’s main language concepts. Below we present the main elements of

the language in BNF notation.

<STRATEGY>::= {<TACTIC>}

<TACTIC>::= <ACTIVATION_CONDITION> <TACTIC_BEHAVIOUR>

<ACTIVATION_CONDITION>::= {<EVALUATOR>}

<TACTIC_BEHAVIOUR>::= <PREDEFINED_BEHAVIOUR>|<BEHAVIOUR>

<PREDEFINED_BEHAVIOUR>::= loose_agressive|loose_passive|

 tight_agressive|tight_passive

<BEHAVIOUR>::= {<RULE>}

<RULE>::= {<EVALUATOR> | <PREDICTOR>} <ACTION> <VALUE>

<ACTION>::={<PREDEFINED_ACTION><PERC>|

 <DEFINED_ACTION><PERC>}

4.1. Evaluators

Evaluators are comparators of the game’s visible features with fixed values. They are

assertions that must be verified to activate the behavior of a tactic or a rule.

1256 Luís Filipe Teófilo et al.

<EVALUATOR>::=<NUMBER_OF_PLAYERS> | <STACK> | <POT_ODDS>|

 <HAND_STRENGTH> | <HAND_REGION> |

<POSITION_AT_TABLE>

Number of Players. This evaluator considers how many players one is competing

against. The number of players is an important measure because the higher it is, the

lower is the probability of success of any given hand. The number of players for the

current history h is simply given by r(h), the number of remaining players.~

Stack. The stack is the relative amount of chips that a player currently has. The value

has to be relative since there is a plethora of possibilities of a player’s amount of chips.

We consider the amount relative to the antes – mandatory bets made before the game

starts. Considering h0 the initial history (where the players already bet their antes), the

relative value is given by:

 
 

 


N

j

hjb

his
NiHhM

0,

,
:,

(7)

The values of function M were discretized in this evaluator into five different zones

(see Table 1). One can also use completely custom intervals, with the stack values

always computed by the M function. Check the BNF code bellow for details.

<STACK>::= <PREDEFINED_STACK_REGION> |

<STACK_REGION_DEFINITION>

<PREDEFINED_STACK_REGION>::= green_zone | yellow_zone |

 orange_zone |

red_zone | dead_zone

<STACK_REGION_DEFINITION>::= <STACK_REGION_NAME>

 <STACK_INTERVAL>

<STACK_REGION_NAME>::= [string]

<STACK_INTERVAL>::= <MIN_STACK> <COMP> <STACK_VALUE>

 <COMP>

<MAX_STACK>

<MIN_STACK>::= <STACK_VALUE>

<MAX_STACK>::= <STACK_VALUE>

Table 1. User defined Stack Regions

Name Stack/M

Green Zone M >20

Yellow Zone 10 < M ≤ 20

Orange Zone 5 < M ≤ 10

Red Zone 1 < M ≤ 5

Dead Zone M ≤ 1

Rule based strategies for large extensive-form games 1257

Pot Odds. Pot Odds is the ratio between the size of the pot and the cost to call the

maximum bet. Pot odds are usually compared with the hand’s winning probability.

When the pot odds are higher than the hand odds, the player should call (Equation 8).

 
   

 




N

j

hjb

hibhc
NiHhOdds

,

,
:,

(8)

Hand Region. The probability of winning a game in Poker depends on the player’s

starting cards Pi ∈ P. There are 1326P possible combinations of starting hands. This

poses a problem because if the user were to define a single tactic for every starting

hand, the number of possible combinations would be enormous. To solve this problem,

PokerLang uses bucketing – an abstraction technique that consists of grouping different

hands that should be played in a similar way [6]. PokerLang allows users to either

create their own buckets (HAND_REGION_DEFITION) or use Dan Harrington’s (see

Table 2) ones [16].

<HAND_REGION>::= <PREDEFINED_HAND_REGION> |

 <HAND_REGION_DEFINITION>

<PREDEFINED_HAND_REGION>::= a | b | c | d | e

<HAND_REGION_DEFINITION>::= <HAND_REGION_NAME> {<HAND>}

<HAND_REGION_NAME>::= [string]

Table 2. Dan Harrington’s Groups

Group Hands

A AA, KK, AKs

B QQ, AK, JJ, TT

C AQs, 99, AQ, 88, AJs

D 77, KQs, 66, ATs, 55, AJ

E KQ, 44, KJs, 33, 22, AT, QJs

Hand Strength. This evaluator is activated when the hand strength has a certain

minimum value. The hand strength is given by the ratio between the number of hands

that have lower score than the player’s hand and the total number of possible hands

[17]. It calculates, in node h, the probability of winning if the game reaches a terminal

node z ∈ Z where r(h) = r(z), that is, considering that all current players reach the

terminal node. The hand strength is given by the HS function (Equation 9). The HSoper

(equation 10) is an auxiliary function where <oper> is an arithmetical comparator (=, >

or <).

 
   

     

 hr

iii

ii
i

hSPHShSPHShSPHS

hSPHShSPHS
hSPHS 























,,,,,,

,,5.0,,
:,, (9)

1258 Luís Filipe Teófilo et al.

 
 

 
 

 
 


















 kscoreoperwscore

SPDxx
hSPHS

SxkSPw

i

operi

i
55 maxmax

\\:
:,,

2

(10)

Position at table. The position at table is the player’s relative position to the current

Big Blind position. The later the position is the better chance the player has to observe

his or her opponents’ moves and act accordingly. Since games have a variable number

of players, in order to better abstract the strategies, the position value is defined through

the position quality PQ ∈ ℕ+ which also depends on the type of the opponents:

        

  ipassiveNii

iaggressiveNiiihphhhihPQ





:

:Nmod'':':,
 (11)

Functions aggressive and passive assert if the player is respectively an aggressive or

passive player. A player is aggressive if in past games (a collection of GP values), the

ratio between the number of raise and call actions is above 1, otherwise the player is

passive. The range of possible position qualities depends on the number of players in

the following proportion: [-(|N|-2), (|N|-2)]. For instance, in a 10 players table, the range

would be [-8, 8].

<POSITION_AT_TABLE>::= <PREDEFINED_POSITION_REGION> |

 <POSITION_REGION_DEFINITION>

<PREDEFINED_POSITION_REGION>::= bad_position |

 normal_position | good_position

<POSITION_REGION_DEFINITION>::=

<POSITION_REGION_NAME>{POSITION}

<POSITION_REGION_NAME>::= [string]

<POSITION>::= <MIN_POS><COMP><POS_VALUE><COMP><MAX_POS>

<POS_VALUE>::= <INTEGER>

There are 3 predefined regions: bad, normal and good, respectively equations 13, 14

and 15 (equation 12 is auxiliary). The user is also allowed to define his/her own custom

regions (see POSITION_REGION_DEFINITION in the code above).

 













22

2

2

NTR

NMax

NMin

 (12)











3
,

TR
MinMinbad (13)

Rule based strategies for large extensive-form games 1259











3
,

3

TR
Max

TR
Minnormal (14)









 Max

TR
Maxgood ,

3
 (15)

4.2. Predictors

Predictors represent estimated game features. Since hidden information in Poker

(opponents’ cards) is crucial to the game’s outcome, to be competitive a player must

make predictions about what is the actual game state. Predictions are based on the

opponents’ moves on previous games.

<PREDICTOR>::= <IMPLIED_ODDS> | <OPPONENT_HAND> |

 <TYPE_OPPONENT > | <STEAL_BET>

|<IMAGE_AT_TABLE>

Opponent Hand. This predictor estimates the possible opponent hand taking into

account the player’s cards and the community cards. For instance, if the opponent hand

predictor is “Flush”, this should be read as “If the opponent is able to reach a flush”.

Steal Bet. The steal bet is the amount of chips you need to get the pot with a low

score hand. It depends on the type of opponents that one is facing.

Implied Odds. This predictor corresponds to the pot odds but it takes into account

the evolution of the player’s hand. Let H
+
 be the set of all possible subsequent histories

to h, the implied odds can be calculated through equation 16.

 

 
 

 
 

ZHh

H

hc

hc

H

hjb

hjb

hioddsimplied
H

h

N

j

H

h

N

j

\

,

,

:,_ 




























 (16)

Type of Player. This predictor considers the type of the last playing opponent in the

table taking into account his/her past behavior in the game. There are 4 predefined types

of opponents [18]: loose-aggressive, loose-passive, tight-aggressive and tight-passive.

<TYPE_OPPONENT>::= loose_agressive | loose_passive |

 tight_agressive | tight_passive

1260 Luís Filipe Teófilo et al.

4.3. Actions

As stated before, there are several possible values of actions in a Poker game. In

PokerLang, the user can choose predefined moves (based on common expert moves) or

custom moves. The predefined actions are usually a sequence of actions – they abstract

decision points because when such action is activated, the action may control de agent’s

behavior throughout the rest of the round or even the rest of the game.

<ACTION>::= {<PREDEFINED_ACTION><PERC> |

<DEFINED_ACTION><PERC>}

<PREDEFINED_ACTION>::= <STEAL_THE_POT> | <SEMI_BLUFF> |

 <CHECK_RAISE_BLUFF> | <SQUEEZE_PLAY> |

 <CHECK_CALL_TRAP> | <CHECK_RAISE_TRAP>|<POST_OAK_BLUFF>

Moves can be customized by defining the distribution of bet amounts if the activation

condition is met. The specified bet amounts are always relative to the current pot value

in  
N

i

hibh ,: . The distribution can be defined for the three rounds of the game so

actions can be reused. The action can be a fold (BET_VALUE = 0) or a raise

(BET_VALUE > 0). If the action is impossible to perform or not specified, the agent

calls by default.

<DEFINED_ACTION>::= <ACTION_NAME>{<PRE_FLOP_ACTION> |

 <FLOP_ACTION> | <TURN_ACTION> |

<RIVER_ACTION>}

<PRE_FLOP_ACTION>::= {<BET_VALUE><PROBABILITY>}

<FLOP_ACTION>::= {<BET_VALUE><PROBABILITY>}

<TURN_ACTION>::={<BET_VALUE><PROBABILITY>}

<RIVER_ACTION>::={<BET_VALUE><PROBABILITY>}

5. PokerBuilder

After defining the high-level language, the next phase of this work was to build a simple

graphical application which allows for users to easily define new PokerLang strategies.

PokerBuilder is an Adobe Flex application that allows users to define the strategy’s

rules using the concepts of the language previously introduced, and set the behavior of a

poker agent. With a smooth interface and simple features, PokerBuilder is accessible to

any user that understands the main concepts of poker. One of the purposes of this work

was to make a very practical application, even usable for users only familiarized with

the most basic computer usage.

For the implementation of the language of concepts, PokerBuilder is divided in four

major classes: Strategy, Tactic, Rule and Property (Fig. 1). The interface begins with an

instance of the Strategy Class that creates instances of all other classes depending on

what the user is creating. PokerBuilder gives the user two different views to create

rules: Strategy View and Tactic View.

Rule based strategies for large extensive-form games 1261

The figures on the appendix section demonstrate this software’s graphical user

interface. The software includes a strategy builder (Fig. 5) to permit the user to create

sets of tactics. To create a rule, the user must select its name, various evaluators and/or

predictors and the corresponding action. Fig. 6 indicates an example of the interface

used to select the evaluators, predictors and actions. Finally, if the user wants to select a

pre-defined action (see section 4.3); he or she can use the interface shown in Fig. 7 to

personalize them.

Fig. 1. PokerBuilder application schema

6. Inferring strategies from game logs

Although the PokerBuilder interface is easy to use, it still takes a long time to accurately

describe a strategy with precision to achieve a good performance. In order to surpass

this problem, we have designed an approach to perform inference of rules from game

logs – sets of recorded games GP. This way, if the user has available data from games of

agents or humans that play with a strategy similar to the intended one, the user can just

import those games, infer rules from them and then simply adjust the rules with

PokerBuilder.

The built inferring system does not consider predictors; it just considers the

following evaluators:

─ Stack: St

─ Hand Strength interval from HS(Pi,S,h): Hi

─ Position at table: Po

To build this system, we considered all possible combinations of the stated

evaluators. However, since the hand strength is a continuous measure, its distribution

has to be discretized. Let us analyze a distribution of hand strength values extracted

from a particular collection of game logs, provided by Pedro Reis (see Fig. 2).

1262 Luís Filipe Teófilo et al.

As expected, the frequency of high values of hand strength is higher on later rounds

(right hand side of Fig. 2). This happens because the players successively give up

weaker hands. Since the distributions are rather distinct, we differentiate them during

the inferring process: when inferring evaluators on Pre-Flop rounds we use the

distribution on the left, and for other rounds we use the distribution on the right.

Fig. 2. Hand strength relative distribution observed from the dataset. On the left, the distribution

on the Pre-Flop round and on the right the distribution on the Post-Flop round. The horizontal axis

contains the values of hand strength (ranging from 0 to 1) and the vertical axis is the relative

frequency of that hand strength value.

The discretization process was simple: a fixed number of hand strength intervals (k).

The interval offsets were chosen to obtain a uniform distribution based on the relative

frequency of HS(Pi,S,h) values. A similar strategy was considered for the selection of

actions Ad. The betting distribution was also obtained from the game logs collections

(Fig. 3). After that, from the betting distribution a fixed number of intervals were

extracted (). Given this, the tuple that the inferring system must recognize is:

 
 















qAdkHi

goodnormalbadPo

deadredorangeyellowgreenSt

AdPoHiSt

,

,,

,,,,

,,, (17)

Fig. 3. Betting distributions. On the left the distribution for Pre-Flop and on the right the distri-

bution for Post-Flop rounds. The horizontal axis expresses the percentage of the player’s money

that was betted.

The number of recognizable tuples is qkAdPoHiSt  35|||||||| . In the

experiments we arbitrarily used k = 10 and q = 10, making a total number of 1500 cases.

We used three different strategies to recognize a case from the game logs. First we

used a well-known classifier – the Random Forest Tree – that already proved

Rule based strategies for large extensive-form games 1263

empirically to be the best suited for Poker data [8]. The second strategy was to use the

Euclidian distance (Equation 5) between the extracted features and features from the

static tuples – the closest case is the one to be activated. Finally, we used a strategy

based on the weighted Euclidean distance. The weighted Euclidian (Equation 18)

distance considers a weight vector where is the weight of feature f.

   2:, ff

F

f

f dswdsweidist   (18)

The weight vector is determined empirically through the inferring system validation

method. The validation method consists of creating an agent that follows the inferred

strategy and then determining its accuracy when following the learned strategy:

  
C

ahhihpGiGhCG
ihCiacc

iiPPPa

 :1
),,,((19)

where C is the collection of cases for player i, 

ih is the history after the player i action

and ahi

 is the action performed by the agent representing player i. The accuracy is the

ratio between the number of cases where the agent selected an action similar to the

player’s original action and the total number of cases.

In our experiments, to determine the weight vector, we generate its weights randomly

so that 
||

1
F

i

iw , generate the agent and then determine its accuracy for a fixed number

of iterations. The agent with better accuracy is the one that it is selected by the system.

Other policies can be used to determine the weights, namely genetic algorithms with

populations of agents with different weight vectors. However, it is possible to check

(Table 3) that the random generation policy already produced agents with very good

accuracies. The weighted Euclidian distance always produced agents with greater

accuracy than the two other methods, with an average accuracy of ~79% for datasets

with 5000 cases and 10.000 iterations, proving the usefulness of this method.

Table 3. PokerLang strategy inferring accuracy. Logs of 10 different players. For each player, 3

sets of cases with different sizes were extracted (1000, 2500 and 5000). The game logs con-tained

full game state description of the players from whom the strategies where inferred.

Random Forest Euclidian Distance Weighted Euclidian
1000 2500 5000 1000 2500 5000 1000 2500 5000

38% 42% 41% 44% 52% 46% 55% 75% 80%

25% 50% 63% 55% 57% 67% 65% 56% 70%

50% 55% 68% 60% 66% 84% 50% 84% 86%

45% 68% 67% 70% 71% 72% 53% 69% 73%

30% 51% 56% 55% 64% 70% 47% 77% 81%

56% 77% 78% 67% 76% 77% 67% 58% 79%

50% 76% 75% 49% 51% 70% 45% 59% 78%

62% 70% 82% 30% 65% 70% 33% 81% 86%

33% 40% 50% 40% 65% 53% 50% 70% 75%

61% 64% 67% 51% 67% 71% 54% 71% 79%

1264 Luís Filipe Teófilo et al.

7. PokerBuilder Agent

The final step of this work was to build a poker agent that uses previously created

strategies. In order to be able to follow the strategies, the agent needs some reading

features of the information gathered at a poker table. Obtaining evaluators’ features is

trivial because they comprise perfect information (data obtained just by looking at the

table). Predictors, however, require a statistical study of the played hands in order to get

reliable information. Another feature required by the agent is an algorithm to select

which rule to apply. An agent with these features will be an agent capable of strictly

following the strategy defined previously.

The agent’s action sequence is depicted in Algorithm 1. The algorithm takes the

current history h of the game, the agent player agent and a set of tactics T, and returns

the amount of money to bet.

 The agent starts by reading the strategy to use from the respective file. In each of the

states, the agent will follow sequentially three major steps: reading all the information

of the table, which includes setting the values of the evaluators, and trying to suit the

imperfect information of the predictors, searching the most suitable rules for the table

circumstances and choosing the rule to follow. At the end of each hand, the agent will

save all the hand’s information: bets from the opponents, each opponent hand (if

shown), and the position of the opponent among others, to be used by the opponent

modeling evaluators and predictors in future games. The agent was built to work on the

LIACC Simulator described in[19]. This simulator has features that ease the

construction, test and validation of the agent. Moreover, due to compatibility with the

AAAI simulator, it also allows for the developed agent to participate in the annual

computer poker competition without any code changes [20].

Algorithm 1  TNagentHhPlay ,, 

Let  riverturnfloppreflopHround ,,,:  be a function that returns a round for a

given history

Let   ',,,:_ AriverturnfloppreflopTactiontactic  be a function that returns an

abstracted action from the tactic or null if the action is not defined.

Let AHAtranslate ': be a function that translates an abstracted action to an

contextualized action of a history

Let  N:_ Aamountbet be a function that returns the amount of chips to bet for a

given action

if p(h) <> agent

 return -1

end if
for each in T

 action = translate(tactic_action(t,round(h)),h)

 if action <> null

 return max(bet_amount(action), s(p(h),h))

 end if

end for each

return 0

Rule based strategies for large extensive-form games 1265

8. Tests & Results

Poker is a game with elements of chance thus complicating player rating. The purpose

of this work is not to build a poker agent to win against every opponent but to enable

the user to define behaviors in a simple way.

All the tests were conducted in the Pre-Flop version of No Limit Texas Hold’em in

head’s up games. Two distinct agents were built:

─ Agent PokerTron - This agent has a simple strategy (with only one tactic and five

rules) but yet capable of trapping and bluffing opponents along the game. The

behavior of this agent with all hands has a good variety of moves making it very

difficult to read.

─ Agent Hansen - This agent has a much more complex strategy than PokerTron. It

contains three different tactics, used in specific circumstances, being the choice of

what tactic to use based on the current stack. With a large stack, the agent will play a

very loose game, practically never folding any hand pre-flop and trying to get their

opponents out of the game with large bets. With a normal stack it will play more

specific hands (group A and B, see Table 2), avoiding making bluffs. With a very

small stack, the agent will wait for a hand A or B and goes all-in.

8.1. Behavior tests

In Table 4 we can see the percentage of rule activation for each agent, during the 10

games played. This represents the number of times each agent makes a decision based

on its strategy. The fact that a strategy is defined does not imply that it will be followed

every single hand. This happens because the strategy does not cover all possible

circumstances that can occur in a poker game. In Table 4, we can see that agent Hansen

has a higher percentage of rule activation. This means that the full area of possible

circumstances is more covered in agent Hansen than it is in agent PokerTron.

Table 4. Rule Activation of Hansen and PokerTron agent

 Hansen PokerTron

Rule Activation 64% 48%

Another important statistic is the tactic activation (Table 5). In the case of PokerTron,

there is only one tactic defined, but in Hansen there are three. The “aggressive” tactic

has a higher percentage (the agent won most of the simulated games), which means it

had a high stack most of the times. The low stack tactic was less used because this tactic

is only activated for low stacks and for hands of group A and B, which did not happen

often since Hansen was almost always leading the tournament.

Table 5. Tactic Activation of Hansen Agent

 HighStack NormalStack LowStack

Tactic activation 56% 39% 5%

1266 Luís Filipe Teófilo et al.

8.2. Performance tests

Hansen and PokerTron were put up against the two observing agents created by Dinis

Ferreira [13] in a tournament (limited resources). Fig. 4 shows that the PokerLang

agents ended up competing against themselves with a final victory for Hansen (the

agent with a more complex strategy).

Fig. 4. Stack Evolution of the simulated games. Horizontal axis shows the number of hands and

the vertical axis displays the agent’s stack.

Both PokerBuilder agents gained advantage early in the game, being able to

eliminate Agent 1 and Agent 2 in the 31st hand and 33rd hand, respectively. The most

important fact to retrieve from these results is that PokerBuilder can be used to produce

effective agents in a short time and in a very simple way. These simulations could have

been made with much more games, but the purpose of these tests was to prove the

efficiency of the application and the agent that supports it. The first test showed the

effectiveness of the agent reading and running the strategies defined. In the Tournament

simulation, the purpose is to show how PokerBuilder agents would behave against

different agents.

9. Conclusions

The purpose of this work was to create Poker playing agents more accessible to the

common user and, thus, a comprehensible high level language that represents Poker

strategies was created. PokerLang filled the gaps of previous approaches like the Poker

Programming Language because it allows for the definition of much more complex and

complete strategies. An intuitive and pleasant graphical application to support the

creation of PokerLang files was also created, thus making it easier to create playing

agents. Moreover, the developed strategy inferring system proved empirically to be

accurate for generating strategies similar to human ones from past played games.

Tests and simulations showed that the created agents correctly followed several

PokerLang strategies. Moreover, agents made by Poker players were able to beat

previously developed agents. However, matched between PokerLang agents against

professional players are still required to further validate this approach.

In future research, more game concepts can be added to cover up more poker

specifications and to make the agents even more effective, such as the customization of

Rule based strategies for large extensive-form games 1267

abstraction techniques. Another important feature would be the inclusion of an

exploration map to allow for the agent to assume how to play with information sets that

were not defined, instead of just calling or folding. This work will also be concerned

with gathering professional poker player models using this language and comparing the

models with the real players’ behavior in order to fully and further test the

expressiveness of the PokerLang language.

Acknowledgments. This work was financially supported by FCT – Fundação para a Ciência e a

Tecnologia through Ph.D. Scholarship SFRH/BD/71598/2010.

10. Appendix: PokerBuilder software GUI screenshots

Fig. 5. Strategy builder

Fig. 6. Rule creator

1268 Luís Filipe Teófilo et al.

Fig. 7. Action behavior editor in PokerBuilder

References

1. Johanson, M.: Measuring the Size of Large No-Limit Poker Games. University of Alberta,

Technical report (2013).

2. Billings, D., Papp, D., Schaeffer, J., Szafron, D.: Opponent modeling in poker. AAAI

Conference on Artificial Intelligence. pp. 493–499 (1998).

3. Billings, D., Papp, D., Peña, L., Schaeffer, J., Szafron, D.: Using Selective-Sampling

Simulations in Poker. AAAI Spring Symposium on Search Techniques for Problem Solving

under Uncertainty and Incomplete Information,. pp. 13–18 (1999).

4. Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret Minimization in Games with

Incomplete Information. Advances in Neural Information Processing Systems 20 (NIPS). pp.

1729–1736 (2008).

5. Johanson, M., Zinkevich, M., Bowling, M.: Computing Robust Counter-Strategies. NIPS. pp.

1128–1135 (2007).

6. Johanson, M., Bowling, M.: Data biased robust counter strategies. Proceedings ofthe Twelfth

International Conference on Artificial Intelligence and Statistics (AISTATS). pp. 264–271

(2009).

7. The Second Man-Machine Poker Competition,

http://webdocs.cs.ualberta.ca/~games/poker/man-machine/.

8. Teófilo, L.F., Reis, L.P.: Building a No Limit Texas Hold’em Poker Playing Agent based on

Game Logs using Supervised Learning. Proceedings 2nd International Conference on

Autonomous and Intelligent Systems. pp. 73–83 (2011).

9. Rubin, J., Watson, I.: Case-based strategies in computer poker. AI Commun. 25, 19–48

(2012).

10. Broeck, G., Driessens, K., Ramon, J.: Monte-Carlo Tree Search in Poker Using Expected

Reward Distributions. ACML ’09 Proceedings of the 1st Asian Conference on Machine

Learning: Advances in Machine Learning. pp. 367–381 (2009).

11. Teófilo, L.F., Passos, N., Reis, L.P., Lopes Cardoso, H.: Adapting Strategies to Opponent

Models in Incomplete Information Games: A Reinforcement Learning Approach for Poker.

Autonomous and Intelligent Systems - Third International Conference (AIS2012). pp. 220–

227 (2012).

12. Rubin, J., Watson, I.: Computer poker: A review. Artif. Intell. 175, 958–987 (2011).

13. Teófilo, L.F., Reis, L.P., Lopes Cardoso, H.: Computer Poker Research at LIACC. Computer

Poker Symposium. AAAI (2012).

14. Shanky Technologies: Poker Programming Language User Guide. (2009).

Rule based strategies for large extensive-form games 1269

15. Reis, L.P., Lau, N., Springer: COACH UNILANG - A Standard Language for Coaching a

(Robo)Soccer Team. In: Birk, A., Coradeschi, S., and Tadokoro, S. (eds.) Robocup 2001

Robot Soccer World Cup. pp. 183–192. Springer-Verlag (2002).

16. Harrington, D., Robertie, B.: Harrington on Hold ’em Expert Strategy for No Limit

Tournaments, Vol. 1: Strategic Play. Two Plus Two Pub. (2004).

17. Teofilo, L.F., Reis, L.P., Cardoso, H.L.: Estimating the Odds for Texas Hold’em Poker

Agents. 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI)

and Intelligent Agent Technologies (IAT). pp. 369–374. IEEE (2013).

18. Sklansky, D.: The Theory of Poker: A Professional Poker Player Teaches You How to Think

Like One. Two Plus Two (2007).

19. Teófilo, L.F., Rossetti, R., Reis, L.P., Lopes Cardoso, H.: Simulation and Performance

Assessment of Poker Agents. Springer LNCS 7838 (MABS 2012). pp. 69–84. Springer-

Verlag, Valência, Spain (2013).

20. Zinkevich, M., Littman, M.L.: The 2006 AAAI Computer Poker Competition. J. Int.

Comput. Games Assoc. 166–167 (2006).

Luís Filipe Teófilo holds a Master in Informatics and Computing Engineering from

University of Porto since 2010. Luís is a researcher and enthusiast on artificial

intelligence applied to games with several scientific publications, especially on the

Texas Hold'em Poker domain. Currently he is also an Assistant Professor at University

of Porto and Ph.D. researcher at LIACC.

Luis Paulo Reis is an Associate Professor at the Information Systems Department at the

School of Engineering, University of Minho, Portugal and a member of the Directive

Board of the Artificial Intelligence and Computer Science Lab, Portugal. He received

his Electrical Engineering and MSc degrees from the University of Porto in 1993 and

1995, and a PhD in Electrical Engineering (Artificial Intelligence/Robotics) at the same

University in 2003. His research interests include also Multi-Agent Systems (MAS) and

Intelligent Simulation. He was principal investigator of more than 10 research projects

in those areas and he was evaluator for the European Commission for FP6 Projects. He

is the team leader of FC Portugal robotic soccer team/project, three times World

Champion and seven times European Champion in RoboCup. He also won more than

30 scientific awards, including best papers at several conferences such as ICEIS and

Robotica.

Henrique Lopes Cardoso is an Assistant Professor of the Department of Informatics

Engineering at the Faculty of Engineering of the University of Porto (FEUP), and a

researcher at the Artificial Intelligence and Computer Science Lab (LIACC). He

received a M.Sc. degree on Artificial Intelligence in 1999 and a PhD on Informatics

Engineering in 2011, both at FEUP. His main research interests lie within multi-agent

systems research, focusing on social aspects such as agreements, norms and trust, but

also on simulation and development tools.

Received: September 21, 2013; Accepted: April 01, 2014

