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Abstract. The Earth Mover's Distance (EMD) is one of the most-widely used 

distance functions to measure the similarity between two multimedia objects. 

While providing good search results, the EMD is too much time consuming to be 

used in large multimedia databases. To solve the problem, we propose an 

approximate k-nearest neighbor (k-NN) search method based on the EMD. In the 

proposed method, the overhead for both disk accesses and EMD computations is 

reduced significantly, thanks to the approximation. First, the proposed method 

builds an index using the M-tree, a distance-based multi-dimensional index 

structure, to reduce the disk access overhead. When building the index, we reduce 

the number of features in the multimedia objects through dimensionality-

reduction. When performing the k-NN search on the M-tree, we find a small set of 

candidates from the disk using the index and then perform the post-processing on 

them. Second, the proposed method uses the approximate EMD for index retrieval 

and post-processing to reduce the computational overhead of the EMD. To 

compensate the errors due to the approximation, the method provides a way of 

accuracy improvement of the approximate EMD. We performed extensive 

experiments to show the efficiency of the proposed method. As a result, the 

method achieves significant improvement in performance with only small errors: 

the proposed method outperforms the previous method by up to 67.3% with only 

3.5% error. 

Keywords: Earth mover's distance, content-based information retrieval, k-nearest 

neighbor query. 
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1. Introduction 

Due to the recent advances in digital technologies, an enormous number of multimedia 

objects are now available over the Internet. In order to find the specific objects needed 

by the users from such a huge multimedia pool, an efficient search technique is highly 

essential [1], [2], [3], [4], [28]. Content-based information retrieval (CBIR) is the search 

technique based on the contents of multimedia objects. It finds the multimedia objects 

similar to the given query object based on features such as color distribution, shape, and 

texture [1], [5], [6], [26]. Since the CBIR is given with a multimedia object as a query 

example, it is more intuitive than non-CBIR such as keyword-based retrieval [1]. 

There are two types of the CBIR, namely the range query and the k-nearest neighbor 

(k-NN) query [7], [8], [9], [10], [27]. The range query finds a set of objects whose 

distances from the query object are less than or equal to the given threshold θ. It has the 

weakness that it is difficult to find a proper θ, thereby returning too big or too small 

search results according to θ. In the worst case, the range query may return either an 

empty or the whole dataset [9], [11], [12]. The k-NN query finds k objects that are 

nearer from a query object than other objects. Since the k-NN query does not require a 

hard-to-estimate distance θ from the query, users can converge on their wanting objects 

more quickly. In this paper, we focus our attention on the k-NN CBIR query.  

For the CBIR, a multimedia object can be represented as an n-dimensional 

probabilistic histogram [8], [12], [13]. An n-dimensional histogram H is composed of n 

bins, where each bin represents a probability pi, i.e., H = {p1, p2, ..., pn}. The 

probabilities pi can be located in a multi-dimensional space rather than serially aligned. 

For example, an image with 10 colors in the RGB space is represented as a 10-

dimensional histogram, i.e., n = 10. The weight of each color in the image is represented 

as the probability of the corresponding bin in the histogram, and the red (R), green (G), 

and blue (B) components of each color are located in the three-dimensional space. 

For the CBIR on multimedia databases, we need a distance function which measures 

the similarity between two objects. There have been a number of distance functions 

proposed such as the Euclidean distance or the χ2 statistic. While they can be computed 

very fast and give good results in some cases, they do not take into account all possible 

variations of matching, which could cause inaccurate search results [14]. The Earth 

mover's distance (EMD) is a representative distance function for the CBIR [8], [11], 

[12], [13] to address this problem [14], [15]. The EMD between two histograms is 

defined as the minimum work needed to transform one histogram into the other by 

moving portions of bins [14]. The work is defined as the weight (portion) of a bin 

moved times the moving distance. Due to the high quality of the search results based on 

the EMD, it is adopted in various applications [14], [15]. However, the time complexity 

of EMD computation is O(n
3
log n), where n is the number of bins in a histogram, and 

thus the EMD cause significant overhead for large multimedia databases [8], [12], [14]. 

Many efforts have been made for efficient EMD-based CBIR: approximation 

methods [15], [16], lower-bound methods [17], [18], and indexing methods [8], [12]. 

The approximation methods compute the approximate EMD very quickly. They 

improved the EMD computation time in an order of magnitude; however, they have 

scalability problems that incur large disk access overhead. The lower-bound methods 

first find a set of candidates using lower-bound functions and then compute the actual 

EMD between the candidates and the query object to find the real k-NN results. They 

significantly reduce the number of the EMD computations owing to the lower-bound 
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functions; but they also have scalability problems. The indexing methods are proposed 

to reduce both the disk access overhead and the computational overhead. They first find 

a set of candidates using the indexes and then compute the actual EMD between the 

candidates and the query to return the final k-NN result. By using the indexes, they can 

reduce the disk access overhead. However, they still require a considerable number of 

costly EMD computations in the post-processing step, because the number of candidates 

is much larger than k. Therefore, for efficient EMD-based CBIR, both the disk access 

overhead and the EMD computation overhead should be reduced at the same time. 

In this paper, we propose an efficient approximate k-NN method based on the EMD. 

The proposed method uses the M-tree [7], a distance-based multi-dimensional index, to 

reduce the disk access overhead. The M-tree is constructed using distances between 

objects rather than the actual object positions in the multi-dimensional space. The M-

tree generally provides good search performance for retrieving high-dimensional 

histograms and thus reduces the disk access overhead of the EMD-based CBIR [7], 

[17]. When the CBIR is done using the M-tree, it requires a large number of EMD 

computations between the query object and those in the index [7], [17]. Since the 

complexity of EMD computation is very high, it should incur a serious computational 

overhead and thus dramatic deterioration of the search performance. To solve the 

problem, we reduce the dimensionality of n-dimensional histogram into n' (<< n) 

through dimensionality-reduction [18] and the M-tree is constructed using the 

dimension-reduced histograms. 

Besides, we use the approximate EMD [16] to reduce the EMD computation 

overhead when retrieving the M-tree. The approximation EMD, which is very close to 

real EMD, is computed in a linear time with a small error. Since the approximate EMD 

between two dimension-reduced histograms is always lower than the approximate EMD 

between the original histograms, there occurs no false-dismissal, which will be proven 

in Section 4.2. Since the M-tree is constructed using the dimension-reduced histograms, 

a set of candidates are obtained as the result of the M-tree search. Then, the post-

processing is performed to find the real k-NN result by computing the EMD on original 

histograms of the candidates. Even in the post-processing step, a large number of EMD 

computations should be performed because the number of candidates is much larger 

than k. The proposed method uses the approximate EMD to speed up the post-

processing. To minimize the errors due to the approximate EMD, we propose an 

accuracy improvement method. Extensive experiments on real datasets comparing our 

method with the state-of-the-art methods [8], [12], [18] were conducted to show the 

superiority of our method. The result reveals that our method outperforms the previous 

ones by up to 67.3% with the error as small as 3.5%.  

This paper is organized as follows. Section 2 describes the EMD in more detail, and 

Section 3 briefly reviews the related work on the EMD-based CBIR and points out their 

weaknesses. Section 4 presents our method in detail and Section 5 evaluates its 

performance in comparison with existing ones. Finally, Section 6 summarizes and 

concludes this paper. 
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2. Earth Mover’s Distance 

Let P = {p1, p2, ... , pn} and Q = {q1, q2, ... , qn} (   
 
       

 
   ) be two n-dimensional 

histograms, where pi and qi are bins in the histograms. A matrix D = [dij] is called a 

ground distance matrix, where dij is the ground distance between pi and qj. The ground 

distance is defined by any standard metric, such as the Euclidean distance or the 

Manhattan distance [14]. A matrix F = [fij] is called a flow matrix, where fij is the 

portion of bin (called weight or probability) transferred from pi to qj. The work is 

defined as the multiplication of flow fij and ground distance dij. The EMD between P 

and Q is defined as the minimum amount of work required to transform a distribution P 

into the other Q (or in the opposite direction) and formally written as: 
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Figure 1 shows an example of computing the EMD between P and Q, which are 

represented as 6-dimensional histograms (i.e., n = 6). In the figure, the x-axis represents 

each bin in the histograms and the y-axis represents the weight (or probability) of each 

bin. When transforming P into Q, the portions of bins in P can be moved to different 

positions to match the bins in Q in a variety of ways. In Figure 1, the amount of work is 

the minimum when each bin portion in P is moved to the position designated with the 

same character in Q. Thus, the EMD is computed as: 

                                                          

            

 

Fig. 1. Example of computing the EMD between two 6-dimensional histograms. 
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3. Related Work 

3.1. Approximate EMD 

The approximate EMD (AEMD) between two multimedia objects is computed in a time 

linear to the number of bins, and it is very close to the actual EMD. In a one-

dimensional space, the exact EMD between two histograms is computed as follows: (1) 

it selects the bins at the end in the one-dimensional space from each histogram and 

computes the work for the common weights of the selected bins; (2) the common 

weights are removed from the histogram; (3) the steps (1) and (2) are repeated until all 

bins in two histograms are removed. While repeating the steps (1)~(3), the (partial) 

works are all added, and the final sum is returned as the EMD between two histograms. 

Since both bins are scanned only once, the time complexity of one-dimensional EMD 

computation is O(n) [16], which is much smaller than that of multi-dimensional EMD 

computation. Based on this idea, AEMD linearizes the multi-dimensional histogram 

using the Hilbert curve. The Hilbert curve fills the multi-dimensional space with a 

continuous curve as shown in figure 2 [19]. After the linearization, AEMD applies the 

method mentioned above. 

Fig. 2. Example of the Hilbert curve in two-dimensional space. 

To pursue the highest accuracy, AEMD creates multiple Hilbert curves with different 

starting points and directions. In an m-dimensional space, there can be (2
m
   m!)/2 

Hilbert curves [16]. AEMD takes the minimum of the works obtained for each of the 

curves. As an experimental result in [16], AEMD incurred an error up to only 4.2%, 

while it dramatically improved the speed by up to 34 times over the EMD. However, 

AEMD suffers from the scalability problem, since it should access all the objects in a 

multimedia database for CBIR. 

3.2. Lower-bound Based on Dimensionality Reduction 

As indicated in the complexity, the time for EMD computation for lower dimensional 

histograms should be smaller than that for higher dimensional ones. The method by 

Wichterich, et al. (called LB in this paper) transforms an n-dimensional histogram H 
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into an n'-dimensional one H'(n' < n) using an n   n' reduction matrix R = [rij] as the 

following equation [18]:  

       (2) 

where it holds that: 

                                             

        
  

 
          

        
 

 
     

 

LB computes the ground distance between the bins in the dimensionality-reduced 

histograms using the optimal reduced distance matrix D ' = [d'i'j']. An element d'i'j' in the 

matrix is defined as: 

     
                         (3) 

The optimal reduced distance matrix D' ensures that the EMD between the 

dimensionality-reduced histograms is always lower than (or lower-bounds) that between 

the original histograms [18]. The main advantages of this dimensionality reduction 

include efficiency, flexibility, and completeness [18]. By using this lower-bound 

property, LB scans all the objects in the database and returns a set of candidates. Then, 

LB computes the EMD between the candidate's original histogram H and the query 

histogram, and returns the qualified ones. This method reduces EMD's computational 

overhead; however, as the AEMD, it also suffers from the scalability problem, since it 

should access all the objects in the database. 

3.3. Indexing Methods 

To solve the scalability problem, a few indexing methods such as the tree-based index 

(called TBI in this paper) [8] and the normal lower-bound index (called NLI in this 

paper) [12] have been proposed. TBI employs LB
+
-trees; every histogram is mapped to 

L domain values using the primal-dual theorem [20], and then each set of l-th (    
 ) values is indexed in a B

+
-tree. TBI processes range queries and k-nearest queries 

efficiently using the trees. TBI converts the EMD-based range query into L range 

queries against L trees, and the objects contained in the intersection of the results 

obtained through the trees constitute the candidate set. Then, TBI computes the actual 

EMD for each candidate object to find the final query result. In TBI, the number of B
+
-

trees increases as the database size increases. To solve this problem, NLI employs a 

single Quad-tree to index multi-dimensional histograms [12]. NLI projects a histogram 

onto a vector and approximates it by a normal distribution. NLI then represents each 

normal as a point in a Hough transformed space and stores in the Quad-tree. NLI 

computes the lower-bound EMD in a constant time. Since NLI is based on 
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approximation, it still needs EMD computations in the post-processing phase on the 

candidates obtained through the index. 

Although these methods reduce the number of EMD computations, they still require 

a considerable number of EMD computations in the post-processing phase. As a result 

of our experiment on a database composed of 3,932 high-dimensional histograms [8], 

[12], TBI and NLI should have performed about 350 and 300 EMD computations, 

respectively. The EMD computations significantly deteriorate the performance of the 

EMD-based CBIR. Recently, a refinement method [21] has been proposed to reduce the 

post-processing overhead by adopting the simplified graph incremental algorithm and 

the dynamic refinement order. However, the method focuses only on the post-

processing and can be applied only to NLI, unlike our method explained in the next 

section. 

4. Proposed Method 

In this section, we propose an efficient approximate k-NN algorithm for EMD-based 

CBIR. In Section 4.1, we present a naïve approach incurring no false dismissal. In 

Sections 4.2 and 4.3, we refine the naïve approach for performance improvement and 

accuracy improvement. 

4.1. Naïve Approach 

The naïve approach performs the k-NN using the index for scalability. Since we deal 

with the n-dimensional histograms, we may consider the R-tree [22], a most widely 

used multi-dimensional index. However, the R-tree suffers from the so called high-

dimensionality problem or high-dimensionality curse [7]: the performance of the R-tree 

rapidly deteriorates with the increase of the histogram dimension. If the R-tree is 

employed for the EMD-based CBIR, the search performance using the R-tree becomes 

worse than even the sequential scan when the dimension of the histograms exceeds 35 

[13]. 

In this paper, we adopt the M-tree, a distance-based index structure [7]. While the R-

tree is constructed based on the object locations in the multi-dimensional space, the M-

tree is based on the distances between the objects. The distance computations for only a 

small number of (not all possible) object pairs are required to construct the M-tree [7]. 

Also, the M-tree provides good performance not only in the indexing but also in the 

search for high-dimensional histograms, because the M-tree performs the search using 

the distances previously computed when constructing the index. Figure 3 shows an 

example of the M-tree. Figure 3(a) shows the distribution of objects (o1 ~ o10) in the 

two-dimensional space, and Figure 3(b) shows an M-tree constructed based on distances 

between these objects in Figure 3(a). In the figure, we set the maximum number of 

entries of the internal and terminal nodes are two and three, respectively.  

The naïve approach constructs the M-tree index based on the EMD between n-

dimensional histograms and performs the k-NN search using the k-NN algorithm for the 

M-tree presented in [7]. The naïve approach incurs no false dismissal, since EMD 

satisfies the following three conditions: 
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(1) Positivity:             
(2) Symmetry:                  , and 

(3) Triangular inequality:                            

where P, Q, and R are histograms. 

However, the naïve approach has the performance problem because the EMD has the 

very high computation complexity O(n
3
log n) for n-dimensional histograms [14]. Since 

many EMD computations are required in the course of the indexing and the searching, it 

causes serious deterioration of overall performance of the approach. To solve this 

problem, we provide three extensions as follows. First, we use the dimensionality-

reduction [18] explained in Section 3.2. That is, we transform n-dimensional histograms 

to n'-dimensional ones (n' << n) using the dimensionality-reduction when constructing 

the M-tree and performing the k-NN search. Since the dimension of histograms is 

reduced significantly, the EMD computation overhead should also be reduced as much. 

Second, we use the AEMD explained in Section 3.1 instead of the EMD [16]. The 

AEMD is computed in O(n) time with small errors with the EMD. Third, we adopt the 

maximum common weight elimination to reduce the error between the AEMD and the 

EMD. We explain first and second extensions in Section 4.2 and third one in Section 4 

4.2. Performance Improvement 

The proposed k-NN method adopts the dimensionality-reduction [18] using the 

reduction matrix R for both the indexing and the searching. When indexing, we compute 

the EMD with the optimal reduced distance matrix D' to construct the M-tree. Likewise, 

when searching, we reduce the dimension of the query histogram by using same matrix 

R and perform the k-NN search on the M-tree with D' and the EMD. Since n' << n, this 

method performs the indexing and searching more efficiently than the naïve approach. 

Note that the method based on the dimensionality-reduction incurs no false dismissal. 

For its justification, we need the following lemma: 

Lemma 1. For any two n-dimensional histograms P and Q, the following is satisfied 

[18]: 

                       (4) 

Fig. 3. A Sample M-tree. 
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where EMDD' (P', Q') is the EMD with the optimal reduced distance matrix D' after 

reducing the dimension of P and Q into P' and Q' using the reduction matrix R, and 

EMDD (P, Q) is the EMD with the original ground distance matrix D and the original 

histograms P and Q.  

Proof: See [18]. □ 

As shown in Eq. (4), the EMD between any two dimensionality-reduced histograms 

lower-bounds the EMD between original histograms. Based on this lower-bounding 

property, we introduce a k-NN algorithm as shown in Figure 4. 

The figure shows the k-NN_EMD algorithm based on the dimensionality-reduction, 

and the M-tree that is constructed with the dimensionality-reduced histograms in the 

algorithm. The k-NN_EMD is given a query histogram Q and the number of objects k as 

the input and returns an array of the k-NN objects as the output. In line (1), the 

algorithm calls k-NN_Search() function for the M-tree. This function is presented in [7] 

and performs k-NN search using the M-tree. Since the M-tree is constructed with the 

dimensionality-reduced histograms, we also reduce the dimension of the query Q into 

Q' and find the k-NN objects by invoking the k-NN_Search(). In line (2), we compute 

the original EMD, EMDD(Q, P) for each P returned from the k-NN_Search() and then, 

in line (3), we sort the result and save in the array NN. As a point, NN[k] is the objects 

with the largest EMD from Q among all the objects in NN.  

Then, we call Next-NN_Search() function with Q as the input. This function returns 

the nearest neighbor N next to the current nearest neighbors NN using the M-tree. For 

example, when we have k-NN objects obtained by searching the M-tree, if we call the 

Next-NN_Search() function, it returns the (k+1)-th object. If we call the Next-

NN_Search() function again, it returns the (k+2)-th object. This function can be easily 

implemented using the k-NN_Search() function as follows. Let k(0) be the predefined 

number of objects currently searched by the k-NN_Search(). When the Next-

NN_Search() is called, it returns the i-th (i ≤ k(0)) nearest neighbor among the k(0) 

objects. If i > k(0), the k-NN_Search() is invoked internally to search k(1) (> k(0)) 

objects next farther than the k(0) objects and the i-th (i ≤ k(1)) object is returned. The 

Next-NN_Search() function returns the next nearest neighbor continuously by repeating 

this process. 

In line (6), we compute EMDD (Q, N) of N and, if the result is smaller than the EMD 

of NN[k], N is inserted into the NN preserving the order of EMD from the original Q, 

and the previous NN[k] is discarded. We call Next-NN_Search() again in line (9). As 

shown in line (5), this process is repeated until EMDD (Q, N) is smaller than EMDD' (Q', 

NN[k]'). If EMDD (Q, N)  is larger than EMDD' (Q', NN[k]'), we break the while loop and 

finally return the array NN to the user in line (11). In summary, the k-NN_EMD 

algorithm first searches for the k-NN candidates by using the M-tree constructed with 

the dimensionality-reduced histograms and then refines the k-NN result by comparing 

the actual EMD of the original high-dimensional histograms. 
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Fig. 4. k-NN_EMD algorithm based on dimensionality reduction. 

The k-NN_EMD guarantees no false dismissal, and it can be easily shown using Eq. 

(4) as follows. NN[k] is the object with the farthest EMD from Q in NN returned from 

the k-NN_EMD (in line (11)). For the next nearest neighbor N given by the Next-

NN_Search(), it holds that EMDD (Q, NN[k]) ≤ EMDD' (Q', N') according to the 

condition in line (5). It also holds that EMDD' (Q', N') ≤ EMDD (Q, N) according to Eq. 

(4). Therefore, for any N in the M-tree, it holds that EMDD (Q, P) ≤ EMDD (Q, N) 

indicating that the original EMD of any object in the M-tree is larger than the original 

EMD of any P in NN, and thus NN is the set of kNN from Q. 

In the k-NN_EMD, we use the dimensionality-reduced histograms for efficient 

indexing and searching; however, there is still performance deterioration even with the 

dimensionality-reduced histograms due to very high complexity of the EMD. Moreover, 

many EMD should also be computed for original histograms when refining the 

candidates. To solve this problem, instead of the EMD, we use the AEMD proposed by 

Jang et al. [16] to improve the indexing and searching efficiency. According to the 

experiment results in [16], the AEMD computation requires only O(n) time with only 

4.2% average error, where the average error is defined as                      

         
 .  

By adopting the AEMD, the proposed method performs the approximate k-NN 

search. Figure 5 shows the k-NN_AEMD algorithm which is a modification of the k-

NN_EMD algorithm in Figure 4. In this algorithm, we assume the size of NN to be k' (> 

k). 

As in the k-NN_EMD, the k-NN_AEMD is given a query histogram Q and the 

number of objects k as the input and returns an array NN of k-NN objects based on the 

EMD. The main difference of the k-NN_AEMD from the k-NN_EMD is that the k-

NN_AEMD constructs the M-tree using the EMD but searches the tree using the 

AEMD. It is for reducing both the accuracy loss due to the AEMD and the 

computational overhead due to the EMD. If we use only the EMD as shown in Figure 4, 

it returns the exact k-NN result based on the EMD with poor search performance. 
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Fig. 5. k-NN_AEMD algorithm using AEMD. 

On the contrary, if we use only the AEMD for both the indexing and the searching, it 

returns highly inaccurate results with little performance improvement over the k-

NN_AEMD for the following reason. The search on the M-tree is based on the distances 

previously computed when constructing the M-tree. If we construct the M-tree using the 

AEMD, the distances have errors. When the M-tree is used to compute the distances 

between the objects in the course of k-NN search, the distances based on the AEMD 

causes additional errors. Thus, the errors are accumulated, which causes a lot of 

unexpected false dismissals. Therefore, we decide to use the AEMD only in the search 

process to minimize false dismissals. 

To minimize the false dismissals due to the AEMD, we perform the k'-NN search 

instead of the k-NN (k' > k) in line (1). The k-NN_AEMD algorithm after the line (1) is 

almost the same as the k-NN_EMD algorithm in Figure 4 and performs the k'-NN 

search down to line (11). In line (12), the post-processing is performed to return the k-

NN result to the user: the original EMD is computed for each object in the k'-NN array 

from the query Q, and k objects with the smallest EMD are returned in line (13). This 

method reduces the EMD computation overhead, because it only needs to compute the 

EMD for k' candidates in the post-processing step. There is additional computation 

overhead when searching k'-NN objects from the M-tree for k' larger than k; however, it 

is only fairly marginal compared with the overall performance gain obtained by the 

AEMD. We discuss in detail on the accuracy and the performance of the k-NN_AEMD 

algorithm in Section 5. As in the k-NN_EMD, the k-NN_AEMD incurs no false 

dismissal by the dimensionality-reduction. That is, the k'-NN result found in the k-

NN_AEMD until the line (11) contains every object that should be eventually returned 

as the search result. For the justification, we need the following lemma: 

Lemma 2. For any two n-dimensional histograms P and Q, the following is satisfied: 
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                         (5) 

where AEMDD' (P', Q') is the AEMD with the optimal reduced distance matrix D' after 

reducing the dimension of P and Q into P' and Q' using the reduction matrix R, and 

AEMDD (P, Q) is the AEMD with the original ground distance matrix D and the original 

histograms P and Q. 

Proof: See the Appendix. □ 

We can show using Lemma 2 that no false dismissal is caused by the 

dimensionality-reduction in the k-NN_AEMD algorithm. This proof is almost the same 

as in the k-NN_EMD. NN[k'] is the farthest object from Q in NN obtained until the line 

(11) in Figure 5. For the next nearest neighbor N given by the Next-NN_Search(), it 

holds that AEMDD (Q, NN[k]) ≤ AEMDD' (Q', N') according to the condition in line (6). 

It also holds that AEMDD' (Q', N') ≤ AEMDD (Q, N) according to Eq. (5). Thus, for any 

object N in the M-tree, it holds that AEMDD (Q, P) ≤ AEMDD (Q, N). It indicates that the 

original AEMD of any object in the M-tree is larger than the original AEMD of any P in 

NN, and thus NN is the set of k'-NN from Q. 

Fig. 6. Indexing and searching in the k-NN_AEMD. 

Figure 6 shows the process of the k-NN_AEMD algorithm. In the figure, the M-tree 

is constructed based on the EMD of the dimensionality-reduced histograms. When a 

query Q is issued, the algorithm first reduces the dimension of the query histogram in 

the same manner. The algorithm finds the k'-NN objects based on the AEMD of the 

dimensionality-reduced histograms. Then, it finds the set of k'-NN candidates by 

searching the M-tree based on the AEMD of the original histograms. Finally, the 

original EMD for each k'-NN candidate is computed in the post-processing step, and the 

k-NN objects with the smallest EMD from Q are returned to the user. 
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4.3. Accuracy Improvement 

The k-NN_AEMD finds k' (> k) nearest neighbors to reduce the false dismissals due to 

the error between the AEMD and the EMD. However, even the k'-NN search with very 

large k' might cause false dismissals for very high dimension histograms because the 

error between the AEMD and the EMD increases as the dimension increases. To reduce 

such error due to the AEMD, we propose the elimination of maximum common weight 

(MCW). The MCW is the smaller weight of the two corresponding bins with the same 

location i. For two n-dimensional histograms P = {p1, p2, ... , pn} and Q = {q1, q2, ... , 

qn}, the MCW ci (1 ≤ i ≤ n) is defined as ci = min{pi, qi}. The MCW-eliminated 

histograms Pc and Qc are defined as follows: 

                                           
 

When computing the EMD, the work of the MCW of two corresponding bins is 0, 

because the ground distance of the bins with the same location is 0. Since the EMD is 

defined as the minimum work, we get the same EMD, whether the MCW elimination is 

applied or not. On the contrary, when computing the AEMD, since the MCW bins 

might move to different locations, the work of the MCW of the two corresponding bins 

could be larger than 0. To solve this problem, we eliminate the MCW before the AEMD 

computation. That helps reduce the error between the AEMD and the EMD 

significantly. Our experiment result shows that the average error of the AEMD is 

reduced to half by applying the MCW elimination. We discuss this result in detail in 

Section 5. 

The MCW elimination is applied in all the lines that compute the AEMD, i.e., in the 

lines (2) ~ (9) in the k-NN_AEMD algorithm in Figure 5. The lines (2), (5), (6) and (9) 

compute the AEMD for the n'-dimensional histograms, and the lines (3), (4), (6), (7) 

and (9) for the n-dimensional histograms. The overhead of the MCW elimination is 

trivial since it only needs simple arithmetic operations in the O(n) time. 

Another problem that causes the error between the AEMD and the EMD is that the 

AEMD does not generally satisfy the triangular inequality explained in Section 4.1, 

while the positivity and the symmetry are satisfied. The false dismissals can be 

generated due to the problem in the k-NN_AEMD algorithm. However, our experiment 

result with all possible histogram pairs in a real dataset shows that only 0.2% of the 

pairs violate the triangular inequality. Therefore, we can claim that the false dismissals 

due to the violation of triangular inequality are not significant. The detail is discussed in 

Section 5.2. 

5. Evaluation 

5.1. Experimental Setup 

In this section, we verify the superiority of the proposed method through extensive 

experiments. We used three datasets in the experiments, namely RETINA [8], [12], 
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[18], Shader [23], and SIMPLIcity [16], [24]. RETINA is a high-resolution image set 

which consists of 3,932 feline retina scans. Each image is represented as a 96-

dimensional histogram, and each bin in the histogram represents a location in two-

dimensional space. Shader contains 30,000 computer graphics (CG) images. Each 

image is represented as a 128-dimensional histogram with the bins in three-dimensional 

space. For each image, the weight of each of 128 RGB colors was extracted and used as 

histogram bins. SIMPLIcity contains 1,000 images in 10 categories, and each category 

has 100 images. The images in this dataset are also represented as 128-bin histograms 

with the bins in three-dimensional space. We compared the performance of our method 

with three previous methods: lower-bounding based on dimensionality reduction (LB) 

[18], tree-based indexing (TBI) [8], and normal lower-bound indexing (NLI) [12]. For 

dimensionality-reduction in LB, we set the reduced histogram dimension n' that showed 

the best search performance in the experiments in [18]. We set n'= 18 for RETINA and 

n'=24 for Shader and SIMPLIcity, respectively. The same n' values were used in the 

proposed method. Table 1 shows the size of the M-tree indexes constructed in the 

proposed method. 

Table 1. Size of the M-tree indexes for three datasets 

 RETINA SIMPLIcity Shader 

Data Size 1,391KB 412KB 12,154KB 

Index Size 3,456KB 1,187KB 36,032KB 

 

We used the precision, recall, and mean absolute percentage error (MAPE) as the 

accuracy measures. The precision and recall measures were used on the SIMPLIcity. As 

described above, the SIMPLIcity is composed of 10 categories, and each category 

contains 100 images. The category information is used as the ground truth to measure 

the precision and recall defined as follows [16]: 

           
                                          

                
  

,                                                     

                       
  

 

(6) 

The MAPE is used to evaluate the accuracy of the approximate method and defined 

as the following [16], [25]: 

     
 

 
  

        

  
 

 

   

 
(7) 

where ai is the real EMD and fi is the AEMD between two objects. In our experiments, 

the MAPE values are multiplied by 100 to show in the unit of percent. We used the total 

elapsed time as the performance measure. To obtain the more accurate results, we 

averaged the results on 100 random queries for each experiment. The experiments were 

performed on Microsoft Windows 7 on a workstation equipped with an Intel Core i5 

2.80 GHz CPU and 4GB main memory. 
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5.2. Experimental Results 

We evaluate the accuracy of the AEMD in the first and second experiments and then 

verify the superiority of the proposed method in the remaining experiments. We use 

only RETINA and Shader in evaluating the search performance, because SIMPLIcity 

has the histogram distribution similar to Shader and contains much smaller number of 

objects. As mentioned in Section 4.1, SIMPLIcity is used to measure the precision and 

recall of the proposed method. In the first experiment, we measured the MAPE of the 

AEMD, and the result is shown in Table 2. 

Table 2. MAPE of AEMD 

As shown in the table, the original AEMD incurs considerable errors for every 

dataset. Furthermore, the errors of the AEMD are larger than those reported in [16] 

because our datasets consist of higher dimensional histograms. In contrast, the errors of 

the AEMD are reduced nearly to half when the MCW elimination was employed. This 

is because the MCW elimination removes the histogram bins that may cause the errors 

in the AEMD computations. In all the experiments hereafter, we used the AEMD with 

the MCW elimination. 

In the second experiment, we measured the ratio of object pairs satisfying the 

triangular inequality of the AEMD. As mention in Section 4.2, the AEMD does not 

generally satisfy the triangular inequality due to the errors between the AEMD and the 

EMD. We used Shader since its size is the largest. The experiment was performed with 

respect to a varying number of objects pairs, and its result is shown in Table 3. 

Table 3. MAPE of AEMD 

Number of comparisons 1,000 5,000 10,000 20,000 30,000 

Satisfaction ratio 100% 99.9% 99.9% 99.8% 99.8% 

 

As shown in Table 3, there exist only few cases violating the triangular inequality. 

This is because the error between the EMD and the AEMD for a pair (P, R) is not larger 

than the errors generated by the pairs (P, Q) plus (Q, R). In order to examine in a 

different viewpoint, we calculated the standard deviation of the MAPE, and the result is 

shown in Table 4. We can find in the table that the standard deviation of the errors is 

quite small. That is, the errors by the AEMD are mostly constant. Therefore, the false 

dismissals by the AEMD by violating the triangular inequality are not significant. 

Table 4. Standard deviation of MAPE 

 RETINA SIMPLIcity Shader 

AEMD 0.0343 0.0320 0.0303 

AEMD(with MCW elimination) 0.0235 0.0216 0.0211 

 RETINA SIMPLIcity Shader 

AEMD 27.6% 21.4% 19.2% 

AEMD (with MCW elimination) 14.4% 11.7% 9.8% 
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In the third experiment, we measured the search performance and the accuracy of the 

proposed method while changing the parameter k'. The proposed method searches k' (> 

k) candidates based on the AEMD in the M-tree and then performs the post-processing 

based on the EMD to find k objects nearest from the query. In this experiment, we set k 

as 20 and the accuracy is defined as the ratio of common objects between the k-NN 

result based on the EMD and the search result of the proposed method. Table 5 shows 

the result. The result shows that both the accuracy and the elapsed time increase as k' 

increases. The accuracy is improved with the increase of k' because the false dismissals 

due to the AEMD are reduced. The execution time also increases slowly with the 

increase of k' due to the fast computation of the AEMD. In the experiments hereafter, 

we set k' = 4k for RETINA and k' = 2k for Shader. 

Table 5. Accuracy and search performance of the proposed method with respect to varying k’ 

values 

(a) RETINA 

 k’=k k’=2k k’=3k k’=4k k’=5k 

Accuracy 88.3% 92.3% 94.7% 96.5% 97.3% 

Elapsed time( seconds) 0.36 0.42 0.45 0.47 0.50 

 

(b) Shader 

 k’=k k’=2k k’=3k k’=4k k’=5k 

Accuracy 95.4% 99.4% 99.8% 100% 100% 

Elapsed time( seconds) 2.35 2.64 2.91 3.12 3.24 
 

 

In the fourth experiment, we measured the precision and recall of the proposed 

method and compared with the search result based on the EMD using SIMPLIcity in 

order to verify the robustness of the proposed method. In this experiment, we set k' = 2k 

since SIMPLIcity is very similar to Shader. As a result, in Table 6, for all k' values, the 

proposed method showed almost the same result as the EMD-based search. Such a good 

result of the proposed method is obtained by reducing the errors of the AEMD by the 

MCW elimination and the false dismissals by k'-NN search on the M-tree. 

Table 6. Precision and recall of the proposed method and EMD-based search 

(a) Precision 

 k=10 k=20 k=30 k=40 k=50 

Proposed method 88.2% 75.0% 66.1% 54.4% 44.5% 

EMD-based search 88.2% 75.0% 66.1% 54.5% 44.8% 

 
(b) Recall 

 k=10 k=20 k=30 k=40 k=50 

Proposed method 8.8% 15.0% 20.0% 27.2% 44.5% 

EMD-based search 8.8% 15.0% 20.0% 27.3% 44.8% 
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As discussed in Section 4, the proposed method employs the three component 

techniques, namely the M-tree indexing, dimensionality-reduction, and the AEMD. In 

the fifth experiment, we examined the search performance due to various combinations 

of the three techniques in order to analyze the gain by each of them. The combinations 

in this experiment are summarized in Table 7. 

Table 7. Combinations of component techniques 

EMDtree 
Step 1: Build the M-tree with original histograms H 

Step 2: Perform k-NN_Search on the M-tree based on the EMD 

EMDtree+DR 

(k-NN_EMD) 

Step 1: Build the M-tree with dimensionality-reduced histograms H’ 

Step 2: Perform k-NN_Search on the M-tree based on the EMD to 

find candidates 

Step 3: Refine k-NN by computing the EMD with the original 

histograms H 

AEMDtree 

Step 1: Build the M-tree with the original histograms H 

Step 2: Perform k’-NN_Search on the M-tree based on the AEMD 

Step 3: Perform the post-processing based on the EMD on the 

original histograms H 

AEMDtree+DR 

(our method) 

Step 1: Build the M-tree with dimensionality-reduced histograms H’ 

Step 2: Perform k’-NN_Search on the M-tree based on the AEMD to 

find candidates 

Step 3: Refine k’-NN by computing the AEMD with the original 

histograms H 

Step 4: Perform the post-processing based on the EMD on the 

original histograms H 

Figure 7 shows the results. Although the EMDtree reduces the disk access overhead by 

using the M-tree, it shows the worst search performance because of the EMD 

computation overhead. The EMDtree+DR, the k-NN_EMD in Figure 4, shows a better 

(a) RETINA                                                 (b)   Shader 

Fig. 7. Comparison of search performance: the proposed AEMDtree+DR achieves the best 

performance 



632           M. –H. Jang et al. 

performance than the EMDtree because it reduces the EMD computation overhead in the 

M-tree search with the dimensionality-reduction. However, the overhead of computing 

the EMD is still very high in the post-processing step, since the number of candidates 

returned from the M-tree search is much larger than k. The AEMDtree performs the k-NN 

search on the M-tree based on the AEMD and thus achieves the faster search 

performance than the above two combinations. However, the AEMDtree suffers from the 

computational overhead due to the high-dimensional histograms in the M-tree search. 

On the other hand, the proposed method, the AEMDtree+DR, reduces both the disk access 

overhead and the EMD computation overhead by combining the three component 

techniques and thus achieves the best search performance. 

Table 8. Distribution of elapsed time of each step in three combinations (in seconds, on Shader) 

(a) EMDtree+DR 

 
M-tree search k-NN refinement 

time 
Total elapsed time 

Search time I/O reads 

k=10 2.40 291.95 3.32 5.72 

k=20 3.09 329.90 5.99 9.08 

k=30 3.99 351.75 9.99 13.98 

 

(b) AEMDtree 

 
M-tree search Post-processing 

time 
Total elapsed time 

Search time I/O reads 

k=10 5.64 472.10 0.25 5.89 

k=20 6.69 547.85 0.73 7.42 

k=30 8.18 621.85 1.26 9.44 

 

(c) AEMDtree+DR 

 
M-tree search k’-NN 

refinement 

time 

Post-

processing 

time 

Total 

elapsed time Search time I/O reads 

k=10 1.40 304.28 0.25 0.25 1.90 

k=20 1.94 342.40 0.57 0.73 3.24 

k=30 2.62 379.40 0.83 1.26 4.71 
 

 

Table 8 shows the time (in the unit of seconds) elapsed in each step except the first 

M-tree building shown in Table 7 for three combinations EMDtree+DR, AEMDtree, and 

AEMDtree+DR. The time is shown only for Shader, since RETINA shows very similar 

distribution of elapsed time. 
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As shown in the table, the EMDtree+DR completes the M-tree search quickly using the 

dimensionality-reduction. However, the total elapsed time is large due to the high EMD 

computation overhead in the refinement step. The AEMDtree searches for the k'-NN 

objects (k' > k) from the M-tree with the original high-dimensional histograms and thus 

has both the M-tree search time and I/O costs larger than the EMDtree+DR. Nevertheless, 

the AEMDtree has the smaller elapsed time, since its post-processing needs to compute 

the EMD only for k' objects retrieved from the M-tree. The AEMDtree+DR has the 

smallest execution time even though it consists of one more k'-NN refinement step, 

which finds k'-NN objects from the candidates retrieved from the M-tree based on 

AEMD and thus is completed very quickly as shown in Table 8(c). It also needs to 

compute the EMD only for k' objects in the post-processing step, whose execution time 

is very short as in AEMDtree. 

In the final experiment, we compared the number of EMD computations and the k-

NN search time of the proposed method with the previous methods, namely LB [18], 

TBI [8], and NLI [12]. Figure 8 compares the number of EMD computations with 

respect to varying values of k. The proposed method shows the smallest number of 

EMD computations. Compared with LB, TBI, and NLI, our method reduces the EMD 

computations by up to 79.2%, 72.9%, and 60.7% on RETINA, and up to 88.7%, 88.6%, 

and 84.2% on Shader, respectively. The previous methods first search a set of 

candidates using the index or the lower-bounding function and then compute the EMD 

of each candidate to find the final k-NN. They perform many EMD computations, 

because the number of candidates is very large. On the contrary, the proposed method 

needs to compute the EMD only for k' candidates in the post-processing step. Therefore, 

the number of the EMD computations of our method is much smaller than the previous 

methods. 

(a) RETINA                                                   (b)   Shader 

Fig. 8. Comparison of the number of EMD computations with respect to varying values of 

k: our method always has the smallest number of EMD computations 
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Figure 9 compares the total search time. Compared with LB, TBI, and NLI, our 

method reduces the search time by up to 67.3%, 55.5%, and 44.8% on RETINA and up 

to 51.7%, 40.1%, and 31.3% on Shader, respectively. LB shows the worst performance: 

it suffers from the scalability problem since it does not use an index and also needs 

many EMD computations as shown in Figure 7. TBI and the NLI show the better 

performance than LB, since they use the indexes. However, they require a considerable 

number of EMD computations as shown in Figure 7, which causes performance 

degradation. The proposed method reduces not only the disk access overhead using the 

index but also the number of EMD computations using the AEMD and thus has the 

better performance than the previous methods. We claim that our method should be 

recognized as more useful than the others especially for the CBIR on very large 

multimedia databases. 

6. Conclusion 

In this paper, we proposed an approximate k-NN search method for the EMD-based 

CBIR. To perform the efficient k-NN search, both the disk access overhead and the 

EMD computational overhead should be reduced. The proposed method adopts the M-

tree, a distance-based index structure, to reduce the disk access overhead. When 

building the M-tree, our method reduces the number of bins of the histograms using the 

dimensionality-reduction. After constructing the M-tree, it finds a small number of 

candidates from the disk by using the M-tree and performs the post-processing on them. 

The proposed method uses the approximate EMD in index retrieval and post-processing 

to reduce the computational overhead of the EMD. Also, we proposed the k'-NN search 

and the maximum common weight elimination to compensate the errors caused by the 

approximation. The extensive experiments reveal that our method achieves the 

significant improvement in terms of the number of the EMD computations and the k-

(a) RETINA                                                (b)   Shader 

Fig 9. Comparison of search time with respect to varying values of k: our method always has 

the best performance than the others 
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NN search time. The proposed method improves the performance of the previous 

method by up to 67.3% and only incurs 3.5% error. The retrieval results of the proposed 

method in real-world databases are almost the same as those of the original EMD, 

which indicates the errors of the proposed method hardly influence the quality of CBIR 

results. Given the fast processing time and small errors, our method can be used 

effectively in the CBIR for large databases. 
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A APPENDICES 

Proof of Lemma 2: 

Let the flow matrix           be the approximate minimum work of the AEMD. The 

AEMD can be defined as follows: 

    
 
     

  
 
  

 

   

 

   

 

 

The AEMDreduced with the reduction matrix R is defined as follows: 

               

  

    

     
 

  

    

 

             
                     

 

     
                            

 

 

Based on these equations, we can infer the following equations: 
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By using the reduction matrix, the AEMDD can be represented as Equation (A.1). If 

we replace dij by the minimum value that is satisfied {rii' = 1 ˄ rjj' = 1} as shown in 

Equation (A.2), the result is less than or equal to the AEMDD. Since d'i'j' denotes the 

minimum value of the optimal reduced distance matrix D' (in Equation (A.3)), the 

AEMDreduced is always less than or equal to the AEMDD (in Equation (A.4)). 
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