How Much Topological Structure Is Preserved by Graph Embeddings? *

Xin Liu¹, Chenyi Zhuang¹, Tsuyoshi Murata², Kyoung-Sook Kim¹, and Natthawut Kertkeidkachorn¹

¹ Artificial Intelligence Research Center
National Institute of Advanced Industrial Science and Technology
AIST Waterfront ANNEX, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064 Japan
{xin.liu, zhuang.chenyi, ks.kim, n.kertkeidkachorn}@aist.go.jp

² Department of Computer Science
Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 Japan
murata@c.titech.ac.jp

Abstract. Graph embedding aims at learning representations of nodes in a low dimensional vector space. Good embeddings should preserve the graph topological structure. To study how much such structure can be preserved, we propose evaluation methods from four aspects: 1) How well the graph can be reconstructed based on the embeddings, 2) The divergence of the original link distribution and the embedding-derived distribution, 3) The consistency of communities discovered from the graph and embeddings, and 4) To what extent we can employ embeddings to facilitate link prediction. We find that it is insufficient to rely on the embeddings to reconstruct the original graph, to discover communities, and to predict links at a high precision. Thus, the embeddings by the state-of-the-art approaches can only preserve part of the topological structure.

Keywords: graph embedding, network representation learning, graph reconstruction, dimension reduction, graph mining.

1. Introduction

Graphs (also known as networks) are used in many branches of science as a way to represent the patterns of connections between the components of complex systems [48]. Recently, there has been a surge of interest in graph embedding that learns low-dimensional vector representations, or embeddings, for nodes to encode their structural information in the original graph [23,12,75]. After the embeddings are learned, graph analysis can be easily and efficiently carried out by applying off-the-shelf vector-based machine learning algorithms [59,58,68,6,78,21,56].

It is believed that the topological structure information should, to some extent, be preserved by the embeddings that are obtained by the state-of-the-art approaches. But how well is it preserved? This question is not yet investigated and this paper intends to answer them. In this paper, we propose four evaluation methods to evaluate the amount of information preserved by the embeddings. First, we investigate how well the graph

* This paper is an extension of the conference version [40].
can be reconstructed by the embeddings. Secondly, we study the divergence between the link distribution in the graph and the distribution derived from the embeddings. Thirdly, we focus on the difference between the communities discovered from the graph and the embeddings. Finally, we examine the effectiveness of embeddings for facilitating link prediction. We found that the current graph embedding approaches can only preserve part of the topological structure. It is insufficient to rely on the embeddings to reconstruct the original graph, to discover communities, and to predict links at a high precision.

The rest of the paper is organized as follows. Section 2 presents the definition of graph embedding. Section 3 proposes our methods in detail. Section 4 reports the experiment results for different graph embedding techniques based on the proposed evaluation methods. Section 5 surveys related work. Finally, Section 6 gives our conclusion.

2. Preliminaries and Definition of Graph Embedding

This section gives definitions of graph embedding. We begin with the symbols that will be used. Let us consider a simple graph $G = (V, E)$, where $V = \{v_i \mid i = 1, \ldots, n\}$ is the node set, and $E \subseteq V \times V$ is the edge set. We simply suppose the edge weight is uniformly 1. The adjacency matrix of G is denoted as A, with elements

$$A_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E; \\ 0 & \text{otherwise.} \end{cases}$$

$k_i = \sum_{j=1}^{n} A_{ij}$ is the degree of v_i.

Definition: Given a graph $G = (V, E)$, graph embedding is a mapping $\phi: v_i \mapsto e_i \in \mathbb{R}^d$ for $\forall i = 1, \ldots, n$, such that $d \ll n$ and the embeddings maximally preserve the structure of graph.

The most basic structure that should be preserved is the topological structure. That is, if there is a link between v_i and v_j, the corresponding embeddings e_i and e_j should be close to each other in the low dimension vector space, as shown in Figure 1.

3. Evaluating How Much Structure Are Preserved

In this section we propose four evaluation methods for studying how much graph structure are preserved by the embeddings. Our methods are carried out from four aspects: 1) graph
reconstruction based on the embeddings, 2) the divergence of the original link distribution and the embedding-derived distribution, 3) the consistency of communities discovered from the graph and embeddings, and 4) link prediction based on the embeddings. We will present them in the following.

3.1. Graph Reconstruction based on Embeddings

To evaluate how much topological structure information is preserved by the embeddings, we can use the embeddings to reconstruct a graph and examine the difference between the reconstructed graph and the original one. Following this idea, we propose an evaluation method based on the similarity of the two graphs. Our method contains two steps as illustrated in Figure 2. The first step is reconstructing the graph based on the embedding. The second step is calculating the similarity between the reconstructed graph and the original graph.

Reconstructing the Graph Given the embeddings \(\{e_i \mid i = 1, \cdots, n\} \), the similarity function for a pair of embeddings \(\text{SIM}(e_i, e_j) : (e_i, e_j) \to \mathbb{R} \), and the node degree sequence \(\{k_i \mid i = 1, \cdots, n\} \) of the original graph, we take the following procedure to obtain the reconstructed graph \(G' \).

1. \(G' \) keeps the same node set \(\{v_i \mid i = 1, \cdots, n\} \) as \(G \).
2. For each \(v_i \) whose degree is \(k_i \) in \(G \), create \(k_i \) links connecting \(v_i \) and the nodes whose corresponding embeddings are among the \(k_i \) most similar embeddings to \(e_i \), with the weight of each link equal to 0.5.

\(\text{SIM}(e_i, e_j) \) quantifies the similarity of \(e_i \) and \(e_j \) in the embedding space, and is dependent on the approach for generating the embeddings. For example, if an approach expresses the similarity by dot product, the similarity function would be based on dot product.

Note that for each created link we attach a weight of 0.5. This is because the link creation is a mutual process, i.e., for \(v_i \) we create a link to \(v_j \), and for \(v_j \) we may create another link to \(v_i \). As a result, \(G' \) keeps the same number of weights as \(G \).

Also note that \(G' \) can be exactly the same as \(G \) under the condition that for each node \(v_i \), the \(k_i \) most similar embeddings of \(e_i \) exactly correspond to the neighbor nodes of \(v_i \). Therefore, if the embeddings are good enough we can perfectly reconstruct the graph.
Evaluating the Graph Similarity Good embeddings that well preserve the topological structure will result in that the reconstructed graph G' is similar to the original graph G. Thus, we can evaluate the amount of preserved information by calculating the similarity between G and G'. Specifically, we use DELTACON as a metric to measure the similarity. DELTACON is scalable to large graphs and obeys the following axioms

- **Identity Property**: $\text{DELTACON}(G, G') = 1$ iff $G = G'$.
- **Symmetric Property**: $\text{DELTACON}(G, G') = \text{DELTACON}(G', G)$.
- **Zero Property**: $\text{DELTACON}(G, G') \to 0$ for $n \to \infty$, where G is the complete graph, and G' is the empty graph (i.e., the edge sets are complementary).

DELTACON essentially measures the differences in the corresponding node’s affinity of G and G', and thus it is based on global structure of the graphs. Specifically, the calculation of $\text{DELTACON}(G, G')$ contains three steps. First, we calculate the node affinity matrices S and S' for G and G', respectively. The node affinity matrix S can be expressed as

$$S = (I + \epsilon^2D - \epsilon A)^{-1}, \quad (2)$$

where ϵ is a positive constant encoding the influence between neighbors in G, and D is the degree diagonal matrix, with elements

$$D_{ij} = \begin{cases} k_i & \text{if } i = j; \\ 0 & \text{otherwise}. \end{cases} \quad (3)$$

The element S_{ij} indicates the affinity (influence) of node v_i to v_j in G. Similarly, we calculate the node affinity matrix S' for G'. Secondly, we calculate the root Euclidean distance between S and S'.

$$\text{ROOTED}(S, S') = \sqrt{\sum_{i,j} (S_{ij} - S'_{ij})^2} \quad (4)$$

Finally, we have

$$\text{DELTACON}(G, G') = \frac{1}{1 + \text{ROOTED}(S, S')} \quad (5)$$

$\text{DELTACON}(G, G') \in [0, 1]$. On the one extreme, a score of 0 implies that G' is totally irrelevant of G, implying that none of the topological structure information is preserved in the embeddings. On the other extreme, a score of 1 indicates that G' is a perfect reconstruction of G, implying that the topological structure are 100% preserved in the embeddings. Intermediate scores suggest situations in between the two extremes.

The graph reconstruction procedure requires a quadratic time complexity, since we need to calculate $\text{SIM}(e_i, e_j)$ for each pair of embeddings. Given the original graph and the reconstructed graph, the calculation of $\text{DELTACON}(G, G')$ needs another quadratic time complexity $[32, 31]$. Therefore, the whole evaluation method requires $O(n^2)$ complexity.
3.2. Divergence of the Original and Embedding-Derived Link Distributions

Our second method is to evaluate the KL Divergence between the link distribution derived from the embeddings and the empirical distribution observed from the original graph. Given the embeddings \(\{e_i \mid i = 1, \cdots, n\} \) and their similarity function \(\text{Sim}(e_i, e_j) \), we can define a link distribution

\[
P^e(v_i, v_j) \propto \frac{1}{1 + \exp(-\text{Sim}(e_i, e_j))}.
\]

(6)

The idea is that the more similar \(e_i \) and \(e_j \) are, the more likely a link will exist between \(v_i \) and \(v_j \). This is the link distribution derived from the embeddings. On the other hand, the empirical link distribution observed from the original graph is

\[
P^g(v_i, v_j) = \frac{A_{ij}}{\sum_{i<j} A_{ij}}.
\]

(7)

\(P^e \) and \(P^g \) are distributions defined over the space \(V \times V \). We can employ the KL-divergence \([33]\)

\[
\text{KL}(P^e, P^g) = -\sum_{v_i, v_j} P^e(v_i, v_j) \log P^g(v_i, v_j) + \sum_{v_i, v_j} P^e(v_i, v_j) \log P^e(v_i, v_j)
\]

(8)

to measure the distance between the two distributions. \(\text{KL}(P^e, P^g) \) approaching 0 indicates that the topological structure are well preserved in the embeddings.

Note that the calculation of \(P^g \) needs a linear time complexity, while the the calculation of \(P^e \) needs a quadric time complexity. As a result, the total complexity for this evaluation method is \(O(n^2) \).

3.3. Consistency of Communities Discovered from the Graph and Embeddings

Good embeddings should also preserve the mesoscopic graph structure, i.e., the community structure (clusters). Therefore, the third method for evaluating how well the topological structure is preserved is to measure the consistency of communities discovered from the original graph and from embeddings. Specifically, we employ the Louvain algorithm \([1]\) and the K-Means algorithm \([42]\) to discover the communities from the graph and embeddings, respectively \(^3\). Then, we estimate the consistency of the communities based on the Normalized Mutual Information (NMI) \([17,12]\) and Adjusted Rand Index (ARI) \([27]\).

Suppose \(\Omega^g \) and \(\Omega^e \) are community partitions for the graph and embeddings (node/embedding community label assignments). NMI is an information theoretic measure that calculates the amount of common information between two partitions:

\[
\text{NMI}(\Omega^g, \Omega^e) = \frac{-2 \sum_{i=1}^{c^g} \sum_{j=1}^{c^e} n_{ij}^{ge} \log(n_{ij}^{ge} n_i^g n_j^e)}{\sum_{i=1}^{c^g} n^g_i \log(n^g_i/n) + \sum_{j=1}^{c^e} n^e_j \log(n^e_j/n)}
\]

(9)

\(^3\) Note that we never know the true community structure. Hence we choose the most popular and widely accepted algorithms for detecting the communities.
where \(c^g \) is number of communities in \(\Omega^g \), \(c^e \) is number of communities in \(\Omega^e \), \(n \) is the total number of nodes, \(n_i^g \) is the number of nodes in the \(i \)-th community of \(\Omega^g \), \(n_i^e \) is the number of nodes in the \(j \)-th community of \(\Omega^e \), and \(n_{ij}^{ge} \) is the number of nodes that are both in the \(i \)-th community of \(\Omega^g \) and the \(j \)-th community of \(\Omega^e \). If \(\Omega^g \) and \(\Omega^e \) match completely, we have a maximum NMI value of 1.0, whereas if \(\Omega^g \) and \(\Omega^e \) are totally independent of one another, we have a minimum NMI value of 0.0.

On the other hand, ARI computes a similarity by considering all pairs of samples and counting pairs that are assigned in the same or different communities in \(\Omega^g \) and \(\Omega^e \). The mathematical definition of ARI is

\[
\text{ARI}(\Omega^g, \Omega^e) = \frac{\sum_{i=1}^{c^g} \sum_{j=1}^{c^e} (n_{ij}^{ge})^2 - \left[\sum_{i=1}^{c^g} \left(\frac{n_i^g}{2} \right) \sum_{j=1}^{c^e} \left(\frac{n_j^e}{2} \right) \right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i=1}^{c^g} \left(\frac{n_i^g}{2} \right) \sum_{j=1}^{c^e} \left(\frac{n_j^e}{2} \right) \right] - \left[\sum_{i=1}^{c^g} \left(\frac{n_i^g}{2} \right) \sum_{j=1}^{c^e} \left(\frac{n_j^e}{2} \right) \right] / \binom{n}{2}} - 1. \tag{10}
\]

The ARI has the maximum value 1 when \(\Omega^g \) and \(\Omega^e \) agree perfectly, and its expected value is 0 in the case that \(\Omega^g \) and \(\Omega^e \) are totally independent of one another. A larger ARI means a higher agreement between \(\Omega^g \) and \(\Omega^e \).

The Louvain algorithm has time complexity of \(\mathcal{O}(n \log n) \), while the K-Means algorithm has time complexity of \(\mathcal{O}(nc^edl) \), where \(l \) is the number of iterations for the algorithm to converge. Moreover, the calculation of NMI and ARI has time complexity \(\mathcal{O}(n^2 \max(c^g, c^e)) \) in the worst case. Note that \(c^g, c^e, d, l \ll n \) and thus can be ignored. Consequently, the total complexity for this evaluation method is \(\mathcal{O}(n^2) \).

3.4. Link Prediction Based on Embeddings

Finally, we evaluate the effectiveness of the embeddings for facilitating link prediction. This is based on the following idea: Suppose embeddings can well preserve the graph topological structure; If we remove a small amount of the topology information of the original graph, the resulting embeddings should still keep the main structure of the graph somehow; Therefore, we can use the embedding to facilitate the recovery of some of the removed information, i.e., link prediction.

Specifically, given a graph \(G \) we remove 10% of the links and obtain \(G' \). We test how the embeddings learned from \(G' \) can help predict the removed links. Suppose we focus on \(v_i \), and \((v_i, v_j)\) is a removed link that we aim to predict. Also note that \(\text{Sim}(e_i, e_k) \) is the score for predicting \((v_i, v_k)\) for all \(v_k \). Then, given the query \((v_i, v_j)\), we can rank \(v_j \) against all other nodes based on the scores. A high rank for \(v_j \) indicates that we are able to predict \((v_i, v_j)\) in a positive sense. Finally, we evaluate the performance for all the queries based on Mean Reciprocal Rank (MRR) and HITS@K:

\[\text{We filter out the nodes } v_k \text{ that already has a link } (v_i, v_k) \text{ in } G'.\]
How Much Topological Structure Is Preserved by Graph Embeddings?

\[\text{MRR} = \frac{1}{|Q|} \sum_{t=1}^{\frac{|Q|}{2}} \frac{1}{\text{Rank}_t} \]

\[\text{HITS@K} = \frac{1}{|Q|} \sum_{t=1}^{\frac{|Q|}{2}} \text{Hits}_t \]

\[\text{Hits}_t = \begin{cases} 1 & \text{if } \text{Rank}_t \leq K; \\ 0 & \text{otherwise}. \end{cases} \]

where \(Q \) is the set of queries, \(\text{Rank}_t \) refers to the rank position of \(v_j \) for the \(t \)-th query \((v_i, v_j)\). \(\text{MRR} \in (0, 1] \) and \(\text{HITS@K} \in [0, 1] \). A maximum value of 1.0 implies we can predict all the links perfectly.

For a query \((v_i, v_j)\), the procedure for ranking \(v_j \) against all other nodes requires a time complexity of \(O(n) \). Therefore, the total complexity for this evaluation method is \(O(|Q|n) \).

4. Experiment

In this section, we show the results based on the proposed evaluation methods. We consider the following graph embedding approaches that represent the state-of-the-art.

- **GraRep (GRep)** [4]: This approach defines a loss function by integrating the transition probabilities. Minimizing this loss function has proven to be equivalent to factorizing a matrix that is related to the \(k \)-step transition probability matrix. For each \(k \) the factorization produces a sub-embedding. Then it concatenates sub-embeddings on different \(k \) as the final embedding solution.

- **HOPE** [50]: This approach learns embeddings by factorizing the Katz similarity [29] matrix. It uses generalized Singular Value Decomposition algorithm to obtain the embeddings efficiently.

- **DeepWalk (DW)** [51]: This approach first transforms a graph into a collection of linear sequences of nodes using multiple random walks. It then learns embeddings by applying the Skip-Gram model [46,47], originating from natural language processing, to the node sequence.

- **Node2Vec (N2V)** [21]: This approach is a variant of DeepWalk. It also samples node sequences and feed them to the Skip-Gram model. Instead of DeepWalk’s random search sampling strategy, Node2Vec uses 2nd-order random walks that can bias towards a particular search strategy.

- **LINE** [57]: This approach learns \(d \)-dimensional embeddings in two separate phases. In the first phase, it learns \(d/2 \) dimensions by BFS-style simulations over immediate neighbors of nodes. In the second phase, it learns the next \(d/2 \) dimensions by sampling nodes strictly at a 2-hop distance from the source nodes. Finally, it concatenates the embeddings learned at the two phases.

- **GRA** [41]: This approach learns embeddings by factorizing a Global Resource Allocation similarity matrix that is an extension of the Katz and Resource Allocation similarities [80].
Table 1. Statistics of the datasets: number of nodes $|\mathcal{V}|$; number of edges $|\mathcal{E}|$.

| Dataset | $|\mathcal{V}|$ | $|\mathcal{E}|$ |
|-------------|----------------|----------------|
| Kaggle3059 | 157 | 2,474 |
| Kaggle4406 | 399 | 3,412 |
| BrazilAir | 131 | 1,003 |
| EuropeAir | 399 | 5,993 |
| USAir | 1,190 | 13,599 |
| Cora | 2,708 | 5,278 |
| Citeseer | 3,264 | 4,551 |
| DBLP | 13,184 | 47,937 |
| WikiPage | 2,363 | 11,596 |
| WikiWord | 4,777 | 92,295 |
| PPI | 3,860 | 37,845 |
| BlogCatalog | 10,312 | 333,983 |

According to the mechanism of these approaches, the embeddings’ similarity function can be uniformly expressed as

$$\text{SIM}(e_i, e_j) = e_i^\top e_j.$$ \hspace{1cm} (14)

In addition, we consider randomly generated embeddings as a baseline. We do not include approaches for supervised graph embedding because they require additional information such as node labels for training \cite{74,61,63,30}.

We set the embedding dimension as 120 for all approaches. Moreover, the parameter settings for these approaches are the same as the original literature. Specifically, for DeepWalk and Node2Vec, we set the window size to 10, the walk length to 80, and the number of walks per node to 10. For HOPE and GRA, we set the decay rate to 0.95 divided by the spectral radius of A and AD^{-1}, respectively. For LINE, we set the number of negative samples to 5. For GraRep, we set the maximum transition step to 6. Lastly, for Node2Vec, we obtain the best in-out and return hyperparameters based on a grid search over \{0.25, 0.50, 1, 2, 4\}.

We use a variety of real-world graphs from various domains as the testing datasets. A brief description of them follows.

– Kaggle3059 \cite{8}: Kaggle4406 \cite{8}: Graphs representing the friendship of Facebook users.

– BrazilAir \cite{55}, EuropeAir \cite{55}, USAir \cite{55}: Graphs representing the air traffics in Brazil, Europe, and the USA, respectively. Nodes correspond to airports and edges denote the existence of commercial flights.

– Cora \cite{72}, Citeseer \cite{30}, DBLP \cite{50}, BlogCatalog: Graphs representing the citation relationship of scientific papers.

5 https://www.kaggle.com/c/learning-social-circles/data
6 http://www.anac.gov.br/
7 http://ec.europa.eu/
8 https://transtats.bts.gov/
9 https://linqs.soe.ucsc.edu/data/
10 https://aminer.org/billboard/citation/
Table 2. DELTACON scores for different approaches (the higher the better).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Approaches</th>
<th>Random</th>
<th>GRep</th>
<th>HOPE</th>
<th>LINE</th>
<th>GRA</th>
<th>DW</th>
<th>N2V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaggle3059</td>
<td></td>
<td>0.2911</td>
<td>0.5687</td>
<td>0.4673</td>
<td>0.4677</td>
<td>0.5074</td>
<td>0.3830</td>
<td>0.4083</td>
</tr>
<tr>
<td>Kaggle4406</td>
<td></td>
<td>0.3780</td>
<td>0.5640</td>
<td>0.5445</td>
<td>0.5831</td>
<td>0.5947</td>
<td>0.4658</td>
<td>0.5289</td>
</tr>
<tr>
<td>BrazilAir</td>
<td></td>
<td>0.3522</td>
<td>0.4448</td>
<td>0.4624</td>
<td>0.3744</td>
<td>0.5458</td>
<td>0.3625</td>
<td>0.3857</td>
</tr>
<tr>
<td>EuropeAir</td>
<td></td>
<td>0.3814</td>
<td>0.4592</td>
<td>0.4085</td>
<td>0.4125</td>
<td>0.4522</td>
<td>0.4333</td>
<td>0.4542</td>
</tr>
<tr>
<td>USAir</td>
<td></td>
<td>0.3532</td>
<td>0.4774</td>
<td>0.4010</td>
<td>0.3830</td>
<td>0.4862</td>
<td>0.3898</td>
<td>0.4231</td>
</tr>
<tr>
<td>Cora</td>
<td></td>
<td>0.4259</td>
<td>0.4880</td>
<td>0.5408</td>
<td>0.6099</td>
<td>0.5556</td>
<td>0.5516</td>
<td>0.6146</td>
</tr>
<tr>
<td>Citeseer</td>
<td></td>
<td>0.4280</td>
<td>0.4681</td>
<td>0.5384</td>
<td>0.5730</td>
<td>0.5522</td>
<td>0.5510</td>
<td>0.6202</td>
</tr>
<tr>
<td>DBLP</td>
<td></td>
<td>0.4001</td>
<td>0.4855</td>
<td>0.4947</td>
<td>0.5255</td>
<td>0.5064</td>
<td>0.5512</td>
<td>0.5907</td>
</tr>
<tr>
<td>WikiPage</td>
<td></td>
<td>0.4008</td>
<td>0.5280</td>
<td>0.5510</td>
<td>0.5777</td>
<td>0.5610</td>
<td>0.5407</td>
<td>0.5564</td>
</tr>
<tr>
<td>WikiWord</td>
<td></td>
<td>0.4051</td>
<td>0.4752</td>
<td>0.4746</td>
<td>0.4830</td>
<td>0.5068</td>
<td>0.5022</td>
<td>0.5168</td>
</tr>
<tr>
<td>PPI</td>
<td></td>
<td>0.3999</td>
<td>0.4753</td>
<td>0.4903</td>
<td>0.4945</td>
<td>0.5052</td>
<td>0.5102</td>
<td>0.5223</td>
</tr>
<tr>
<td>BlogCatalog</td>
<td></td>
<td>0.3882</td>
<td>0.4579</td>
<td>0.4700</td>
<td>0.4495</td>
<td>0.4794</td>
<td>0.4794</td>
<td>0.4838</td>
</tr>
</tbody>
</table>

Table 3. KL-divergence scores for different approaches (the lower the better).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Approaches</th>
<th>Random</th>
<th>GRep</th>
<th>HOPE</th>
<th>LINE</th>
<th>GRA</th>
<th>DW</th>
<th>N2V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaggle3059</td>
<td></td>
<td>1.6519</td>
<td>1.2567</td>
<td>1.5330</td>
<td>1.5347</td>
<td>1.5068</td>
<td>1.5229</td>
<td>1.5170</td>
</tr>
<tr>
<td>Kaggle4406</td>
<td></td>
<td>3.2092</td>
<td>2.6315</td>
<td>3.0915</td>
<td>3.0773</td>
<td>3.0639</td>
<td>3.0967</td>
<td>3.1023</td>
</tr>
<tr>
<td>BrazilAir</td>
<td></td>
<td>2.2033</td>
<td>1.9945</td>
<td>2.0438</td>
<td>2.0890</td>
<td>2.1268</td>
<td>2.1258</td>
<td>2.1119</td>
</tr>
<tr>
<td>EuropeAir</td>
<td></td>
<td>2.6476</td>
<td>2.4191</td>
<td>2.5451</td>
<td>2.5748</td>
<td>2.5616</td>
<td>2.5327</td>
<td>2.5126</td>
</tr>
<tr>
<td>USAir</td>
<td></td>
<td>4.0158</td>
<td>3.5418</td>
<td>3.9185</td>
<td>3.9315</td>
<td>3.8230</td>
<td>3.8590</td>
<td>3.8406</td>
</tr>
<tr>
<td>DBLP</td>
<td></td>
<td>7.5638</td>
<td>6.9417</td>
<td>7.4929</td>
<td>7.5001</td>
<td>7.2152</td>
<td>7.4774</td>
<td>7.4936</td>
</tr>
<tr>
<td>WikiPage</td>
<td></td>
<td>5.5452</td>
<td>4.9841</td>
<td>5.4620</td>
<td>5.4642</td>
<td>5.3207</td>
<td>5.3809</td>
<td>5.4388</td>
</tr>
<tr>
<td>PPI</td>
<td></td>
<td>5.3436</td>
<td>4.9735</td>
<td>5.2719</td>
<td>5.2673</td>
<td>5.2381</td>
<td>5.1422</td>
<td>5.1680</td>
</tr>
<tr>
<td>BlogCatalog</td>
<td></td>
<td>5.2800</td>
<td>4.8913</td>
<td>5.0656</td>
<td>5.0847</td>
<td>5.0431</td>
<td>5.0068</td>
<td>4.9814</td>
</tr>
</tbody>
</table>

- WikiPage 61 A graph of webpages in Wikipedia, with edges indicating hyperlinks.
- WikiWord 12 A co-occurrence graph of words appearing in Wikipedia.
- PPI 21 A protein-protein interaction graph for Homo Sapiens.
- BlogCatalog 13 A graph of social relationships of the bloggers listed on the BlogCatalog website.

Table 1 summarizes the number of nodes and edges in each dataset. Table 2 lists the DELTACON for graph reconstruction. Table 3 presents the KL-divergence of the original

11 https://github.com/thunlp/MMDW/tree/master/data/
12 http://snap.stanford.edu/node2vec/#datasets/
13 http://socialcomputing.asu.edu/datasets/BlogCatalog3/
Table 4. NMI scores for different approaches (the higher the better).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Random</td>
</tr>
<tr>
<td>Kaggle3059</td>
<td>0.0839</td>
</tr>
<tr>
<td>Kaggle4406</td>
<td>0.1397</td>
</tr>
<tr>
<td>BrazilAir</td>
<td>0.0713</td>
</tr>
<tr>
<td>EuropeAir</td>
<td>0.0165</td>
</tr>
<tr>
<td>USAir</td>
<td>0.0349</td>
</tr>
<tr>
<td>Cora</td>
<td>0.1919</td>
</tr>
<tr>
<td>Citeseer</td>
<td>0.5153</td>
</tr>
<tr>
<td>DBLP</td>
<td>0.0110</td>
</tr>
<tr>
<td>WikiPage</td>
<td>0.0270</td>
</tr>
<tr>
<td>WikiWord</td>
<td>0.0033</td>
</tr>
<tr>
<td>PPI</td>
<td>0.0091</td>
</tr>
<tr>
<td>BlogCatalog</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

Table 5. ARI scores for different approaches (the higher the better).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Random</td>
</tr>
<tr>
<td>Kaggle3059</td>
<td>0.0129</td>
</tr>
<tr>
<td>Kaggle4406</td>
<td>0.0027</td>
</tr>
<tr>
<td>BrazilAir</td>
<td>0.0236</td>
</tr>
<tr>
<td>EuropeAir</td>
<td>-0.0002</td>
</tr>
<tr>
<td>USAir</td>
<td>0.0000</td>
</tr>
<tr>
<td>Cora</td>
<td>0.0001</td>
</tr>
<tr>
<td>Citeseer</td>
<td>0.0002</td>
</tr>
<tr>
<td>DBLP</td>
<td>0.0000</td>
</tr>
<tr>
<td>WikiPage</td>
<td>0.0014</td>
</tr>
<tr>
<td>WikiWord</td>
<td>0.0004</td>
</tr>
<tr>
<td>PPI</td>
<td>-0.0001</td>
</tr>
<tr>
<td>BlogCatalog</td>
<td>-0.0001</td>
</tr>
</tbody>
</table>

and embedding-derived link distributions. Table 4 and Table 5 report the NMI and ARI for the consistency of the communities discovered from graph and embeddings. Table 6 and Table 7 reveal the MRR and HITS@K for link prediction based on embeddings. Based on these results, we have the following observations.

- The DELTA for evaluating graph reconstruction reveals that GraRep and GRA are more successful in smaller graphs such as Kaggle3059, Kaggle4406, BrazilAir, EuropeAir, and USAir. On the other hand, Node2Vec outperforms the others in 6 larger graphs including Cora, Citeseer, DBLP, WikiWord, PPI, and BlogCatalog, but shows less success in the other graphs (especially in Kaggle3059 and BrazilAir). This

14 We only review the result for K=10 since we experience similar behaviors for other values of K.
is because that Node2Vec uses two hyperparameters to control the search strategy and this enables it to learn long-term dependencies in larger graphs.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Random</td>
</tr>
<tr>
<td>Kaggle3059</td>
<td>0.0454</td>
</tr>
<tr>
<td>Kaggle4406</td>
<td>0.0163</td>
</tr>
<tr>
<td>BrazilAir</td>
<td>0.0621</td>
</tr>
<tr>
<td>EuropeAir</td>
<td>0.0194</td>
</tr>
<tr>
<td>USAir</td>
<td>0.0091</td>
</tr>
<tr>
<td>Cora</td>
<td>0.0038</td>
</tr>
<tr>
<td>Citeseer</td>
<td>0.0015</td>
</tr>
<tr>
<td>DBLP</td>
<td>0.0008</td>
</tr>
<tr>
<td>WikiPage</td>
<td>0.0031</td>
</tr>
<tr>
<td>WikiWord</td>
<td>0.0022</td>
</tr>
<tr>
<td>PPI</td>
<td>0.0019</td>
</tr>
<tr>
<td>BlogCatalog</td>
<td>0.0013</td>
</tr>
</tbody>
</table>

The KL-divergence for evaluating the divergence of the original and embedding-derived link distribution suggests that GraRep demonstrates the best performance in all of the graphs. A main reason is that GraRep is adapt in separating the embeddings of dissimilar nodes, i.e., putting the embeddings of dissimilar nodes far away from each other. Eq. (6) indicates that in the derived link distribution there is a probability for each pair of nodes, while Eq. (7) implies that in the empirical link distribution only a few pairs of nodes have link probability. Therefore, properly separating the embeddings of dissimilar nodes will help achieve a better KL-divergence score.

The NMI for evaluating the consistency of the communities discovered from graph and embeddings indicates that Node2Vec achieves good results in Kaggle3059, Kaggle4406, USAir, Cora, Citeseer, WikiPage graphs. A common feature of these graph is that they are unconnected. This means that the graph is naturally separated into several communities, each representing a connected component. Therefore, the community partitions by graph and embeddings can easily reach a relatively high agreement for a unconnected graph, and contribute to the high NMI scores. On the other hand, the ARI scores are more strict on the exact partition of a large connected component into small communities. Hence, the ARI scores are much lower than NMI scores. For example, Node2Vec obtains NMI scores of 0.7229 and 0.8272 on Cora and Citeseer graphs, while the corresponding ARI scores are as low as 0.2922 and 0.1966, respectively.

The MRR and HITS@10 for evaluating the embedding-based link prediction indicate the similar performance patterns. LINE and GRA outperforms the other approaches by a large margin. For example, GRA achieves passable performance in Kaggle3059, Kaggle4406, and BrazilAir graphs, while LINE delivers an acceptable performance in Cora and Citeseer graphs.

The performances are graph-dependent. For example, although LINE exhibits good performances in 6 graphs for link prediction, it is far below the other approaches.
Table 7. HITS@10 scores for different approaches (the higher the better).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Random</td>
</tr>
<tr>
<td>Kaggle3059</td>
<td>0.0907</td>
</tr>
<tr>
<td>Kaggle406</td>
<td>0.0278</td>
</tr>
<tr>
<td>BrazilAir</td>
<td>0.1535</td>
</tr>
<tr>
<td>EuropeAir</td>
<td>0.0300</td>
</tr>
<tr>
<td>USAir</td>
<td>0.0129</td>
</tr>
<tr>
<td>Cora</td>
<td>0.0047</td>
</tr>
<tr>
<td>Citeseer</td>
<td>0.0000</td>
</tr>
<tr>
<td>DBLP</td>
<td>0.0005</td>
</tr>
<tr>
<td>WikiPage</td>
<td>0.0047</td>
</tr>
<tr>
<td>WikiWord</td>
<td>0.0022</td>
</tr>
<tr>
<td>PPI</td>
<td>0.0024</td>
</tr>
<tr>
<td>BlogCatalog</td>
<td>0.0018</td>
</tr>
</tbody>
</table>

in another two graphs (BrazilAir and EuropeAir). Similarly, GRA dramatically outperforms the others for community discovery in graphs such as Cora, Citeseer, and DBLP. However, it is less successful in graphs such as BrazilAir and WikiWord.

- The performances are also task-dependent. For example, GraRep consistently outperforms the others in all of the 12 graphs for KL-divergence scores, but it just puts in an average performance in the other three tasks. Similarly, Node2Vec demonstrates acceptable performance in graph reconstruction and community discovery, but it conspicuously fails in link prediction.

- The DELTACON, KL-divergence, NMI, ARI, MRR, and HITS@10 scores all indicate that graph embedding approaches are significantly outperforms the randomly generated embeddings. However, they are far from perfect. For example, the DELTACON scores mostly range between 0.4 and 0.6, but none of the approaches obtains scores closing to 1.0. NMI and ARI scores in graphs such as BrazilAir and WikiWord indicates that the embedding communities are quite different from graph communities. Moreover, the MRR and HITS@10 scores in large graphs such as WikiWord, PPI, and BlogCatalog imply that embeddings are not always trustworthy for link prediction. Therefore, the embeddings preserve only part of the topological structure of the graph. It is insufficient to rely on the embeddings to reconstruct the original graph, to discover communities, and to predict links at a high precision. This fact applies to approaches such as HOPE and LINE that is originally designed to preserve high-order proximity of the graph. One important reason is because of the highly non-linear structure of the graph, which poses a great challenge.

5. Related Work

Recently, the graph embedding problem has attracted a great deal of interest. Researchers have proposed various approaches such as matrix factorization [4,7,50,72] and deep neural networks [63,11,69]. The topics are also varied, including unsuper-
How Much Topological Structure Is Preserved by Graph Embeddings?

This paper studies the problem of how well the topological structure information is preserved by the embeddings. One relevant research is [50,63] that use the metric PRECISION@K for measuring the graph reconstruction precision. However, this metric is based on graph reconstruction at the local scale of each node and thus cannot give a trustworthy evaluation. We give an explanation using the illustrations in Figure 3. Figure 3(a) shows a graph with the top node weakly connected to a cluster of 6 nodes. Figure 3(b) and Figure 3(c) are two reconstructed graphs of Figure 3(a). It is obvious that Figure 3(b) is a better reconstruction since the main structure of the original graph are kept. On the other hand, Figure 3(c) is a worse reconstruction, since the top node becomes a member of the cluster and the graph structure has been totally changed. However, the local metric PRECISION@K fails to discriminate the two examples. For example, let us look at node ‘3’ and ‘4’. The evaluation of these two nodes based on PRECISION@2 can be as high as 1.0 for Figure 3(c) while it is as low as 0.5 for Figure 3(b). On the other hand, the global metric DELTA can provide an unbiased evaluation of 0.6477 for Figure 3(b) and 0.5584 for Figure 3(c). Moreover, PRECISION@K is computationally expensive, especially for large graphs. To fasten the computation, we usually employ the sampling strategy, but it will cause a serious problem of unstable evaluation. To the best of our knowledge, we are the first to propose the evaluation for graph reconstruction at the global scale of graphs.

There are research on embedding-based link prediction. One line of such research focuses on the knowledge graphs, which can be viewed as a multi-relational graph composed of entities (nodes) and relations (different types of edges) [38,70,2,13,49]. Each edge is represented as a triple of the form (head entity, relation, tail entity). Link prediction in knowledge graph is typically referred to as the task of predicting an entity that has a specific relation with another given entity [60]. For example, (?, PresidentOf, USA) is to predict the president of USA. Another line centers on plain graphs, as the topic in this paper. The settings are also similar to what we have discussed in Section 3.4, i.e., to remove a small amount of the links and use the embeddings to predict the removed links [21,50]. The difference is that previous research overwhelmingly employ the Area Under the Curve (AUC) [16] as a metric for evaluation. AUC can be interpreted as the expectation that a target link is predicted with a higher probability than a randomly chosen non-existent link. However, considering the sparse feature of graphs, there are dramatically larger number of non-existent links than the number of removed links. Consequently, AUC is not an unbiased metric for evaluation and it is much easy to achieve a high score based on it [43].

To the best of our knowledge, there is few research for studying the divergence of the original link distribution and the embedding-derived distribution and the consistency of the communities discovered from the graph and embeddings.
Fig. 3. Examples of graph reconstruction. (a) The original graph. (b) A reconstructed graph that has similar structure as the original one. (c) A reconstructed graph that has, to some extent, changed the structure of the original one. The red color emphasizes the difference between the three graphs.

6. Conclusion

We studied how well the graph topological structure is preserved by the embeddings from four aspects: 1) graph reconstruction based on the embeddings, 2) the divergence of the original link distribution and the embedding-derived distribution, 3) the consistency of the communities discovered from graph and embeddings, and 4) link prediction based on the embeddings. We did experiments on 12 graphs for 6 state-of-the-art graph embedding approaches. We found that the embeddings by these approaches can only preserve part of the topological structure. It is insufficient to rely on the embeddings to reconstruct the original graph, to discover communities, and to predict links at a high precision. This suggests that although the current graph embedding techniques can benefit graph analysis tasks such as label classification, we still cannot employ them for applications such as graph compression.

Graph embedding is not perfectly solved and there is still some room for improvement. Most of the embedding approaches ignore the hubness phenomenon that results in the heavy-tail degree distribution [54]. How to effectively utilize the dimensionality of the embeddings to encode the heavy-tail degree distribution will be left for our future work.

On the other hand, the proposed evaluation methods could be a standard for studying the problem of graph reconstruction or graph compression based on the embeddings, and be a benchmark for graph embedding approaches.

Acknowledgments. This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO). We would like to thank JSPS Grant-in-Aid for Early-Career Scientists (Grant Number 19K20352), JSPS Grant-in-Aid for Scientific Research(B) (Grant Number 17H01785) and JST CREST (Grant Number JP-MJCR1687).

References

Xin Liu et al.

Xin Liu is a researcher of The National Institute of Advanced Industrial Science and Technology (AIST). He received a Doctor degree in Computer Science from Tokyo Institute of Technology in 2011. His main research interests are graph mining, data mining, machine learning, and neural networks.

Chenyi Zhuang joined Artificial Intelligence Research Center (AIRC), AIST as a researcher in April 2018. Prior to that, during October 2017 and March 2018, he was a post-doctor in Kyoto University. He received the BS degree in SE from Nanjing University in 2011, the MS degree and PhD degree in Informatics from Kyoto University in 2014 and 2017, respectively. In between, from 2015 to 2018, he was also serving as a young scientist in Japan Society for the Promotion of Science (JSPS). His current research primarily involves structured data mining, machine learning and urban computing.

Tsuyoshi Murata is an associate professor of the department of computer science in Tokyo Institute of Technology. He has been doing research on artificial intelligence, especially complex networks, machine learning and data mining. He served as one of the directors of The Japanese Society for Artificial Intelligence from 2013 to 2015.

Kyoung-Sook Kim is now the team leader of Data Platform Research Team at the Artificial Intelligence Research Center (AIRC) of AIST in Japan. She served as a researcher of National Institute of Information and Communications Technology (NICT) in Japan from 2007 to 2014. She received my B.S., M.S., and Ph.D. Degrees in Computer Science from Pusan National University in Korea in 1998, 2001, and 2007, respectively. She is also serving as a co-chair of OGC Moving Features Standard Working Group and an expert of ISO TC204 WG3. Her research interests are in Geo-enabled Computing Framework based on GIS, Location-based Services, Spatiotemporal databases, Big data analysis, Machine learning, etc.

Natthawut Kertkeidkachorn received a Ph.D. degree in Informatics from Sokendai (The Graduate University for Advanced Studies), Japan in 2017. He is currently a researcher at Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology and a visiting researcher at National Institute of Informatics, Japan. His research interests include the Semantic Web, machine learning and natural language processing.

Received: October 1, 2018; Accepted: June 3, 2019.