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Abstract. Several previous works proposed techniques to detect outliers in graph
data. Usually, some complex dataset is modeled as a graph and a technique for de-
tecting outliers in graphs is applied. The impact of the graph model on the outlier
detection capabilities of any method has been ignored. Here we assess the impact
of the graph model on the outlier detection performance and the gains that may be
achieved by using multiple graph models and combining the results obtained by
these models. We show that assessing the similarity between graphs may be a guid-
ance to determine effective combinations, as less similar graphs are complementary
with respect to outlier information they provide and lead to better outlier detection.
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1. Introduction

Outlier detection is a challenging problem, since the concept of outlier is problem-de-
pendent and it is hard to capture the relevant dimensions in a single metric. The inherent
subjectivity related to this task just intensifies its degree of difficulty. The increasing com-
plexity of the datasets as well as the fact that we are deriving new datasets through the
integration of existing ones is creating even more complex datasets. Consequently, meth-
ods have been specialized in various ways, e.g., for high-dimensional data [45,18,26], for
sequence data [8], or for spatial data [38]. Graphs, which are able to express a variety of
rich data relationships [2], reinforce the trend towards more complex concepts of outliers.

Ensemble techniques have been used in outlier detection (including outliers in graphs
[32]). Even though ensemble techniques are not yet well studied nor established for outlier
detection in graphs, this powerful approach becomes more and more frequent on relational
datasets, mainly because of the benefits of combining individual outlier detection results,
tackling the problem from multiple perspectives [42]. The focus of existing techniques
is on the design of diverse ensemble members and on the combination strategies to put
individual results together in an ensemble, but they are always relying on the information
available in a given graph model of some target data. However, different kinds of outliers
may be easier or harder to detect in different graph models derived from the same original
raw data.

Normally, the graph representations or models found in the literature to represent
real-world relations were created from decisions made by the user, defining which are the
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nodes and which are the edges. Complex web sites or databases rich in information such
as Facebook, DBLP, and Twitter, among others, can be modeled as graphs in numerous
possible ways. For example, Facebook user data could be represented as a graph where
each node represents a person and each edge represents the existence of a friendship
connection between nodes. But we could also connect people that have common interests,
the same workplace, university, etc. Or we could be interested in modeling events as nodes
and connect two events with an edge if the same people attended both. Thus, these graph
models contain a bias built in by the user when generating such graphs. Obviously this
bias can be of great value to some users but counter-productive to other users, depending
on the task that will be performed in such graphs. Users may create the graphs according
to the properties that they define necessary to facilitate the task of extracting information
in such graphs. However, the choice of such a bias, which is often overlooked, is striking
in the final outcome of the task that will be executed on the graphs.

Generating multiple graph models for some raw data and combining results obtained
on those different models is a strategy to tackle more complex and diverse outliers. How-
ever, the generation of a graph for some given data is problem dependent. Although the
model dimensions are usually intuitive and the analyst is able to enumerate them, it is
hard to assess which dimensions effectively improve the outlier detection. We, therefore,
make our assessment using different graph models, following different intuitions about
which data aspects we want to model, but also diversified by some random parameters.
Note that we are not proposing a way to automatically generate multiple graph models
given a database. One could debate whether it is even possible as just the data analyst
may know different dimensions of a particular graph. We assess the similarity of graphs
as a possible guiding principle in assembling ensembles in the absence of ground truth,
i.e., in the unsupervised learning task of outlier detection.

Let us summarize in the following list the contributions of this work:

1. We devise a methodology for the quantitative assessment of the gains of multiple
graph models for some given database.

2. We explore two similarity-based strategies for selecting ensemble members from
multiple graph models.

3. We present a quantitative experimental evaluation of outlier detection ensembles
based on multiple graph models using synthetic data, including comparison to sin-
gle graph models.

4. We evaluate the gains of employing multiple graph models using two outlier detection
algorithms and four combination techniques.

5. We perform three case studies on data derived from DBLP, from Citation Network,
and from Facebook and provide quantitative and qualitative insights regarding multi-
ple graph models.

6. We also present support to advise the practical data analyst to employ multiple graph
models with a preference for more diverse graphs over just more graphs.

This paper is an extended version of our previous conference paper [6]. The main exten-
sions are the use of an additional similarity measure (DeltaCon [17]), an additional base
outlier detection method (Radar [22]), additional combination techniques (mean, max and
borda), and an additional dataset (Citation Network).

The remainder of this study is organized as follows. We discuss related work in Sec-
tion 2. We describe our methodology to characterize the gains of multiple graph models
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and to compose an ensemble based on a set of multiple graph models in Section 3 and
its implementation in case studies in Section 4. We analyze and discuss the results in
Section 5. We conclude the paper in Section 6.

2. Related Work

To the best of our knowledge, there is no previous work that analyzes the impact of us-
ing multiple graph models on the quality of outlier detection. However, Rotabi et al. [34]
use multiple overlapping networks to solve the strong tie detection task. They combine
information provided by two different graphs (a dense and a sparse graph) from the same
dataset (e.g., Twitter) to predict strong ties. They made experiments with one dense graph
and four sparse graphs from their Twitter dataset: mutual follow, phone book, email ad-
dress book, and direct message, respectively. To generate multiple graph models and to
combine information extracted from them to improve the prediction is related to our ap-
proach. However, the tasks of outlier detection and of building ensembles for outlier de-
tection are different and come with different challenges.

Two particular areas of outlier detection relate to our work: methods to detect outliers
in (single) graphs and methods to combine outlier results (ensembles). In the following
subsections we survey some methods for outlier detection in graphs, highlighting the
principles of the method employed in our experiments, and sketch some relevant research
in ensemble methods for outlier detection.

2.1. Outlier Detection in Static Graphs

Various methods have been proposed to detect outliers in static graphs [2]. On plain
graphs, the outliers may be identified based on structural behavior [1,13] or community
behavior [7,40,41]. On attributed graphs, outliers may also be identified by structural be-
havior, looking for unusual substructures [29,23]. We focus on detecting community (or
contextual) outliers on static attributed graphs.

The CODA algorithm [12] detects contexts and, consequently, the nodes that have
not been assigned to any context as outliers. CODA results are binary: a node is either an
outlier or an inlier, that is, CODA does not rank the outliers. To perform a ranking and also
to identify outliers in subspaces, ConSub [36] statistically selects congruent subspaces.
GOutRank [27] is based on clustering algorithms in subspaces and scores nodes according
to their membership in multiple subspace clusters. FocusCO [30] detects clusters and
corresponding outliers in a user-driven manner.

ConOut [35] assigns each node to a single context (subgraph) and its statistically rel-
evant subset of attributes. As we use this method in the experiments in this work, we
describe its central ideas in more detail. The context selection step aims to find local
neighborhoods that are similar with respect to the graph structure. For example, if two
nodes share a large number of neighbors, they should belong to the same context. Overall,
the context of a node is the reflexive transitive closure of adjacent nodes that are signif-
icantly similar to the first. The next step is to select attributes for each context through
the comparison of the distribution of all attribute values in the local context to the whole
dataset distribution. A statistical test (F-test or Kolmogorov-Smirnov test) checks whether
the context values present a significantly smaller variance compared to the entire dataset



568 Guilherme O. Campos et al.

distribution. The attributes are locally chosen according to this test. The anomaly score is
finally based on the multiplication of a local graph density and a local attribute deviation.
These two values represent structural deviations (e.g., a node that does not present the
same structural pattern as its context members) and attribute deviations (e.g., a node that
has different attribute values than its context members).

A recently proposed approach named Radar [22] detects outliers by modeling attribute
and network information from a residual analysis perspective. The idea behind Radar is
that the attributes of every instance can be reconstructed by a linear combination of some
representative instances, when considering only the information perspective. Additionaly,
when link information between instances is added to the model, the framework relies in
a homophily property, such that similar instances are more likely to be linked together.
The authors propose an optimization problem where the objective function should be
minimized to find the best coefficient matrix W and residuals R for the reconstruction
of attributes whithin the network context. At the end of the optimization process, the
anomaly score for each instance i is computed as the `2-norm of the i-th row of the residual
matrix R.

All techniques of anomaly detection in static attributed graphs are performed on a
single graph representation derived from a given dataset. Normally, there are no works
that assess the impact of the graph modeling process to a single graph for real-world
databases. There are also no works that discuss the pros and cons of employing multiple
graphs models to represent a given database.

2.2. Ensemble Techniques in Outlier Detection

Outlier detection in general has been improved by using ensemble methods, i.e., combin-
ing the findings or results of individual learners to an integrated, typically more reliable
and better result. An ensemble is expected to improve over its components if these com-
ponents deliver results with a certain minimum accuracy while being diverse [42]. The
two main challenges for creating good ensembles are, therefore, (i) the generation of di-
verse (potential) ensemble members and (ii) the combination (or selection) of members
to an ensemble.

Some strategies to achieve diversity among ensemble members are feature bagging
(i.e., combining outlier scores learned on different subsets of attributes) [20], different
parameter choices for some base method [11], the combination of actually different base
methods [28,19,37], the introduction of a random component in a given learner [24], the
use of different subsamples of the data objects [44], adding some random noise compo-
nent to the data (“perturbation”) [43], or using approximate neighborhoods for density
estimates [15]. In a sequential setting, the first top outliers detected are removed from the
data set before it is handed over to other learners [33].

Different combination procedures have been proposed based on outlier scores or on
outlier rankings [20,11,19,42,32]. Some methods have also been proposed to select the
more diverse or (in a semi-supervised setting) the more accurate ensemble members
[37,25,33,32].

All ensemble methods in outlier detection aim at the reduction of bias and variance
inherent to some learner. Assessing the impact of the bias inherent to the input data has
not been addressed so far.
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Considering the standard KDD process model [10], our focus is on the data transfor-
mation and its impact on what we can learn from the data. The ensemble approach is thus
effectively moved to an earlier step in the KDD process, since we employ different graph
models to represent the same raw data.

3. Methodology

The classical approach for detecting outliers in a dataset is to model the data as a single
graph and to apply a single outlier detection method, as sketched in Figure 1(a). By using
this approach, the identification of outliers is biased by the given model and the selected
algorithm. Alternatively, one could use an ensemble approach to apply a set of comple-
mentary outlier detection methods on a single graph and combine their results, such that
the algorithm bias is reduced. This approach is sketched in Figure 1(b). Existing work
for outlier detection in graphs follows the methodologies in Figures 1(a) and 1(b). As a
consequence the built-in bias from the graph model selection is not adressed.

Here we propose a new methodology that tackles the reduction of graph model bias
towards outlier detection by generating multiple graph models to represent the same data.
The overall workflow for an ensemble method combining outlier detection results from
multiple graphs is depicted in Figure 1(c). First, multiple graph models represent the
same dataset, possibly taking different aspects of the dataset into account for deriving
different graph models. We assume, though, that the nodes in different graphs represent
the same entities. Only their relations change from model to model. Next, some algorithm
to detect (node) outliers in graphs are applied to each graph model. In the last step, results
from the outlier detection on the different graph representations are combined. Through
the ensemble of different graphs modeling the same data, we can expect an increasing
precision and robustness of the outlier detection.

For this general approach, various questions could be studied, for example, which
outlier detection methods are more suitable and how the results should be combined. For
this study, however, we take a fixed decision on these questions, using two methods for
outlier detection and using four consensus functions to combine the results, as we are
studying the impact of the design and choice of graph models.

We describe two methodologies employed in the experimental assessment presented
in this work. The first methodology aims at assessing the potential gains of combining
multiple graph models compared to using a single graph model. The second methodol-
ogy aims at assessing the improvements for outlier detection through the combination
of complementary multiple graph models that capture preferably different aspects of the
data.

3.1. Characterizing Multiple Graph Models

We use multiple graph models here to represent different aspects of a data set, i.e., to take
different perspectives. For all perspectives, i.e., derived graph models, for some dataset,
the entities that may be outliers remain the same and are vertices in the graph. The differ-
ent perspectives are expressed by different edges describing relations between the nodes.
How different graph models express different aspects of a dataset depends on the dataset
and its semantic. We will discuss specific graph models for different example datasets
later. Here we characterize the notion of multiple graph models more formally.
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(b) Ensemble of multiple outlier detection methods on a single graph model.
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(c) Multiple graph models for outlier detection.

Fig. 1. Different workflows for outlier detection in graphs.
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Definition 1. (Graph Model)
A graph model Gp is described by Gp = {V,Ep, A}, where

– p is the perspective of the graph Gp.
– V represents the node set and each node v ∈ V represents an entity.
– Ep represents the edge set, where Ep = {(vi, vj) | ∀i 6= j, vi, vj ,∈ V ∧Fp(vi, vj) ≥
tp}. The function F(.) returns a score ∈ [0, 1] that defines for a given perspective p
the correlation or similarity between two nodes, and t is a user-defined threshold.

– A is the attribute set and each attribute a ∈ A represents an attribute.

Multiple graph models as outlined above can then be characterized as follows:

Definition 2. (Multiple Graph Models)
A set of multiple graph models G = {G1, G2, ..., Gp, ..., GM}, where M is the total
amount of perspectives, we have:

Vi = Vj∀i, j ∈ [1, 2, ...,M ].

Our definition assumes that different graph models have the same node set V . We
thus avoid the node-to-node mapping problem, since the set of vertices, related to the
dataset entities that may turn out being outliers, remains the same across the different
graph models.

Given a datasetD, we generate multiple graph models G = {G1, G2, ..., Gp, ..., GM}
with respect to different perspectives p ofM . Suppose we have two graphsG1 = {V,E1, A}
and G2 = {V,E2, A}. A single perspective p relates to a specific procedure to gener-
ate the edges of Gp, though possibly with different parametrization. For example, if D
represents a citation network dataset, p is co-authorship, Gp will represent D as a co-
authorship graph, in which nodes represent authors and edges represent the existence of
co-authorship. In this example, an edge eij = (vi, vj) will exist iff F(vi, vj) = 1, where
F(.) returns 1 if vi and vj have at least one publication together and 0 otherwise.

The perspective p may also represent correlations or similarities between nodes. For
example, in a citation network dataset, a graph Gp may be defined as the correlation
between publications in conferences based on co-occurrence of words in the title or in the
abstract, where two nodes (authors) are connected if they have large correlation values.
Or a perspective may be the defined as the similarity between authors in their research
topics. In these scenarios, an edge eij = (vi, vj) will exist iff F(vi, vj) > tp, where tp
denotes the correlation or similarity threshold in perspective p.

As these examples demonstrated, the definition of a perspective depends on the given
data for a given problem. We will introduce tailored perspectives on the various experi-
mental datasets in the case studies (Section 4).

3.2. Characterizing the Gains of Using Multiple Graph Models

To characterize the gains of using multiple graph models, we propose the following steps:

1. Generate multiple graph models according to the problem being addressed. For
each raw dataset, we design multiple graph models that describe the same entities
as nodes but differ quantitatively (how dense they are) and qualitatively (which rela-
tionships are expressed in the graph structure). These multiple graph models aim to
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materialize the various perspectives that one can take on the data. As a result, they
can make different kind of outliers detectable.
The design of graph models for some raw data set remains problem-dependent, though.
We explore different variants for synthetic datasets and for real datasets.

2. Assess experimentally the combined usage of multiple graph models. We quantify
experimentally the gains of multiple graph models using both synthetic and real-
world datasets.

3.3. Selective Composition of Multiple Graph Models

Orthogonal to the generation of as many graph models as practical is the design of graph
models that are as complementary as possible, i.e., they should model different aspects
of the raw data. The less similar two graphs are, the more likely they are complementary
regarding the outlier information they provide.

Two different graphs G1 = (V,E1, A) and G2 = (V,E2, A), which differ only in
their set of edges E1 and E2, can have a degree of similarity measured by Jaccard [14] on
their sets of edges:

Jaccard(G1, G2) =
|E1 ∩ E2|
|E1 ∪ E2|

. (1)

The similarity of a set G of more than two graphs is assessed as the average pairwise
similarity:

Jaccard(G) = 1

|G|
∑

G1,G2∈G
G1 6=G2

Jaccard(G1, G2). (2)

DeltaCon [17] is another algorithm to compute similarity between graphs. Given two
input graphs G1 = (V,E1, A) and G2 = (V,E2, A), with different edge sets E1 and E2,
DeltaCon computes the similarity score DeltaCon(G1, G2) ∈ [0, 1], such that a score of
1 means identical graphs.

DeltaCon applies the Fast Belief Propagation (FaBP) [16] method to measure node
affinity in the same graph and to build the n × n similarity matrix S, based on the n × n
identity matrix I, the n×n diagonal degree matrix D, and the n×n adjacency matrix A:

S = [sij ] = [I + ε2D− εA]−1 (3)

ε is a small constant to regulate influence of the neighboring nodes.
The main idea is to analyze graph differences from the information flow viewpoint.

For instance, a missing edge in a clique subgraph is not as important as a missing edge
connecting two dense subgraphs.

In its fastest version, DeltaCon divides the node set into g groups and computes the
affinity score of each node to each group. The n × g similarity matrix S1 and S2 is then
built for each graph G1 and G2, respectively, and the similarity score is computed as
follows:

d(G1, G2) =

√√√√ n∑
i=1

g∑
j=1

(√
s1,ij −

√
s2,ij

)2
(4)

DeltaCon(G1, G2) =
1

1 + d(G1, G2)
(5)



Outlier Detection in Graphs: A Study on the Impact of Multiple Graph Models 573

The similarity of a set G of more than two graphs is assessed as the average pairwise
similarity:

DeltaCon(G) = 1

|G|
∑

G1,G2∈G
G1 6=G2

DeltaCon(G1, G2). (6)

While previous methods to select members for outlier detection ensembles (trained on
the same dataset) rely on some sort of estimate of the quality in the unsupervised scenario
[37,32], the similarity of graph models is completely agnostic of (supposed) outliers and
can therefore serve as a general guidance to the selection of ensemble members.

4. Implementation of the Methodology: Case Studies on Synthetic
and Real Data

We perform case studies on synthetic data, data from DBLP, data from Citation Network,
and data from Facebook. We focus on quantitatively different graphs for synthetic data,
and on semantically different graphs for DBLP, Citation Network, and Facebook data.
These real-world databases were chosen to represent realistic scenarios where multiple
graph models are viable ways to help detecting outliers. By considering different areas we
demonstrate the reproducibility of our results. It should be noted that it is straightforward
to derive quantitatively different graphs in an automated way, while semantically different
graphs need to be designed manually for each problem, taking into account the semantics
of the data and considering which information may be possibly interesting.

4.1. Synthetic Datasets

For a quantitative experiment, we generate three families of synthetic datasets (A, B, and
C) to evaluate the benefits of combining multiple graph models from the same source:
(A) graphs following a power-law degree distribution, in particular Zipf’s law according
to Gao et al. [12], (B) graphs generated by following a stochastic algorithm proposed
by Barabási and Albert [3], and (C) graphs following the Erdős and Rényi model [9],
in which every possible edge is created with the same constant probability. For these
dataset families, we start with a graph comprising 4950 nodes generated according to the
corresponding distribution or algorithm, respectively, and include 50 outliers that follow a
uniform degree distribution. We repeat this procedure 10 times, so we have 10 base graphs
for each experiment with 5000 nodes each, where the inliers follow a known degree dis-
tribution and outliers follow a uniform degree distribution. We also add 20 attributes and
set a random percentage of those to be relevant for the outlier detection task. Relevant at-
tributes follow different Gaussian distributions for outliers and inliers with µ = [−10, 10]
and σ = [1, 5]. Irrelevant attributes follows the same Gaussian distribution for outliers
and inliers.

We use two parameters to induce diversity in the graphs, determining the percentage
of edges that we remove from the graph or that we add to the graph, respectively. This
way we achieve diverse graph structures without changing the number of nodes or their
attribute values, by randomly removing and adding edges. We derive 10 graphs of differ-
ent density from each of the 10 base graphs in graph families A, B, and C, resulting in
100 graphs for each experiment.
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Table 1. Number of authors per publications at 23 conferences.

Number of Publications Number of Authors
1 44905
2 11940
3 5398
4 3144
5 2078

6-10 4421
11-20 2282
> 20 1488
78350 75656

4.2. DBLP Data

The bibliography dataset provided by DBLP (http://dblp.uni-trier.de/db/)
is a rich dataset comprising several informations about publications in the computer sci-
ence area. For our assessment, we sample a dataset containing just the publications from
23 related conferences, namely: AAAI, IAAI, CIKM, CVPR, ECIR, ECML, PKDD,
EDBT, ICDT, ICDE, ICDM, ICML, IJCAI, KDD, PAKDD, PODS, SDM, SIGIR, SIG-
MOD, SSDBM, VLDB, WSDM, and WWW. We select authors with at least 5 publica-
tions to compose the node set of our graph models, leading to 10269 nodes. In addition,
we describe each author through 47 different attributes that represent the ratio of the au-
thor’s publication in each conference over the total amount of the author’s publication (23
attributes), the ratio of the author’s publication in each conference over the total amount
of conference publications (23 attributes), and the normalized amount of publications (1
attribute).

Table 1 shows a relation between number of publications and number of authors.
Since we selected only authors that have at least 5 publications, this amounts to 13.57%
of the DBLP dataset regarding the 23 conferences mentioned. Figure 2 shows for each
conference the number of publications and unique authors. CVPR conference has the
highest amount of publications, but AAAI has the highest amount of unique authors. On
the other side, IAAI has the lowest amount of publications and ICDT the lowest amount
of unique authors.

As we select authors that have at least 5 publications in the 23 conferences, our mod-
eled graphs may present scenarios in which a vertex has no connections, i.e., it is an
isolated node in the graph. Consider, for example, that one author has 5 publications and
no co-authorship. In this case, the author would be represented by an isolated node in
the co-authorship graph. We consider such isolated nodes as ranked last since the outlier
detection algorithms used do not handle such scenarios with isolated nodes.

While we focused on quantitatively different graphs in the synthetic data, here we
derive four semantically different graph models from the DBLP data:

1. Co-authorship: If two authors have at least one publication together, they will have
an edge connecting them.

2. Correlation between publications in each conference: Two authors are connected if
they have a high correlation of their distribution of publications over the conferences
(i.e., they tend to publish at the same venues).

http://dblp.uni-trier.de/db/
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Fig. 2. Authors and publications per conference.

3. Correlation between publications in each area of knowledge: In order to model knowl-
edge areas, we group conferences into five areas: Artificial Intelligence, Data Mining,
Databases, Information Retrieval, and Web. In this model, two authors are connected
if they have a high correlation between publications in venues from similar areas of
knowledge.

A correlation threshold may be seen as a parameter of graph density: the lower the
threshold, the denser the graph. In models 2 and 3, we used 0.9 as correlation thresh-
old to determine the existence of an edge.

4. Similarity in topics: Two authors are connected if they have publications with similar
title words. We determine the set of unique words used in all publications of each
author, removing all stop words, applying Porter’s stemming algorithm [31], and se-
lecting all unique words for each author. The edge between two authors exists if the
overlap between their vocabularies is at least 40%, that is, if the intersection between
their title words is at least 40% of the smaller of both vocabularies.

For sake of quantitative evaluation, we add 50 artificial outliers by randomly selecting
50 times 2 to 5 nodes that we merge to generate one outlier. Such merging imitates the
effect of having two (or more) authors with the same name in the database without name-
disambiguation such that their publication profiles are merged in DBLP, which is a quite
realistic problem. These merged nodes are the same across all graph models. We repeat
the artificial outlier generation 10 times, resulting in 10 DBLP datasets with different
outliers.
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4.3. Citation Network Data

The Citation Network data was extracted from ACM and provided at https://aminer.
org/citation [39]. It comprises information about publications in many venues. For
each paper, it provides id, title, abstract, year of publication, authors, venue, and refer-
ences. The main difference between DBLP and Citation Network is that in the first one
the node set represents authors, while here nodes are papers.

We preprocessed the original Citation Network ACM version 09 dataset, which was
collected until 2017 by removing publications with missing information, selecting authors
with at least 10 publications, and conferences with at least 500 papers to compose the
node set of our graph models. After this pre-processing step, the remaining 16,197 papers
represent our Citation Network dataset.

In addition, we describe each paper through 6 different attributes derived from the
information given on the original dataset: year of publication, average authors per pub-
lications, average authors per publications in the conference where the paper was pub-
lished, number of conference papers accepted in that year, and total amount of papers in
the conference.

We derive four semantically different graph models from the Citation Network data:

1. Reference: Connect two papers if at least one of them references the other.
2. Co-authorship: If two papers share at least one author, they are connected by an edge.
3. Similarity in abstract: Similar to the DBLP model 4, we determined the set of unique

words used in each paper’s abstract, removed all stop words, applied Porter’s stem-
ming algorithm [31], and selected all unique words for each paper. If two papers share
at least 40% of their abstract vocabulary, we connect them with an edge.

4. Similarity in topics: This is the same as DBLP model 4. We perform the same ap-
proach for word processing and connect two papers if they share at least 40% of their
title words.

Here we include 50 realistic outliers to simulate effects of plagiarism. We selected 50
different papers and copied their title and abstract information, changing the authors, the
venue and the year. To select the authors and the venue, we choose by random from
the pool of possible choices that is present in our preprocessed dataset. The year we
select randomly from the orginal publication until 2017. We repeat the artificial outlier
generation 10 times, resulting in 10 Citation Network datasets with different outliers.

Each paper has attributes that are derived from the year, the authors, and the venue.
The values of these attributes are suspicious for outliers as we generate them by select-
ing authors, venue, and year randomly. We expect that different graph models change the
vicinity of outlier nodes in different aspects, so that the ‘plagiarized’ papers are consid-
ered a more significant outlier in some models. For example, in a graph where papers
are connected by similar title words, the authors that plagiarized a paper should have a
different behavior of publications than other authors that published in similar topics.

4.4. Facebook Data

We use the Facebook dataset provided by Leskovec and Krevl [21]. This dataset consists
of 10 ego nodes and their friends from Facebook. Each ego and its friend list have a set
of attributes related to, for example, age, gender, education, or work. We selected the 3

https://aminer.org/citation
https://aminer.org/citation
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largest ego nodes (ids 107, 1684, and 1912) and their friends to generate the dataset used in
this experiment. This was done in order to group nodes that have similar sets of attributes,
since not all 10 ego nodes have the same attribute set. This dataset has 2,573 nodes in
total. The IDs and feature vectors of this dataset have been anonymized. 88 attributes
describe aspects such as education, work, gender, location, language, and birthday.

We derived 3 semantically different graphs to represent this dataset:

1. connecting people according to their friendship,
2. connecting people that have correlated education features, and
3. connecting people that have correlated work-related features.

As for the DBLP models 2 and 3, we use 0.9 as correlation threshold.
The outlier generation process was performed the same way as for the DBLP dataset,

randomly selecting 2 to 5 nodes to merge and to generate an outlier. We added 50 outliers
to the dataset, repeating the random procedure 10 times, resulting in 10 Facebook datasets
with different outliers.

4.5. Outlier Detection Methods

To perform outlier detection on each individual graph, we use ConOut [35] and Radar
[22]. On ConOut, we use similarity parameter 0.5, and a significance level parameter
0.1 as suggested by Sánchez et al. [35]. The similarity parameter indicates the threshold
to consider two nodes similar or not. The significance parameter indicates whether we
accept the statistical F-test or reject it (as described on Section 2.1). In other words, if
the p-value is below the significance parameter, the attribute has lower variance inside the
context comparing to the whole dataset, thus we add it to the set of relevant attributes.

On Radar, we use α = 0.5, β = 0.2 and γ = 0.2 as suggested by the authors [22].
These parameters control the row sparsity of the coefficient matrix, row sparsity of the
residual matrix and the contribution of the network modeling, respectively.

ConOut and Radar are examples of outlier detection methods in static graphs that
output scores of outlierness for each node. This type of methods is suitable to our scenario
as we, in a posterior step, combine these outputs into a single score. Any other outlier
detection method may be used after adjusting the combination technique.

4.6. Combination

To combine the results obtained from different graph models derived from the same
dataset into a single outlier score for each node we use two rank and two score com-
bination procedures. In this particular scenario, we do not need a normalization step for
score combination since we apply the same algorithm with same parameters on different
graphs. We combine scores by taking the average value and the maximum value.

We also transform the scores into rankings and aggregate them by using the median
and the Borda Count algorithm [4]. The Borda Count method is a classic voting system
that can be applied to combine rankings from different sources. This method gives a score
to each member of the list according to its relative position. The final aggregated ranking
is a simple sorted list based on the sum of scores of each member. This is equivalent to
combining the rankings by their mean rank.
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Table 2. Average ROC AUC values on Power Law (Exp. A) synthetic data experiments
when we select the most dissimilar models to combine in each iteration. For single graph
models (ensemble size 1), we take the average of all possibilities.

Ens. Size
ConOut Radar

Mean Max Median Borda Mean Max Median Borda
Jaccard Similarity

1 0.633 0.655
2 0.671 0.634 0.668 0.668 0.652 0.651 0.654 0.654
3 0.707 0.638 0.681 0.707 0.651 0.651 0.657 0.655
4 0.728 0.634 0.719 0.732 0.651 0.651 0.657 0.656
5 0.746 0.627 0.729 0.754 0.651 0.651 0.657 0.655
6 0.749 0.612 0.744 0.759 0.651 0.651 0.657 0.655
7 0.756 0.612 0.742 0.766 0.652 0.651 0.656 0.655
8 0.757 0.600 0.753 0.767 0.652 0.651 0.656 0.655
9 0.757 0.590 0.750 0.767 0.652 0.651 0.656 0.655
10 0.748 0.580 0.742 0.761 0.652 0.651 0.655 0.654

Ens. Size DeltaCon Similarity
1 0.633 0.655
2 0.672 0.630 0.681 0.681 0.652 0.651 0.653 0.653
3 0.688 0.580 0.668 0.699 0.650 0.651 0.651 0.652
4 0.705 0.577 0.701 0.717 0.650 0.651 0.654 0.654
5 0.714 0.577 0.703 0.724 0.651 0.651 0.655 0.654
6 0.721 0.580 0.716 0.733 0.651 0.651 0.655 0.654
7 0.728 0.576 0.718 0.740 0.651 0.651 0.655 0.654
8 0.736 0.581 0.729 0.748 0.651 0.651 0.655 0.654
9 0.741 0.580 0.725 0.752 0.651 0.651 0.655 0.654
10 0.748 0.580 0.742 0.761 0.652 0.651 0.655 0.654

To assess the impact of graph similarity on the quality of the combined results we
use Jaccard similarity (Equation 1) and DeltaCon similarity (Equation 5). Combinations
of more than two graph models are ranked by the average pairwise Jaccard similarity
(Equation 2) and average pairwised DeltaCon similarity (Equation 6).

5. Results and Discussion

5.1. Synthetic Data

The results for the synthetic datasets are shown in Tables 2, 3, and 4 for experiments A, B
and C respectively. These tables shows quantitatively the impact on outlier detection per-
formance if we take the most dissimilar models to combine the results obtained on those.
The ensemble size is the number of combined graph models, where 1 relates to a single
graph model (i.e., no combination but individual performances on all graphs) and 2 to 10
relate to the corresponding number of combined multiple graph models. The performance
is quantified in terms of the average Area Under the Curve of the Receiver Operating
Characteristic (ROC AUC), a standard measure for outlier detection performance [5].

In all three experimental scenarios, using multiple graph models generally improves
over using individual graphs only. Radar seems to be a more robust method than ConOut
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Table 3. Average ROC AUC values on Barabási and Albert (Exp. B) synthetic data ex-
periments when we select the most dissimilar models to combine in each iteration. For
single graph models (ensemble size 1), we take the average of all possibilities.

Ens. Size
ConOut Radar

Mean Max Median Borda Mean Max Median Borda
Jaccard Similarity

1 0.647 0.762
2 0.792 0.757 0.751 0.751 0.753 0.753 0.758 0.758
3 0.813 0.749 0.762 0.778 0.754 0.753 0.762 0.760
4 0.835 0.760 0.793 0.806 0.754 0.753 0.762 0.760
5 0.842 0.757 0.786 0.815 0.754 0.753 0.763 0.761
6 0.849 0.755 0.807 0.823 0.755 0.753 0.763 0.761
7 0.855 0.754 0.802 0.830 0.755 0.753 0.763 0.761
8 0.858 0.754 0.813 0.832 0.755 0.753 0.763 0.762
9 0.861 0.755 0.811 0.835 0.755 0.753 0.763 0.762
10 0.863 0.756 0.814 0.837 0.755 0.753 0.763 0.762

Ens. Size DeltaCon Similarity
1 0.647 0.762
2 0.784 0.747 0.752 0.752 0.753 0.753 0.758 0.758
3 0.825 0.762 0.769 0.797 0.753 0.753 0.761 0.759
4 0.830 0.758 0.784 0.797 0.754 0.753 0.762 0.760
5 0.845 0.760 0.786 0.817 0.754 0.753 0.762 0.761
6 0.850 0.758 0.806 0.825 0.754 0.753 0.762 0.761
7 0.852 0.759 0.793 0.825 0.755 0.753 0.763 0.761
8 0.855 0.757 0.806 0.827 0.755 0.753 0.763 0.762
9 0.858 0.757 0.801 0.831 0.755 0.753 0.763 0.762
10 0.863 0.756 0.814 0.837 0.755 0.753 0.763 0.762

as its results have lower variation. It is out of our scope to analyze different parameter
values for the outlier detection algorithms, as we are interested on the effects of applying
multiple graph models on the same raw dataset. As mentioned before, the γ parameter on
Radar balances the contribution of attribute and network information. On our experiments,
we fix γ as suggested by the authors and, as a consequence, the results show robustness
towards multiple graph models, as the variations on the edges do not have a high impact
on the final Radar output.

ConOut is largely benefited by the usage of multiple graph models. Using ConOut
on single graphs, average ROC AUC reaches 0.633, 0.647, and 0.637 on experiments A,
B and C respectively. In comparison with multiple graph models, these numbers go as
high as 0.767, 0.863, and 0.814. On most cases, combining all 10 outputs from different
graphs achieves the highest ROC AUC value, which indicates that using multiple graph
models has large potential to be applied in many different scenarios, as we have 3 different
synthetic experiments that express real-world graph behaviors.

Regardless of the algorithm applied, combine scores using the maximum value do
not perform well in general. Experiment C using Radar algorithm is the only specific
scenario where combining by maximum has the best average ROC AUC value, 0.712.
Mean, median and borda have a very similar behavior when used in conjunction with the
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Table 4. Average ROC AUC values on Erdős and Rényi (Exp. C) synthetic data experi-
ments when we select the most dissimilar models to combine in each iteration. For single
graph models (ensemble size 1), we take the average of all possibilities.

Ens. Size
ConOut Radar

Mean Max Median Borda Mean Max Median Borda
Jaccard Similarity

1 0.637 0.701
2 0.753 0.720 0.727 0.727 0.705 0.707 0.700 0.700
3 0.750 0.696 0.713 0.726 0.703 0.704 0.695 0.698
4 0.783 0.717 0.749 0.758 0.703 0.705 0.697 0.699
5 0.798 0.726 0.740 0.770 0.703 0.705 0.697 0.698
6 0.805 0.726 0.760 0.778 0.703 0.705 0.697 0.698
7 0.807 0.734 0.759 0.780 0.704 0.707 0.697 0.699
8 0.808 0.739 0.766 0.781 0.704 0.707 0.698 0.699
9 0.814 0.750 0.760 0.781 0.706 0.711 0.698 0.699
10 0.807 0.758 0.758 0.774 0.707 0.712 0.699 0.701

Ens. Size DeltaCon Similarity
1 0.637 0.701
2 0.741 0.712 0.718 0.718 0.705 0.706 0.701 0.701
3 0.778 0.731 0.727 0.751 0.707 0.709 0.701 0.702
4 0.791 0.732 0.754 0.761 0.708 0.710 0.699 0.701
5 0.807 0.748 0.754 0.778 0.708 0.711 0.700 0.702
6 0.806 0.740 0.762 0.776 0.707 0.711 0.699 0.701
7 0.812 0.748 0.758 0.782 0.707 0.711 0.698 0.700
8 0.809 0.752 0.765 0.779 0.708 0.712 0.698 0.701
9 0.813 0.756 0.758 0.782 0.708 0.712 0.698 0.701
10 0.807 0.758 0.758 0.774 0.707 0.712 0.699 0.701

ConOut algorithm. These combination approaches yield their highest values using similar
ensemble sizes on each experiment, which again supports the argument for using multiple
graph models rather than single graphs.

The results do not change much between using Jaccard similarity and DeltaCon simi-
larity.

From Tables 2, 3, and 4 we can infer that using the most dissimilar models according
to Jaccard and DeltaCon to represent the same dataset in general improves the perfor-
mance on detecting outliers. Figures 3, 4 and 5 shows results using ConOut on synthetic
experiments. The colors of the points represent how similar the combined graph models
are, ranging from red to blue, where blue is more similar and red is less similar. Each
experiment is represented by one plot using Jaccard similarity and one plot using Delta-
Con similarity. We expect more red points on the top of each boxplot, which means that
the combination of dissimilar graphs delivers better results than combining similar graphs.
Since we have 10 independent subsets for each graph family, each column of points inside
the boxplots shows the results for one of these subsets.

All three experiments show more red dots on the top of boxplots, especially when
Jaccard is selected. The behavior of boxplots reinforces our claim on using multiple graph
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(a) Experiment A: Power-law degree distribution with ConOut using Jaccard similarity measure
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(b) Experiment A: Power-law degree distribution with ConOut using DeltaCon similarity measure

Fig. 3. ROC AUC on single and multiple graph models on experiment A synthetic datasets
as we vary the ensemble size (number of combined graph models, where 1 represents
single graph models). The colors of the points reflect the (average) similarity of the graph
models selected for combination: blue (more similar) to red (less similar). Each column
of points inside each boxplot presents the results for an independent subset of graphs.
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(a) Experiment B: Barabási and Albert stochastic model with ConOut using Jaccard similarity measure
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(b) Experiment B: Barabási and Albert stochastic model with ConOut using DeltaCon similarity measure

Fig. 4. ROC AUC on single and multiple graph models on experiment B synthetic datasets
as we vary the ensemble size (number of combined graph models, where 1 represents
single graph models). The colors of the points reflect the (average) similarity of the graph
models selected for combination: blue (more similar) to red (less similar). Each column
of points inside each boxplot presents the results for an independent subset of graphs.
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(a) Experiment C: Erdős and Rényi model with ConOut using Jaccard similarity measure
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(b) Experiment C: Erdős and Rényi model with ConOut using DeltaCon similarity measure

Fig. 5. ROC AUC on single and multiple graph models on experiment C synthetic datasets
as we vary the ensemble size (number of combined graph models, where 1 represents
single graph models). The colors of the points reflect the (average) similarity of the graph
models selected for combination: blue (more similar) to red (less similar). Each column
of points inside each boxplot presents the results for an independent subset of graphs.
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Table 5. Average ROC AUC values on DBLP data experiments when we select the most
dissimilar models to combine in each iteration. For single graph models (ensemble size 1),
we take the average of all possibilities.

Ens. Size

ConOut Radar
Mean Max Median Borda Mean Max Median Borda

Jaccard Similarity
1 0.840 0.506
2 0.890 0.874 0.896 0.896 0.501 0.510 0.511 0.511
3 0.898 0.877 0.888 0.903 0.505 0.505 0.497 0.504
4 0.953 0.934 0.939 0.943 0.495 0.499 0.527 0.527

DeltaCon Similarity
1 0.840 0.506
2 0.890 0.874 0.896 0.896 0.501 0.510 0.511 0.511
3 0.950 0.934 0.927 0.933 0.502 0.494 0.528 0.534
4 0.953 0.934 0.939 0.943 0.495 0.499 0.527 0.527

models for outlier detection, as the ROC AUC increases when we select a larger ensemble
size.

Overall, using multiple graph models achieves better performance than using single
graph models, regardless of the similarity parameter threshold, of the number of models,
and of which models are combined: the tendency of the results shows that the performance
on multiple graph models is correlated to the performance of the individual models we
combine.

Multiple graph models represent different aspects of the data, where each model po-
tentially highlights different outliers. When we combine the outlier detection results ob-
tained over multiple graph models we benefit from this diversity.

5.2. DBLP Data

Table 5 shows the average ROC AUC results for ConOut and Radar on single and mul-
tiple graph models. We again see the robustness of the Radar algorithm. Even though
Radar performs poorly on DBLP data, using multiple graph models for outlier detection
improves over single graphs. ConOut reaches average ROC AUC of 0.953 in the best
scenario combining all graph models outputs using mean, in comparison to 0.840 when
using only single graphs to represent the data.

Figure 6 shows the results when we apply ConOut to single graph models (ensemble
size 1) and to multiple graph models, using the mean as consensus function.

Although the quantitative results for the DBLP dataset are quite good in terms of pre-
cision, there are still some authors that consistently get high outlier scores together with
the generated outliers (merged nodes). For the quantitative evaluation based on the arti-
ficially constructed outliers, these are considered inliers, but they might actually qualify
as real outliers in some sense. Thus we inspect some examples in Figure 7, depicting
the degree of outlierness for 9 authors that consistently present high scores. These plots
measure the degree of outlierness among 4 single graph models (DBLP 1 to 4) and for
multiple graph models, represented by the most dissimilar models (Ensemble 2 to 4). We
average the rankings of 10 iterations and transform the final ranking into bins. There are
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(a) DBLP with ConOut using Jaccard similarity measure
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(b) DBLP with ConOut using DeltaCon similarity measure

Fig. 6. ROC AUC on single and multiple graph models on DBLP dataset as we vary
the ensemble size (number of combined graph models, where 1 represents single graph
models). The colors of the points reflect the (average) similarity of the graph models
selected for combination: blue (more similar) to red (less similar). Each column of points
inside each boxplot presents the results for an independent subset of graphs.

10 bins, ranging from 10 (outlier) to 1 (inlier). The bins compress the rankings of outlier-
ness and they increase by a factor of 2 starting from bin 10 covering ranks from 1 to 5,
bin 9 covering ranks 6 to 15, bin 8 covering ranks 16 to 35 etc.

Hans-Peter Kriegel is consistently the most prominent outlier node according to ConOut
in all DBLP models, except for model 2, in which Radar gives his largest score of out-
lierness among all models. His pattern is shown in Figure 7(a), where he tends to be an
outlier in almost all scenarios according to ConOut.

The same pattern is also present for Feng Cao’s and Kenneth D. Forbus’s plots, Fig-
ures 7(e) and 7(c) respectively. Feng is a top outlier in the DBLP 3 model according to
ConOut and exhibits a high degree of outlierness in other single and multiple graph mod-
els, but is not a prominent outlier in the DBLP 2 model. Kenneth is not among top 5 of any
single graph model, but when we combine multiple graph models, he become top outlier
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Fig. 7. These plots depict the degree of outlierness for some natural outliers in the DBLP
dataset using ConOut and Radar algorithms. The rankings were averaged over 10 itera-
tions and multiple graph models comprise the most dissimilar graphs according to Jac-
card. We transform the final ranking into bins, ranging from 10 to 1, where 10 refers to
top outlier scores and 1 to inliers scores. We increase the bins range by a factor of 2, start-
ing from bin 10 covering rankings [1 - 5] and ending on bin 1 covering rankings [2556 -
Maximum]. Ensembles 2 to 4 correspond to multiple graph models.
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Table 6. Average ROC AUC values on Citation Network data experiments when we se-
lect the most dissimilar models to combine in each iteration. For single graph models
(ensemble size 1), we take the average of all possibilities.

Ens. Size

ConOut Radar
Mean Max Median Borda Mean Max Median Borda

Jaccard Similarity
1 0.590 0.659
2 0.580 0.577 0.545 0.545 0.658 0.659 0.659 0.658
3 0.673 0.691 0.570 0.608 0.658 0.659 0.659 0.659
4 0.632 0.642 0.517 0.526 0.659 0.659 0.659 0.659

DeltaCon Similarity
1 0.590 0.659
2 0.646 0.723 0.581 0.581 0.658 0.658 0.658 0.658
3 0.610 0.662 0.510 0.557 0.659 0.659 0.659 0.659
4 0.632 0.642 0.517 0.526 0.659 0.659 0.659 0.659

according to ConOut. Radar labels Feng Cao as inlier in each model and gives a slightly
higher degree of outlierness to Kenneth D. Forbus.

James Bailey and Feng Cao have opossite behavior when compared to Li Li and
Ganesh Ramakrishnan regarding the algorithm used to output their degree of outlierness.
On the first two, ConOut labels them as outliers and Radar as inliers. On the other hand,
Li Li and Ganesh are outliers in Radar’s perspective and inliers in ConOut’s perspective.

José Luis Ambite and Tom M. Mitchell are clear examples of nodes that are outliers
only in a single graph model (DBLP 1) according to ConOut. When we combine dissim-
ilar models, they do not appear unusual anymore. Radar seems very consistent on these
two cases, specially on José Luis Ambite, where it outputs high degree of outlierness on
models 2 and 3, but slightly reduce his score when we combine multiple graph models.

5.3. Citation Network Data

Table 6 shows the average ROC AUC results for ConOut and Radar on single and multi-
ple graph models. We again see the robustness of the Radar algorithm towards different
models to represent the same data. DeltaCon similarity measure selects better dissimilar
models to combine their outputs than Jaccard on Citation Network when selecting two
graph models. With Jaccard best results are achieved when selecting three models. The
highest value using multiple graph models is 0.723 average ROC AUC combining 2 most
dissimilar models according to Jaccard using ConOut algorithm and combine by maxi-
mum score.

Figure 8 shows the results when we apply ConOut to single graph models (ensemble
size 1) and to multiple graph models, using borda as combination function. We repeat
the same procedure to generate Figure 6, where the colors of the points are set as for
the experiments on synthetic data (blue: combination of more similar graph models, red:
less similar). Each column within each boxplot relates to one of the 10 dataset variants
(different outliers). In Figures 8(a) and 8(b) the boxplots shows the benefits of using
multiple graph models for outlier detection task. On Citation Network, the red dots are
clearly on top of each experiment, which holds our claim towards selecting more diverse
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(a) Citation Network with ConOut using Jaccard similarity measure
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(b) Citation Network with ConOut using DeltaCon similarity measure

Fig. 8. ROC AUC on single and multiple graph models on Citation Network dataset as
we vary the ensemble size (number of combined graph models, where 1 represents single
graph models). The colors of the points reflect the (average) similarity of the graph models
selected for combination: blue (more similar) to red (less similar). Each column of points
inside each boxplot presents the results for an independent subset of graphs.

graphs to combine their outputs. Even though when selecting ensemble size equal to 2 in
Figure 8(a) the red dots are in the middle of the boxplot, on the top of each experiment
are the second most dissimilar models. This effect is shown in Table 6, where Jaccard best
results are selecting ensemble size 3.

Together with true outliers (‘plagiarized’ papers) there are some papers that consis-
tently get high outlier scores. Figure 9 measure the degree of outlierness among 4 single
graph models (Citation Network 1 to 4) and for multiple graph models, represented by
the most dissimilar models (Ensembles 2 to 4). We average the rankings of 10 iterations
and transform the final ranking into bins. There are 10 bins, ranging from 10 (outlier) to
1 (inlier).

The behavior present in Figures 9(c) and 9(d) is quite similar. Radar labels both as
true inliers and ConOut shows a high degree of outlierness on ensemble size 4. Papers
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Fig. 9. These plots depict the degree of outlierness for some natural outliers in the Citation
Network dataset using ConOut and Radar algorithms. The rankings were averaged over
10 iterations and multiple graph models comprise the most dissimilar graphs according to
Jaccard. We transform the final ranking into bins, ranging from 10 to 1, where 10 refers
to top outlier scores and 1 to inliers scores. We increase the bins range by a factor of
2, starting from bin 10 covering rankings [1 - 5] and ending on bin 1 covering rankings
[2556 - Maximum]. Ensembles 2 to 4 correspond to multiple graph models.
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Table 7. Average ROC AUC values on Facebook data experiments when we select the
most dissimilar models to combine in each iteration. For single graph models (ensemble
size 1), we take the average of all possibilities.

Ens. Size

ConOut Radar
Mean Max Median Borda Mean Max Median Borda

Jaccard Similarity
1 0.919 0.678
2 0.934 0.919 0.931 0.931 0.686 0.686 0.685 0.685
3 0.974 0.959 0.951 0.963 0.687 0.688 0.674 0.684

DeltaCon Similarity
1 0.919 0.678
2 0.934 0.919 0.931 0.931 0.686 0.686 0.685 0.685
3 0.974 0.959 0.951 0.963 0.687 0.688 0.674 0.684

in Figures 9(e) and 9(g) have their degree of outlierness increased only using multiple
models, as they are inliers in a single model approach using ConOut. In Figure 9(b), both
algorithms have different results considering different graph models. It is only considered
an outlier when using the combination of outputs of all graph models with the ConOut
algorithm.

With the papers in Figures 9(a), 9(h) and 9(i) we have inliers according to ConOut and
top outliers according to Radar. We see, especially with the paper “A Logic-Based Trans-
formation System”, a high degree of outlierness defined by Radar algorithm on single and
multiple models. The paper in Figure 9(f) is labeled as outlier by ConOut and Radar.

5.4. Facebook Data

Table 7 shows the average ROC AUC results for ConOut and Radar on single and multiple
graph models. Again, all results shows that using multiple graph models improves the
outlier detection performance. ConOut shows superior performance compared to Radar,
reaching average ROC AUC of 0.974 in the best scenario combining all graph models
outputs, in comparison to 0.919 when using only single graphs to represent the data. The
best combination technique in this experiment is taking the average score to represent the
final degree of outlierness.

Figure 10 shows the ROC AUC results for ConOut on single and multiple graph mod-
els, using mean as consensus function. The results are over 10 variants and the columns
inside each boxplot show the results for each iteration. Even though the experiments sug-
gest the selection of as many models you have to represent the data, in this specific sce-
nario, combining 2 dissimilar models have lower performance than combining similar
models.

Findings on DBLP and Citation Network data can also be applied here. We observe
on Facebook data that using multiple graph models improves the outlier detection perfor-
mance.
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(a) Facebook with ConOut using Jaccard similarity measure
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(b) Facebook with ConOut using DeltaCon similarity measure

Fig. 10. ROC AUC on single and multiple graph models on Facebook dataset as we vary
the ensemble size (number of combined graph models, where 1 represents single graph
models). The colors of the points reflect the (average) similarity of the graph models
selected for combination: blue (more similar) to red (less similar). Each column of points
inside each boxplot presents the results for an independent subset of graphs.

6. Conclusion

Outlier detection is a subjective and unsupervised task that demands good knowledge
and understanding of the data. Using a single graph model of relation-rich datasets may
only model some aspects of the data, thus not making proper use of potential informa-
tion. Using multiple graph models may capture more and complementary information.
We therefore suggest, based on our findings, to explore real world data using multiple
graph models that are as complementary as possible.

In a practical application, a data analyst is interested in certain entities that lend them-
selves as a set of nodes in a graph representation while several attributes or inter-relational
connections may be represented as edges between nodes. Instead of looking for the one
and only, best-ever graph representation of some given raw data, the data analyst should
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therefore generate multiple graph models describing different aspects of the raw data,
capturing a large variety of characteristics, or putting different emphasis on certain char-
acteristics. That is, the graphs may differ both quantitatively (how dense they are) and
qualitatively (which relationships are expressed in the graph structure). These multiple
graph models aim to materialize the various perspectives that the analyst wants to high-
light, that is, they should cover the problem scenario as well as possible and in as many
different ways as suitable.

Clearly, many questions remain open. We focused in this study purely on the aspect of
the impact of multiple graph models for a given dataset. We evaluated this impact using
two different outlier detection algorithms, four combination functions, and two similarity
measures on synthetic and real world data. For a practical application, various aspects will
have strong influence on the achievable quality, for example the algorithm used to detect
outliers on the individual graphs and the method used to combine the individual results
(as we have seen in this evaluation). However based on our study we can maintain the
recommendation to consider several different graph representations in any case.
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