
Computer Science and Information Systems 11(4):1291–1314 DOI: 10.2298/CSIS131201051Z

Towards Building a Forensics Aware Language for
Secure Logging

Shams Zawoad1, Marjan Mernik2, and Ragib Hasan1

1 University of Alabama at Birmingham
Birmingham, AL-354209, USA
{zawoad,ragib}@cis.uab.edu

2 University of Maribor
Maribor, Slovenia

marjan.mernik@um.si

Abstract. Trustworthy system logs and application logs are crucial for digital foren-
sics. Researchers have proposed different security mechanisms to ensure the integrity
and confidentiality of logs. However, applying current secure logging schemes on
heterogeneous formats of logs is tedious. Here, we propose Forensics Aware Lan-
guage (FAL), a domain-specific language (DSL) through which we can apply a
secure logging mechanism on any format of logs. Using FAL, we can define log
structure, which represents the format of logs and ensures the security properties of a
chosen secure logging scheme. This log structure can later be used by FAL to serve
two purposes: it can be used to store system logs securely and it will help application
developers for secure application logging by generating the required source code.

Keywords: DSL, Secure Logging, Audit Trail, Digital Forensics.

1. Introduction

In recent years, the number of digital crime cases has increased tremendously. An annual
report of the Federal Bureau of Investigation (FBI) states that the size of the average digital
forensic case is growing 35% per year in the United States. From 2003 to 2007, it increased
from 83 GB to 277 GB [9]. Various logs, e.g., network log, process log, file access log, audit
trail of applications, play a vital role in a successful digital forensics investigation. System
and application logs record crucial events, such as, user activity, program execution status,
system resource usage, network usage, and data changes through which some important
attacks can be identified, e.g., network intrusion, malicious software, unauthorized access
to software, and many more. Logs are also important to ensure the auditability of a system,
which is crucial in making a system compliant with various regulatory acts, such as, the
Sarbanes-Oxley Act (SOX) [7] or the Health Insurance Portability and Accountability Act
(HIPAA) [36]. Keeping system audit trails and reviewing them in a consistent manner is
recommended by the National Institute of Standards and Technology (NIST) as one of the
good principles and practices for securing computer systems [35].

While the necessity of logs and application audit trails are indisputable, the trust-
worthiness of this evidence remains questionable if we do not take proper measures to
secure them. In many real-world applications, sensitive information is kept in log files
on an untrusted machine. As logs are crucial for identifying attackers, they often attack

1292 Zawoad et al.

the logging system to hide the trace of their presence or to frame an honest user. Very
often, experienced attackers first attack the logging system [2, 3]. Malicious inside users,
colluding with attackers can also tamper with logs. Moreover, forensics investigators can
also alter evidence before it is presented in a court of law. To protect logs from these
possible attacks, we need a secure logging mechanism. Researchers have already proposed
several secure logging schemes [1,2,21,32,41], which are designed to defend such attacks.

However, ensuring the privacy and integrity of the logs is costly given that it requires
special knowledge and skill on developers’ side. To implement a secure logging scheme,
application developers need complete access to the logs. However, providing developers
with full access to sensitive logs definitely increases the attack surface. This opportunity
enables the malicious developers to violate the privacy, acquire and sell sensitive business
or personal information, and most importantly can keep a back door for future attack.
Adding secure application audit trails can also be burdensome for developers. It also
increases the application development cost. On the other hand, system administrators,
who have access to network logs or process logs, may not have sufficient knowledge for
developing a secure logging scheme.

In this paper, we propose Forensics Aware Language (FAL) – a domain-specific lan-
guage (DSL) [23] to assist system administrators and application developers for maintain-
ing system logs and application audit trails securely, which is crucial for digital forensics
investigations. A DSL is designed for a particular domain and has great advantages over
general-purpose languages for that specific domain. A DSL provides higher productivity by
its greater expressive power, the ease of use, easier verification, and optimization [19,23,37].
Based on our proposed DSL FAL, system admins can define log structure and parse a log
file according to the structure. They can also define the security parameters to preserve
the integrity and confidentiality of logs. To accomplish this, they only need their domain
knowledge related with system logs. Using FAL, a software security analyst can define the
required audit trail structure and can generate code for a general-purpose language (GPL),
e.g., Java, C# to store the audit logs securely.

Contribution. The contribution of this work is two-fold:

– We propose the first Domain-Specific language FAL, which can be used to ensure the
security of system logs and application audit logs.

– We show all the DSL development processes, which can be served as a guideline for
future DSL development.

This paper is an extension of [42]. In this paper, we augmented the scheme presented
in [42] by providing the complete translational semantics of FAL. We also made FAL more
robust by providing a new feature. Previously, the delimiter to parse a system log file was
fixed. In the new version, we added the user provided delimiter feature, by modifying all
the DSL development steps described in [42] (such as abstract syntax, syntactic domain,
grammar, translational semantics, and implementation). We also describe the life cycle for
DSL development that we followed during the development of FAL.

The rest of the paper is organized as follows. Section 2 describes the background of
secure logging and the motivation of developing a DSL to solve some of the challenges of
secure logging. Section 3 discusses the life cycle for DSL development. In Section 4, we
describe the development and implementation of FAL. Section 5 describes two practical

Forensics Aware Language 1293

applications of FAL in two different scenarios. Section 6 discusses the related work in
secure logging and usage of DSL in security domain. Finally, we conclude in Section 7.

2. Background and Motivation

In this section, we present the necessity of a secure logging scheme, common approaches
towards secure logging, and how a DSL can help to mitigate some of the challenges of
secure logging.

2.1. Secure Logging

As logs are crucial for digital forensics investigation, attackers often target logs to destroy
the evidence. There can be two types of attacks on logs:

– Integrity: Integrity of logs can be violated in three ways – an attacker can remove log
information, re-order the log entries, and add fake logs. A malicious user can launch
these attacks to hide the trace of his illegal activities from forensics investigation, or
to frame an honest user. Timing of an incident is crucial for forensics investigation.
Hence, re-ordering the log entries can be important for an attacker, which can give
him a chance to produce some alibi.

– Confidentiality: Activity of users, as well as, sensitive private information about
the users can be identified from various system logs and application logs. From
the application logs of a business organization, we can also trace out very sensitive
business information. This information has high value to attacker. Hence, an attack on
the confidentiality of logs can be highly beneficial to attackers.

The above attacks can come from different types of attackers:

– External Attackers: An external attacker can be a malicious user intending to attack
users’ privacy from the logs, or try to modify logs to hide the trace of any attack (e.g.,
network intrusion, malware, spyware). A dishonest forensic investigator can also be
an external attacker, as malicious investigators can alter the logs before presenting to
court.

– Internal Attackers: A more crucial attack can come from insider attackers colluding
with malicious users. A dishonest insider can be a system admin, database admin, or
application developer. As system admins have access to all the system logs, they can
always tamper with logs. Application logs and some of the system logs can be stored
in database. In this case, threats can come from database admin. A malicious database
admin can modify logs without leaving any trace of the modification. Application
developers can modify application logs, or can create a backdoor to collect the appli-
cation logs. Besides tampering the logs, these insiders can also attack on the privacy
of users. They can collect and sell sensitive business and personal information derived
from the logs.

To defend the confidentiality and integrity of logs, researchers have proposed several
secure logging schemes [1, 21, 32, 41]. The commonalities among these secure logging
schemes are: encrypting sensitive fields to protect the confidentiality, and maintain a hash-
chain of the logs to protect the integrity of logs. Hash-chain maintains the chronological

1294 Zawoad et al.

information of data. Hence, if any log is missing from the chain or if there is a reordering
of the logs, then this alteration can be detected from the hash-chain. Hash-chain of one
log entry is calculated using the hash of its previous entry. In this way, it preserves the
chronological information.

2.2. Motivation

Though there are some proven secure logging schemes, developing and maintaining a
scheme is always challenging because of the following reasons:

1. One of the problems in developing a universal secure logging scheme is that logs exist
in heterogeneous format. Unfortunately, there is no standard format of logs. Hence,
two types of systems logs can look completely different. Moreover, same log can vary
by operating systems. For example, format of a process log entry is different in MacOS
and Debian.

2. To build a secure logging scheme, we need to permit the logging scheme developers to
access the logs. Developers’ accessibility to crucial log information certainly increases
the attack surface. Earlier, we only need to trust system admins; adding developers
in the loop introduces an extra level of trust. Developers might place a back door to
collect plain log information and can violate the privacy of users.

3. For application logging, application developers need to add secure application logging
code for every scenario. Most of the cases, we need to log the database operations
– Add, Update, Delete. Through these logs, we can identify who has executed some
specific operations on a specific data. Writing code for all possible scenarios is bur-
densome for developers. On the other hand, skipping one important logging method
may turn out to be crucial.

We believe that a well-defined DSL would be able to resolve the above challenges.
For system logs, with the help of a DSL, we can shift the responsibility of developing a
secure logging scheme from programmers to system admins. As system admins already
have the domain knowledge about system logs, they can easily define the required security
parameters with the help of a DSL. In this way, we can reduce one level of attack surface.

Since one of the main challenges of integrating a secure logging scheme is that logs are
in heterogeneous formats, a DSL should also deal with this issue. A secure logging scheme
that is already integrated for one log format, need to be changed for another log format.
Instead of using a GPL, if we use a DSL that can cope up with heterogeneous formats of
logs, the amount of code that has to be changed can be highly reduced. Moreover, we do
not need to re-implement a scheme, when the log format changes because of any system
migration. For application logs, a DSL can generate required application logging code to
reduce the application development cost.

To integrate a secure logging scheme, knowledge about existing encryption and hashing
algorithms should also be integrated with a DSL. For FAL, this knowledge is embedded
with the specialized Application Programming Interface (API) (details in Section 4.5).
However, if we want to use a proprietary encryption or hashing algorithm, we need to
upgrade the DSL to provide the knowledge of that encryption or hashing algorithm. For
example, FAL supports the common hashing algorithms: MD5, SHA-1, SHA-256, and
SHA-512. To use the SHA-1024 hashing algorithm, we need to upgrade FAL and the API

Forensics Aware Language 1295

to integrate the SHA-1024 hashing algorithm. Hence, our proposed DSL can only handle
established encryption and hashing algorithms.

3. DSL Development Methodology

A DSL life cycle comprises of the following phases: decision, domain analysis, DSL
design, DSL implementation, DSL testing, DSL deployment, and DSL maintenance [5,23].
During the decision phase, several criteria need to be evaluated and contrasted to find
out whether the development of a new DSL is a solution to our problem. In this respect,
decision patterns [23] might be helpful as they indicate those situations of the past, where
the introduction of a DSL into a process had been successful. If the decision about
implementing a DSL is found to be positive during the initial phase, then the next stage is a
DSL development, which is a topic of this Section. It is comprised of the following phases:
domain analysis, DSL design, and DSL implementation. These phases are crucial during a
DSL life cycle and an appropriate methodology is needed to do it correctly. Many DSLs
have been developed from scratch by informally performing a particular phase (domain
analysis, DSL design, DSL implementation), certain parts of a phase (e.g., semantic part of
a DSL design), or even all the phases. There are several problems with the ‘from scratch’
approach. The more notable problems are: often an unsatisfactory DSL is developed and
several costly re-development iterations are needed, difficult maintenance, and that DSL
evolution is hard. For example, often problems that should have been identified within early
phases only become visible during later phases. Hence, such an informal approach to DSL
development is not recommended. In this section, a particular formal DSL development
methodology is described. Namely, domain analysis, DSL design, and DSL implementation
are not narrow processes and various formalisms can be applied.

The task of domain analysis is to select and define the domain of focus, collect appro-
priate domain information, and integrate them into a coherent domain model that represents
concepts within a domain and relationships within the domain concepts. Here, several
existing domain analysis methodologies can be used. In particular, our recommendation
is to use Feature-Oriented Domain Analysis (FODA) [15] since common and variable
properties of a domain are easy to identify in feature diagrams (i.e., variation points). In
fact, the list of variations indicates precisely which information is required for specifying
an instance within a system. This information must be either directly specified within
programs written in a DSL or be derivable from them. On the other hand, the common-
alities are used for defining the execution model (through a set of common operations)
and the primitives of the language. The outputs from domain analysis are: terminology,
concepts, commonalities, and variations. These are easily identified from FODA feature
diagrams [34] and should be used as inputs into the next phase – DSL design.

Designing a language involves defining the constructs within the language (syntax) and
giving semantics to the language. Both sub-phases, syntax and semantics, can be managed
informally or formally. The advantages of formal syntax and semantic specification of
programming languages are well-known: the structure and meaning of a program is
precisely and unambiguously defined, and it offers a unique possibility for the automatic
generation of compilers or interpreters. Programming languages that have been designed
using one of the various formal methods for syntax and semantic definitions have better
syntax and semantics, lesser number of exceptions, and easier learning curve. Moreover,

1296 Zawoad et al.

researchers have recognized the possibility that many other language-based tools could be
generated from formal language specifications. Therefore, many language implementation
systems not only automatically generate a compiler/interpreter but also complete language-
based environments including editors, type checkers, debuggers, various analyzers, and
animators [13]. The following formal methods have been used for DSL syntax definition:
BNF, FDL [14], metamodels, DTD, and XML Schema. The powers of all these formal
methods for syntax definition are the same. Hence, transformations between different
syntax descriptions are more or less easy to achieve. In our DSL development methodology,
we opted for BNF since many language implementation systems (i.e., compiler generators
[6,8,12,24]) use variants of BNF. Semantic formalisms are usually based on abstract syntax
instead of concrete syntax. Hence, both forms need to be developed as concrete syntax
is later required when parsing. Whilst different syntax formalisms are equivalent, the
situation is quite different for the semantics, where approaches such as attribute grammars,
axiomatic semantics, operational semantics, denotational semantics, and translational
semantics are complementary, and used by different stakeholders. For example, attribute
grammars are used by compiler writers, whilst axiomatic and denotational semantics are
used by language designers to prove various language properties without concentrating on
particular implementation. On the other hand, operational semantics define the meaning
of the language through configuration changes and is closer to the implementation on
virtual machines. Another distinction amongst different semantic formalisms is whether
they are able to describe the static and/or dynamic semantics of a language. In our DSL
development methodology, we used the translational semantics for code generation.

Domain

Analysis

FODA

Terminology

Concepts

Commonalities

Variabilities

DSL Design

Abstract

Syntax

Translational Semantics

Implementation

DSL Syntax

Attribute

Grammar

LISA

Concrete

Syntax

(BNF)

DSL Semantics

Compiler

Fig. 1: FAL Development Life Cycle

Finally, after a DSL has been designed, it is time for its implementation. Different
approaches for DSL development have been introduced in [23], such as interpreter, com-
piler/application generator, embedding, preprocessing, extensible compiler/interpreter,
Commercial Off-The-Shelf (COTS), and the hybrid approach. Clearly, we want to select an
approach that requires the least effort during implementation and offers the greatest efficacy
to the end-user [17]. In our approach to DSL development, the formal specifications during
design phase constitute an important part. Of course, it is harder to design a DSL formally
than informally. This pays off during the DSL implementation phase, where a complete
compiler/interpreter can be automatically generated. This is achieved in our case by map-
ping translational semantics to the language implementation system LISA [24], which is

Forensics Aware Language 1297

based on attribute grammars [16,27]. Code generation using translational semantics is easy
to implement in attribute grammars.

The whole process of our methodology for DSL development is presented in Fig-
ure 1. Section 4 shows how our DSL development methodology has been used for the
development of FAL.

4. The Domain-Specific-Language FAL

4.1. Domain Analysis

Log Structures

Fields

Encryption Algorithm Hash Algorithm

Type Encrypted Index

RSA AES MD5 SHA-256

IP TEXT INT TIME

Auto Index-Based

SHA-1

DOUBLE

Logging Actions

System Log

Application Log

Key

Public Key Private Key

Table Action

Add Update Delete

History

Method

History

File

Key

Public Key Private Key

Secure Logging

Delimiter

Fig. 2: The Feature Diagram of FAL

The very first step of designing a DSL is the detailed analysis and structuring of the
application domain [38], which is provided by domain analysis. Output of domain analysis
is a Domain Model, which gives us commonalities and variabilities, semantics of concepts,
and dependencies between properties. Among various schemes of domain analysis, we
choose FODA. In FODA, the results of the domain analysis are obtained in a feature
model [33]. One of the most prominent ways of describing a feature model is feature

1298 Zawoad et al.

diagram (FD). The FD is represented as a tree with nodes as rectangles and arcs connecting
the nodes. Nodes determine the features, while arcs determine the dependency between
the features. Nodes can be mandatory or optional, which are denoted by closed dots and
open dots respectively. The FD of FAL is illustrated in Figure 2.

From Figure 2, it is clear that a secure logging scheme constitutes of log structure
and logging action. Every log structure must have fields. Every field must have a type.
According to the chosen secure logging scheme, a field can be encrypted or not. Fields
may have an index attribute, which can be used to specify the position of a field in an
input. The type of a field can be IP, Text, Double, Integer, or Time. Time can be auto-
generated, i.e. current system time, or can be index-based. For index-based field, value will
be extracted from input file or argument list according to the position defined by the index.
For encryption, various encryption algorithms, such as, RSA [31], AES [29] can be used.
Some secure logging mechanisms use hashing and hash-chain to ensure the integrity of
logs. Hence hashing algorithms, e.g., SHA-11, SHA-2561, or MD52 can be used.

After defining a secure log structure, we need to use the structure for system or
application logging. There can be two types of actions. First, for system logs, we need
to parse the system log files according to a predefined structure, and apply the security
features while storing. Second, for application log, we need to generate GPL code. For
system logs, we must have a file name, and we may have public or private key file. By
encrypting with public key, we can ensure that only the private key owner can decrypt
certain information. Private key is also needed to create a signature on certain data and
we can verify that signature using the public key. For application logging, we must have a
table name, action, method, and may have public or private key file. Method is actually a
method name of a GPL program, from where the action is called. An action can be adding
a new record, update, or delete a record. For update and deletion, we may want to save the
history of previous records.

FDs represent the common features, which always exist in a system (commonalities)
and optional features, which may or may not exist in a system (variabilities). Some of the
commonalities identified from the FD of FAL are Fields, Type, etc., and some variabilities
are Encryption Algorithm, Key, etc. From FD, the variation points can be easily identified
(optional, one-of and more-of features). After the domain analysis, we can gather the
following information – terminology, concepts, and common and variable properties of
concepts with their interdependencies.

4.2. The Abstract Syntax

After the domain analysis, the next step is to design the DSL, from which we will get syntax
and semantics of the language. During the domain analysis using FODA, we identified
several concepts in the application domain that needed to be mapped into DSL syntax
and semantics. From the FD, we can identify the relationship between concepts/features
in an application domain and non-terminals in a context-free grammar (CFG). Table 1
represents the mapping between application domain concepts and non-terminals in context-
free grammars, which appears on the left hand side (LHS) and right-hand side (RHS) of
CFG production.

1 http://www.itl.nist.gov/fipspubs/fip180-1.htm
2 http://tools.ietf.org/html/rfc1321

Forensics Aware Language 1299

Table 1: Translation of the application domain concepts to a context-free grammar

Application domain concepts LHS RHS structure
non-terminal

Secure Logging P Description of Log structure, and logging ac-
tion.

Log Structure LS Description of fields and security parameters.
Fields F Field id, type (IP, Text, Double, Integer, Time),

indexing feature, encrypted (or not encrypted).
Index I Position of a field in input, or auto.
Security Parameters S Description of encryption and hashing algo-

rithm.
Logging Action LA Description of system logging, or application

logging statement.
System logging SLA File name to be parsed to store securely, delim-

iter used in parsing, and the encryption key.
Application log ALA Database operation, table id, GPL method name,

encryption key, and history preservation option.
System Log Encryption Key SLPK Public key or private key encryption file for

encrypting system log.
Application Log Encryption Key ALPK Public key or private key encryption file for

encrypting application log.

Table 2: Abstract syntax of FAL

P ::= LS LA
LS ::= lid F S |LS1; LS2
F ::= type fid I encrypted |type fid I |F1; F2
S ::= encAlg hashAlg |encAlg |hashAlg |ε
I ::= n |Auto
LA ::= SLA |ALA |LA1; LA2
SLA ::= slaid file SLPK |slaid file SLPK delimiter
ALA ::= alaid action tid mid withhistory ALPK |alaid action tid mid ALPK
SLPK ::= pubKey |privKey |ε
ALPK ::= pubKey |privKey |ε

Based on Table 1, we define the abstract syntax of FAL, which is presented in Table 2.
The syntactic domains of variables are presented in Table 4. A FAL program consists of
Log structures LS, and logging actions LA. Log structure LS defines field description F and
security parameter S. There can be one or more LS. The field descriptor F specifies field
type, id, index I, and encrypted status. There can be one or more fields in a log structure.
Index I is either an integer number, or auto. A field that has auto as the index, indicates
that the value of the field is not extracted from a certain position of a given log file (for
system log) or does not bind with a position of function parameters (for application log).

1300 Zawoad et al.

Table 3: Syntactic Domains

P ∈ Pgm LS ∈ LogStructure
F ∈ Field LA ∈ LogAction
I ∈ Index S ∈ SecAttrs
SLA ∈ SystemLog ALA ∈ AppLog
n ∈ Num file ∈ FileSpec
type ∈ {IP, Text, Double, Integer, Time} fid ∈ FileIdentifier
tid ∈ TableIdentifier mid ∈MethodName
lid ∈ LogStructureIdentifier action ∈ {Add,Update,Delete}
hashAlg ∈ {MD5, SHA-1,SHA-256} encAlg ∈ {RSA,AES}
SLPK ∈ SysLogEncryptionFile ALPK ∈ AppLogEncryptionFile
slaid ∈ SystemLogActionIdentifier alaid ∈ AppLogActionIdentifier
pubKey ∈ PublicKeyFileSpec privKey ∈ PrivateKeyFileSpec
delimiter ∈ ASCII Character Sequence

The value of this field is generated from intermediate code, such as current time. Security
parameter S defines encryption and hashing algorithm. Logging action LA can be either
System logging action SLA or Application logging action ALA. There can be one or more
logging actions. SLA specifies the system log file name, delimiter to be used in parsing,
and encryption key. ALA specifies the database action name, database table name, GPL
method name, encryption key, and history preservation option. SLPK and ALPK specify
the public key/private key for system logging and application logging respectively.

4.3. The Concrete Syntax

After defining the abstract syntax, we experimented with different forms of concrete
syntaxes to see how various constructs might look. For example, a log structure with two
fields fromip and user can be defined using the concrete syntax as described in Listing 1.

Listing 1: FAL Log Structure

1: Define netlog {
2: IP fromip Index 0 Encrypted;
3: TEXT user Index 1;
4: Use Encryption With RSA;
5: Use Logchain With SHA 1;
6: };

Here, fromip field has data type IP, and user is of TEXT data type. The Index attribute
represents the position of a field in the network log file. The Encrypted attribute states that
the field will be encrypted according to the encryption algorithm defined in line 4. If there
are multiple encrypted fields, all the fields will be encrypted using the same encryption
algorithm. Line 5 adds the flexibility of choosing any hash function.

Forensics Aware Language 1301

After defining a log structure, we define a logging action, which uses the pre-defined
log structure. A concrete example of storing a network log file securely can be defined as
follows (Listing 2):

Listing 2: FAL Logging Action
1: Watchfile network.log Using netlog
2: {
3: Privatekey private.key;
4: Delimiter “;”;
5: }

The Watchfile statement uses the previously defined ‘netlog’ structure to parse the
‘network.log’ file and uses the private.key, a private key encryption file to encrypt the
fromip field defined in Listing 1.

Listing 3: FAL Program for System and Application Log
1: SampleProgram[
2: Define netlog {
3: IP fromip Index 0 Encrypted;
4: TEXT user Index 1;
5: Use Encryption With RSA;
6: Use Logchain With SHA 1;
7: }
8: Define patientlog{
9: TIME logtime Auto;

10: TEXT user Index 0 Encrypted;
11: INT refid Index 1;
12: TEXT message Index 2 Encrypted;
13: Use Logchain With SHA 256;
14: }
15: Watchfile network.log Using netlog {
16: Privatekey private.key;
17: Delimiter “;”;
18: }
19: Watchtable Patient Using patientlog {
20: Action Edit Withhistory;
21: Method updatepatient;
22: Publickey public.key;
23: }
24:]

When a language designer is satisfied with the look and feel of the language’s syntax,
and possible additional constraints from domain experts or language end-users are fulfilled,
the concrete syntax can be finalized. In Listing 3, a complete example of FAL program for
secured system and application logs is described. We finalized the concrete syntax on the

1302 Zawoad et al.

basis of several example programs. Finalizing the concrete syntax process can be executed
in parallel with defining language semantics. In Table 5, we provide the concrete syntax
FAL.

Table 4: The concrete syntax of FAL

Program := #CCStart [LOG STRUCT LOG ACTION]
LOG STRUCTS := LG STRUCTS
LG STRUCTS := LG STRUCTS LG STRUCT |LG STRUCT
LG STRUCT:= Define #Id {DEF}
DEF := FIELDS SEC ATTRS
FIELDS := FIELDS FIELD |FIELD
FIELD := #Type #Id IND BASE ENC ;
IND BASE := Index #Number |Auto
ENC := Encrypted |ε
SEC ATTRS := SEC ATTRS SEC ATTR |ε
SEC ATTR := Use SEC STMT ;
SEC STMT := ENC STMT |HASH STMT
ENC STMT := Encryption With #EncAlgorithm
HASH STMT := Logchain With #HashAlgorithm
LOG ACTION := LG ACTIONS
LG ACTIONS := LG ACTIONS LG ACTION |LG ACTION
LG ACTION := SYS ACT |APP ACT
SYS ACT := Watchfile #FileName Using #Id {ENC KEY DELIM}
ENC KEY := PUB KEY |PRIV KEY |ε
PUB KEY := Publickey #FileName;
PRIV KEY := Privatekey #FileName;
DELIM := Delimiter #UserDelimiter; |ε
APP ACT := Watchtable #CCStart Using #Id {PARAM}
PARAM := DB ACTION GPL MTHD ENC KEY
DB ACTION := Action ACT NAME ;
ACT NAME := Add |ACT HSTRY
ACT HSTRY := ACT HSTRY NAME HISTRY STMT
ACT HSTRY NAME := Edit |Delete
HISTRY STMT := Withhistory |ε
GPL MTHD := Method #Id ;

4.4. Translational Semantics

The advantages of using formal description for semantics of DSL (e.g., attribute
grammars, denotational semantics, operational semantics) have been previously discussed
in [23]. The authors of [23] discussed the ability to find problems in semantics before
a DSL is actually implemented. In this work, we used translational semantics, which is
simpler to define compared to denotational and operational semantics, and it is often used
for defining semantics of domain-specific modeling languages [4]. Listing 4 provides

Forensics Aware Language 1303

Listing 4: Translational Semantics
1: TP : Pgm→ Code
2: TPJLS LAK = (TLSJLSK) ↓ 1 + TLAJLAK (TLSJLSK) ↓ 2
3: TLS : LogStructure→ Code × lid
4: TLSJlid F SK = (“LogStructure ” + lid + “ = new LogStructure();” + lid+“.setName(” + lid +

“);” + TFJF K lid + TSJSK lid, lid)
5: TLSJLS1;LS2K = ((TLSJLS1K)↓ 1 + (TLSJLS2K)↓ 1, (TLSJLS1K) ↓ 2)
6: TF : Field→ lid→ Code
7: TFJtype fid I encryptedK lid = lid+“.addField(FieldType.” + type + “,” + fid + “,” + TIJIK +

“, true);”
8: TFJtype fid IK lid = lid+“.addField(FieldType.” + type + “,” + fid + “,” + TIJIK + “, false);”
9: TFJF1;F2K lid = TFJF1K lid + TFJF2K lid

10: TI : Index→ Code
11: TIJnK = “true, ” + n
12: TIJAutoK = “false, INTEGER.MAX VALUE”
13: TS : SecAttrs→ lid→ Code
14: TS JencAlg hashAlgK lid = lid + “.setEncryptionAlgorithm(”+ encAlg + “);” +
15: lid + “.setHashingAlgorithm(”+ hashAlg + “);”
16: TSJencAlgK lid = lid + “.setEncryptionAlgorithm(”+ encAlg +“);”
17: TSJhashAlgK lid = lid + “.setHashingAlgorithm(”+ hashAlg + “);”
18: TLA : LogAction→ lid→ Code
19: TLAJSLAK lid = TSLAJSLAK lid
20: TLAJALAK lid = TALAJALAK lid
21: TLAJLA1;LA2K lid = TLAJLA1K lid + TLAJLA2K lid
22: TSLA : SystemLog→ lid→ Code
23: TSLAJslaid file SLPKK lid = “FileWatcher ” + slaid + “ = new FileWatcher();” + slaid +

“.setLogStructure(” + lid + “);” + slaid + “.setFileName(” + file + “);” + TSLPKJSLPKK slaid
+ slaid + “.setDelimiter(\“ \”);”

24: TSLAJslaid file SLPK delimiterK lid = “FileWatcher ” + slaid + “ = new FileWatcher();” +
slaid + “.setLogStructure(” + lid + “);” + slaid + “.setFileName(” + file + “);” + TSLPKJSLPKK
slaid + slaid + “.setDelimiter(“ + delimiter +”);”

25: TSLPK : SysLogEncryptionFile→ slaid→ Code
26: TSLPKJpubKeyK slaid = slaid + “.setPublicKeyFile(” + pubKey + “);”
27: TSLPKJprivKeyK slaid = slaid + “.setPrivateKeyFile(” + privKey + “);”
28: TALA : AppLog→ lid→ Code
29: TALAJalaid action tid mid withhistory ALPKK lid = “TableWatcher ” + alaid + “ =

new TableWatcher();” + alaid + “.setLogStructure(” + lid + “);” + alaid + “.setAction(” +
action + “);” + alaid + “.setTable(” + tid + “);” + alaid + “.setMethod(” + mid + “);” + alaid +
“.setMaintainHistory(true);” + TALPKJALPKK alaid

30: TALAJalaid action tidmid ALPKK lid = “TableWatcher ” + alaid + “ = new TableWatcher();”
+ alaid + “.setLogStructure(” + lid + “);” + alaid + “.setAction(” + action + “);” + alaid + “.set-
Table(” + tid + “);” + alaid + “.setMethod(” + mid + “);” + alaid + “.setMaintainHistory(false);”
+ TALPKJALPKK alaid

31: TALPK : AppLogEncryptionFile→ alaid→ Code
32: TALPKJpubKeyK alaid = alaid + “.setPublicKeyFile(” + pubKey + “);”
33: TALPKJprivKeyK alaid = alaid + “.setPrivateKeyFile(” + privKey + “);”

1304 Zawoad et al.

the complete translational semantics of FAL. For each non-terminal in CFG (Table 2), a
translational function is defined, which maps syntactic domains (Table 4) to their meanings
– Java code that uses a specialized API for secure logging. For example, the meaning of
non-terminal LS is defined by translational function TLS, which takes LogStructure
as input and return two components: first one is code and the second one is lid (object
id of the LogStructure class). Two different forms of LS exist (see abstract syntax in
Table 2). Hence, two translational functions TLS are defined (lines 4 and 5 in Listing
4). The first translational function TLS (line 4 in Listing 4) maps syntactic structure
lid F S into several Java statements: declaration of new object as an instance of class
LogStructure, setting a name to the newly created object by calling setName method,
and additional Java statements. The additional statements will be generated by applying
translational functions TF and TS on non-terminals F and S, where F and S represent
fields and security attributes respectively. This function also returns the lid as the second
parameter. Whilst, the second translational function TLS (line 5 in Listing 4) defines the
meaning of sequence of log structures (LS1;LS2). The generated code for LS1 is simply
concatenated with generated code for LS2 (line 5 in Listing 4). In a similar manner, other
translational functions are defined.

4.5. Implementation

Various implementation techniques to implement a DSL exist, such as preprocessing,
embedding, compiler/interpreter, compiler generator, extensible compiler/interpreter, com-
mercial off-the-shelf, and hybrid approaches [23]. Kosar et al. [17] suggested focusing
end-user usability while implementing a DSL. One implementation approach can be good
in terms of effort needed to implement a DSL. However, the same approach may not be
suitable for end-users. End-users may need extra effort to rapidly write correct programs
using that DSL. If only DSL implementation effort is taken into consideration, then the
most efficient implementation technique is embedding. However, the embedding approach
might have significant penalties when end-user effort is taken into account (e.g., DSL
program size, closeness to original notation, debugging, and error reporting). To minimize
end-users’ effort, building a DSL compiler [17] is most often a good solution, but this
process costs most from an implementation point of view. However, the implementation
effort can be greatly reduced, but not as much as with embedding, especially if compiler
generators (e.g., LISA [25], ANTLR [28], Silver [39]) are used.

To implement FAL, we depend on source-to-source transformation technique. To
transform a FAL program into an intermediate Java program, we build a FAL compiler
using LISA, which has proven its usefulness in many other DSL projects [10,11,13,20,22].
The intermediate program uses a pre-build Java API.

Design of the Java API is illustrated in Figure 3. Fields are represented by Field class.
The LogStructure has a list of Field object and the security attributes. The name field of
LogStructure is used to map with the database table name. LogAction is an abstract class
with the abstract method execute, and it also has an instance of LogStructure. FileWatcher
extends the LogAction class and implements the execute method. The execute method is
responsible to parse a log file and store it into the database with the help of LogStructure
and Field. TableWatcher also extends the LogAction class and implements the execute
method, which generates application logging code for developer. The SecurityUtil class
defines all the required encryption and hashing methods.

Forensics Aware Language 1305

3/17/201

4
1

Field

FieldType

FieldName

IsEncrypted

IsIndexBased

Index

LogStructure

EncAlgorithm

HashAlgorithm

Name

*

FileWatcher

FileName

execute()

TableWatcher

TableName

ActionName

MethodName

execute()

LogAction

PublicKeyFile

PrivateKeyFile

getHashChain()

execute()

SecurityUtil

All Encryption

And Hashing

Utility Methods

Fig. 3: Design of the API for FAL

After finalizing the Java API, we now know what the intermediate program will be.
For example, the API provides addField(Enum FieldType, String fieldName, boolean
isEncrypted, int index, boolean isIndexBased) method to add a new field. For using a
specific encryption and hashing algorithm, the intermediate program can use setEncryp-
tionAlgorithm(String algoName) and setHashingAlgorithm(String algoName) methods
provided by the API. The FAL compiler will generate this intermediate program from
a FAL program. To transform the FAL program to Java program correctly, we use the
attribute grammar-based approach as LISA specifications are based on attribute gram-
mars [16, 27]. It is capable to generate the compiler from formal attribute grammar-based
language specifications.

The first task to implement the compiler is to define the lexicon. Defining the lexicon
in Lisa is straightforward. It is showed in Listing 5.

Listing 5: Lexical specification for FAL in LISA

1: lexicon {
2: Number [0-9]+
3: Id [a-z][a-z0-9]*
4: Type IP |TEXT |INT |TIME |DOUBLE
5: EncAlgorithm RSA |AES
6: HashAlgorithm MD5 |SHA 1 |SHA 256
7: keywords Define |Use |Encryption |With |Logchain |Index |
8: Auto |Encrypted |Watchfile |Using |Publickey |Privatekey |
9: Watchtable |Action |Withhistory |Method |Parameter

10: FileName [a-z][a-z0-9]*.[a-z]*
11: UserDelim ”[\0x20 - \0x7E]+”
12: CCStart [A-Z][a-z0-9]*
13: ActionName Add |Edit |Delete
14: Separator \; |\{ |\} |\, |\[|\]
15: ignore [\0x09\0x0A\0x0D\]+
16: }

1306 Zawoad et al.

To write the attribute-based semantic rules, first, we need to identify the required
attributes for proper semantic analysis. Listing 6 presents the attributes that we used.
code is the main synthesized attribute that produces the targeted GPL program. ivar is an
inherited attribute that is used to propagate the variable name down the parse tree. envs
is a synthesized attribute and envi is an inherited attribute; both are needed to maintain a
HashSet of already defined variables. errorMsg is a synthesized attribute, required to report
FAL error message to users. ok is a synthesized attribute that indicates whether a FAL
program is correct or not. Finally, PROGRAM.file attribute is used to write the generated
GPL program in a file.

Listing 6: Attributes for FAL in LISA
1: attributes String *.code;
2: String *.ivar;
3: String *.errorMsg;
4: HashSet *.envs;
5: HashSet *.envi;
6: boolean *.ok;
7: BufferedWriter PROGRAM.file;

An implementation of translational semantics (Listing 4) using LISA is a straightfor-
ward task. The implementation of translational function TF (Lines 7 and 8 in Listing 4) is
presented in Listing 7. Note, how closed both notations are.

After compiling a FAL program, the required Java code will be automatically generated.
The generated code utilizes predefined APIs to store logs, and generate audit trail code for
ensuring the integrity and confidentiality of the logs.

Forensics Aware Language 1307

Listing 7: Semantic Rules in LISA
1: rule field {
2: FIELD ::= #Type #Id IND BASE ENC \; compute {
3: FIELD.code = FIELD.ivar + “.addField(FieldType.” +
4: #Type.value() + “,\”” + #Id.value()+“\”, ” +
5: IND BASE.code + “,” + ENC.code+”);”;
6: };
7: }
8: rule ind base {
9: IND BASE ::= Index #Number compute {

10: IND BASE.code = “true,”+ #Number.value();
11: }
12: |Auto compute {
13: IND BASE.code = “false,Integer.MAX VALUE”;
14: };
15: }
16: rule enc {
17: ENC ::= Encrypted compute {
18: ENC.code = ”true”;
19: }
20: |epsilon compute {
21: ENC.code = ”false”;
22: };
23: }

5. Practical Experience

The goal of this section is to acquaint the reader with the practical experiences that were
obtained by using FAL. We have therefore selected two case studies of FAL applications:

– Preserve snort log securely using FAL.
– Generate application logging code for a patient information update method in Java.

5.1. Preserve Snort log

Snort3 is a free lightweight network intrusion detection system. The network logs generated
by Snort play a vital role in network forensics. Hence, preserving the confidentiality and in-
tegrity of Snort logs is crucial from digital forensics perspective. Here is a sample Snort log:

11/19-13:43:43.222391 11.1.0.5:51215 -> 74.125.130.106:80 TCP
TTL:64 TOS:0x0 ID:22101 IpLen:20 DgmLen:40 DF ***A***F Seq:
0x3EA405D9 Ack: 0x89DE7D Win: 0x7210 TcpLen: 20’’

This log tells that the machine with IP 11.1.0.5 performed an http request to machine
74.125.130.160 at time 11/19-13:43:43.222391. Hence, when a machine attacks another

3 http://www.snort.org

1308 Zawoad et al.

machine, we can identify the attacker machine IP from the snort log. Let’s assume that a
system admin decides to store the ‘from IP’, ‘to IP’, and time of network request securely.
To protect the confidentiality of logs, among these three fields, the admin decides to encrypt
‘from IP’ and ‘to IP’ by the public key of law enforcement agencies using RSA algorithm.
To protect the integrity of the logs, the system maintains hash-chain of the logs using
SHA-256 hash function. The FAL program described in Listing 8 can be used to ensure all
these properties.

Listing 8: FAL Program for Snort Log
1: SnortParser[
2: Define snortlog {
3: IP fromip Index 1 Encrypted;
4: IP toip Index 3 Encrypted;
5: Time logtime Index 0;
6: Use Encryption With RSA;
7: Use Logchain With SHA 256;
8: };
9: Watchfile snortnetwork.log Using snortlog {

10: Publickey lawpublic.key;
11: }
12:]

The above FAL program will generate the Java code provided in Listing 9.

Listing 9: Translated Java Code from FAL
1: LogStructure snortlog = new LogStructure();
2: snortlog.setName(“snortlog”);
3: snortlog.addField(FieldType.IP,“fromip”,true,1,true);
4: snortlog.addField(FieldType.IP,“toip”,true,2,true);
5: snortlog.addField(FieldType.TIME,“logtime”,true,0,false);
6: snortlog.setEncryptionAlgorithm(“RSA”);
7: snortlog.setHashingAlgorithm(”SHA 256”);
8: FileWatcher snortlogFileWatcher = new FileWatcher();
9: snortlogFileWatcher.setLogStructure(snortlog);

10: snortlogFileWatcher.setFileName(“snortnetwork.log”);
11: snortlogFileWatcher.setPubicKeyFile(“public.key”);
12: snortlogFileWatcher.execute();

Executing the Java code (Listing 9) will parse the snort log file and store them with the
security parameter. However, FAL users do not need to understand the underlying API or
the intermediate Java code generated by FAL.

5.2. Application Logging

Application log is crucial for many applications including business and health care sectors.
The methods that directly communicate with a database need to be logged. From these
logs, later we can identify the person, who has modified (add/update/delete) any record.

Forensics Aware Language 1309

Application developer needs to integrate this logging feature with every method that
updates database. FAL can generate the necessary logging code for application developer.

Listing 10: FAL Program for Application Logging
1: PatientAppLog [
2: Define useraudit {
3: TIME logtime Auto;
4: TEXT username Index 0 Encrypted;
5: INT refid Index 1;
6: TEXT message Index 2 Encrypted;
7: Use Encryption With AES;
8: Use Logchain With SHA 1;
9: };

10: Watchtable Patient Using useraudit {
11: Action Edit Withhistory;
12: Method updatepatient;
13: Privatekey serveraes.key;
14: }
15:]

We present a hypothetical scenario of a health care application, where we can use FAL
for secure application logging. In the application, there is a Patient table and we want to
store logs whenever any update is operated on patient’s record. For such an application,
a log entry should include the user name, who executed an operation, patient id is being
updated, a description of the operation, and time of operation. The security analyst of
the application decides to encrypt user name, and the operation description using AES
encryption algorithm and SHA-1 hash function to maintain the hash-chain of logs. The
FAL program described in Listing 10 can be used to generate necessary application logging
code.

The translated Java code from FAL program (Listing 10) will generate the application
logging method as described in Listing 11.
6. Related Work

As logging information is one of the prime needs in forensic investigation, several re-
searchers have explored this problem across multiple dimensions. There have been number
of cryptographic approaches to address security for audit logs that are generated and stored
on local logging servers [2, 3, 32]. Bellare et al. provided a solution for secure logging,
where the encryption/decryption key of a logging server has been compromised but the
attacker cannot read or modify the previously encrypted logs [2, 3]. Schneier et al. pro-
posed a secure audit logging scheme, where the log information are stored in an untrusted
machine [32]. The proposed cryptographic scheme ensures that after an attack, the attacker
can acquire little or no information and cannot alter the sensitive log information without
being detected. In their scheme, they used public key and private key based encryption,
message authentication code, and hashing. According to Schneier’s scheme, a logging
machine U opening a new audit log first establishes a shared secret key A0 with a trusted
remote server T. After each audit entry is generated, the current secret key Ai is evolved
into Ai+1 through a one-way function. Log entries are linked using a hash chain.

1310 Zawoad et al.

Listing 11: Generated Code For Application Logging
1: public void auditPatientEdit(String username, int refid, String message, String logtime)
2: {
3: try {
4: String rowValue = username + refid + message + logtime;
5: String currHashs = getHashChain(“useraudit”,“id”,rowValue,
6: “SHA-1”);
7: String aesKey = SecurityUtil.readAESKey(“serveraes.key”);
8: username = SecurityUtil.aesEncrypt(username +“”, aesKey);
9: message = SecurityUtil.aesEncrypt(message +“”, aesKey);

10: String query = “insert into useraudit(username, refid,
11: message, logtime, tablename, actionname, methodname,
12: logchain, withhistory) values(“‘ + username
13: + “’,” + refid + “,‘” + message + “’,‘” + logtime +
14: “’,‘Patient’,‘Edit’,‘updatepatient’,‘”+currHashs+“’,true)”;
15: DBHandler dbHandler = new DBHandler();
16: dbHandler.insertData(query);
17: } catch (Exception e) { e.printStackTrace();}
18: }

Secure logging in cloud computing environment, where users can run virtual machine
(VM) on cloud infrastructure requires special attention due to the inherent nature of clouds.

Zawoad et al. proposed a secure logging scheme, SecLaaS for cloud computing envi-
ronment [41]. While proposing SecLaaS, they considered the cloud service provider as
dishonest who can collude with an attacker to tamper with the original logs. Alteration of
original logs can hide the trace of malicious behavior of the attacker and impede the foren-
sics investigation process. They used public/private key-based encryption and hash-chain
scheme to ensure the privacy and integrity of cloud VM logs. The schemes stated earlier
are against post-compromise insertion, alteration, deletion, and reordering pre-compromise
of log entries.

Though there are no DSL for secure logging, there are some DSLs for providing
access control facility on the audit logs or provenance record and also for general-purpose
access control. Ni et al. provided a XML-based access control language for general
provenance model [26]. The language supports the specification of both actor preferences
and organizational access control policies. Using this language, users can define and
evaluate access control policies on application audit logs. It also supports specifying
policies to a particular record and its fields. However, in this paper, the authors did not
provide the language development process. Ribeiro et al. provided SPL, an access control
language for security policies with complex constraints [30]. SPL supports simultaneous
multiple complex policies by resolving conflicts between two active policies. Beyond the
permission / prohibition, they also showed how to express and implement the obligation
concept. This paper also did not provide the details of language development process

Weissmann proposed ACS (Access Control Sets), an access control language to solve
the access control problem of UMLsec4 and aspect-oriented programming [40]. The
proposed language particularly tries to solve the problem of undecidability in granting
or denying a privilege, incapability of changing access controls without changing the

Forensics Aware Language 1311

model, incapability of delegating access control specifications, and inflexibility of UML
to define relations other than logical. Domain analysis of the language was executed
informally, and the author provided BNF grammar for the language. The language is based
on mathematical concepts of sets, hence the semantics of ACS closely follow that of set
theory. This language can be used in a business application to define all the policies of
the business organization, which can make both writing and modifying access control
specifications easy by reducing the human interaction with the security code .

7. Conclusion and Future Work

For proper digital forensics investigation, maintaining the trustworthiness of logs is com-
pulsory, and for this, we need a proper secure logging mechanism. To address the problem
of secure logging mechanism, we have designed and implemented the domain-specific
language FAL with the following benefits:

– Shifting the responsibility of developing a secure logging schemes from application
programmers to security experts, which in turn increases trustworthiness.

– Required code to use specialized API for secure application logging is automatically
generated. Hence, the effort and cost for developing secure logging scheme is reduced.

– Heterogeneous formats of logs with any secure logging schemes can be easily handled.
– Detail understanding of specialized API for secure logging is not needed for FAL

users.

One important feature that we are planning to incorporate with FAL is a timing option
with system logging action. With this feature, users can define when they want to start the
system logging and for how long they want to run the system logging option. Currently,
FAL does not have user friendly error reporting feature, which we will integrate in future.
For example, if a FAL user uses same index value for two fields, or uses an encryption
algorithm that is not available with FAL, these problems should be detected at compile
time and appropriate messages will be shown to user. For now, FAL generates audit-
trailing code for Java. We will also work towards making FAL more robust so that it
can generate audit-trailing code for other popular GPLs such as C++, C#, Python, Ruby,
etc. To accomplish this goal, we need to develop the current Java API for other GPLs.
Finally, FAL’s design needs to be validated by end-users by performing usability studies
and control experiments [18].

References

1. Accorsi, R.: On the relationship of privacy and secure remote logging in dynamic systems. In:
Security and Privacy in Dynamic Environments, vol. 201, pp. 329–339. Springer US (2006),
http://dx.doi.org/10.1007/0-387-33406-8_28

2. Bellare, M., Yee, B.: Forward integrity for secure audit logs. Tech. rep., Technical report,
Computer Science and Engineering Department, University of California at San Diego (1997)

3. Bellare, M., Yee, B.: Forward-security in private-key cryptography. Topics in Cryptology, CT-
RSA 2003 pp. 1–18 (2003)

4 http://www4.in.tum.de/%CB%9Cumlsec/

1312 Zawoad et al.

4. Bryant, B., Gray, J., Mernik, M., Clarke, P., France, R., Karsai, G.: Challenges and directions in
formalizing the semantics of modeling languages. Computer Science and Information Systems
8(2), 225–253 (2011)

5. Čeh, I., Črepinšek, M., Kosar, T., Mernik, M.: Ontology driven development of domain-specific
languages. Computer Science and Information Systems 8(2), 317–342 (2011)

6. Cervelle, J., Forax, R., Roussel, G.: A simple implementation of grammar libraries. Computer
Science and Information Systems 4(2), 65–77 (2007)

7. Congress of the United States: Sarbanes-Oxley Act. http://thomas.loc.gov (2002),
[Accessed May 5th, 2013]

8. Cordy, J.R., Halpern-Hamu, C.D., Promislow, E.: Txl: A rapid prototyping system for program-
ming language dialects. Computer Languages 16(1), 97–107 (1991)

9. FBI: Annual report for fiscal year 2007. 2008 Regional Computer Forensics Laboratory Program
(2008), [Accessed July 5th, 2012]

10. Fister, I.J., Fister, I., Mernik, M., Brest, J.: Design and implementation of domain-specific
language Easytime. Computer Languages, Systems & Structures 37(4), 151–167 (2011)

11. Fister, I.J., Kosar, T., Fister, I., Mernik, M.: EasyTime++: A case study of incremental domain-
specific language development. Information Technology and Control 42(1), 77–85 (2013)

12. Hedin, G., Magnusson, E.: JastAdd: An aspect-oriented compiler construction system. Science
of Computer Programming 47(1), 37–58 (2003)

13. Henriques, P.R., Pereira, M.V., Mernik, M., Lenič, M., Gray, J., Wu, H.: Automatic generation
of language-based tools using the LISA system. Software, IEE Proceedings - 152(2), 54–69
(2005)

14. de Jonge, M., Visser, J.: Grammars as feature diagrams. In: ICSR7 Workshop on Generative
Programming. pp. 23–24 (2002)

15. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. rep., CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University (1990)

16. Knuth, D.E.: Semantics of context-free languages. Mathematical systems theory 2(2), 127–145
(1968)

17. Kosar, T., Martı́nez López, P.E., Barrientos, P.A., Mernik, M.: A preliminary study on various
implementation approaches of domain-specific language. Information and Software Technology
50(5), 390–405 (2008)

18. Kosar, T., Mernik, M., Carver., J.: Program comprehension of domain-specific and general-
purpose languages: comparison using a family of experiments. Empirical Software Engineering
7(3), 276–304 (2012)

19. Kosar, T., Oliveira, N., Mernik, M., Pereira, M.V., Črepinšek, M., Cruz, D. da., Henriques,
P.R.: Comparing general-purpose and domain-specific languages: An empirical study. Computer
Science and Information Systems 7(2), 247–264 (2010)

20. Lukovič, I., Pereira, M.V., Oliveira, N., Cruz, D. da., Henriques, P.R.: A DSL for PIM specifica-
tions: Design and attribute grammar based implementation. Computer Science and Information
Systems 8(2), 379–403 (2011)

21. Ma, D., Tsudik, G.: A new approach to secure logging. Transaction of Storage (TOS) 5(1),
2:1–2:21 (Mar 2009)

22. Mernik, M.: An object-oriented approach to language compositions for software language
engineering. Journal of Systems and Software 86(9), 2451–2464 (2013)

23. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
ACM computing surveys (CSUR) 37(4), 316–344 (2005)

24. Mernik, M., Lenič, M., Avdičaušević, E., Žumer, V.: Lisa: An interactive environment for
programming language development. In: Compiler Construction. pp. 1–4. Springer (2002)

25. Mernik, M., Žumer, V.: Incremental programming language development. Computer Languages,
Systems & Structures 31(1), 1–16 (2005)

Forensics Aware Language 1313

26. Ni, Q., Xu, S., Bertino, E., Sandhu, R., Han, W.: An access control language for a general
provenance model. Secure Data Management pp. 68–88 (2009)

27. Paakki, J.: Attribute grammar paradigms: a high-level methodology in language implementation.
ACM Computing Surveys (CSUR) 27(2), 196–255 (1995)

28. Parr, T.: The definitive ANTLR reference: Building domain-specific languages (pragmatic
programmers). Pragmatic Bookshelf, May (2007)

29. Pub, N.F.: 197: Advanced encryption standard (AES). Federal Information Processing Standards
Publication 197, 441–0311 (2001)

30. Ribeiro, C., Zuquete, A., Ferreira, P., Guedes, P.: SPL: An access control language for security
policies with complex constraints. In: Proceedings of the Network and Distributed System
Security Symposium. pp. 89–107 (2001)

31. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

32. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM Transactions on
Information and System Security (TISSEC) 2(2), 159–176 (May 1999)

33. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of feature
diagrams. Computer Networks 51(2), 456–479 (2007)

34. Štuikys, V., Damaševicius, R.: Measuring complexity of domain models represented by feature
diagrams. Information Technology and Control 38(3), 179–187 (2009)

35. Swanson, M., Guttman, B.: Generally Accepted Principles and Practices for Securing Informa-
tion Technology Systems. National Institute of Standards and Technology (NIST), Technology
Administration, US Department of Commerce (1996)

36. U.S. Department of Health and Human Service: Health information privacy. http://www.
hhs.gov/ocr/privacy/, [Accessed May 5th, 2013]

37. Van Deursen, A., Klint, P.: Little languages: Little maintenance? Journal of software maintenance
10, 75–92 (1998)

38. Van Deursen, A., Klint, P.: Domain-specific language design requires feature descriptions.
Journal of Computing and Information Technology 10(1), 1–17 (2004)

39. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute grammar system.
Electronic Notes in Theoretical Computer Science 203(2), 103–116 (2008)

40. Weißmann, M.: Domain Specific Language for Specifying Access Controls. Ph.D. thesis, Georg
Simon Ohm University of Applied Sciences, Nuernberg, Germany (2007)

41. Zawoad, S., Dutta, A., Hasan, R.: SecLaaS: Secure logging-as-a-service for cloud forensics. In:
Proceedings of 8th ACM Symposium on Information, Computer and Communications Security
(ASIACCS) (May 2013)

42. Zawoad, S., Mernik, M., Hasan, R.: FAL: A forensics aware language for secure logging. In:
Proceedings of the 2013 Federated Conference on Computer Science and Information Systems.
pp. 1579–1586 (2013)

Shams Zawoad is working as a graduate research assistant in SECuRE and Trustwor-
thy Computing Lab (SECRETLab) and a Ph.D. student at the University of Alabama at
Birmingham (UAB). His research interest is in cloud forensics, secure cloud provenance,
cybercrime, and mobile malware. He received his B.Sc. in Computer Science and En-
gineering from Bangladesh University of Engineering and Technology in 2008. Before
joining UAB, Zawoad had been working in software industry and developed authentication
and authorization framework for several critical business applications, including an online
payment system of Bangladesh Post Office.

Dr. Marjan Mernik received his M.Sc., and Ph.D. degrees in computer science from
the University of Maribor in 1994 and 1998 respectively. He is currently a professor at

1314 Zawoad et al.

the University of Maribor, Faculty of Electrical Engineering and Computer Science. He
is also a visiting professor at the University of Alabama in Birmingham, Department
of Computer and Information Sciences, and at the University of Novi Sad, Faculty of
Technical Sciences. His research interests include programming languages, compilers,
domain-specific (modeling) languages, grammar-based systems, grammatical inference,
and evolutionary computations. He is a member of the IEEE, ACM and EAPLS. Dr. Mernik
is the Editor-In-Chief of Computer Languages, Systems and Structures journal since July
1, 2014.

Dr. Ragib Hasan is a tenure-track Assistant Professor at the Department of Computer and
Information Sciences at the University of Alabama at Birmingham. With a key focus on
practical computer security problems, Hasan explores research on cloud security, mobile
malware security, secure provenance, biomedical device security, social network security,
and database security. Hasan is the founder of the SECuRE and Trustworthy Computing
Lab (SECRETLab) at UAB. He is also a member of the UAB Center for Information
Assurance and Joint Forensics Research. Prior to joining the University of Alabama at
Birmingham in 2011, Hasan was an NSF/CRA Computing Innovation Fellow and Assistant
Research Scientist at the Department of Computer Science, Johns Hopkins University.
He received his Ph.D. and M.S. in Computer Science from the University of Illinois at
Urbana Champaign in October, 2009, and December, 2005, respectively. Before that, he
received a B.Sc. in Computer Science and Engineering and graduated summa cum laude
from Bangladesh University of Engineering and Technology (BUET) in 2003. He also
served in the faculty of the Department of Computer Science and Engineering at BUET. Dr.
Hasan’s research is supported by the Department of Homeland Security, the Office of Naval
Research, the National Science Foundation, Facebook Inc., Google Inc., and Amazon
Inc. He is a 2014 awardee of the prestigious NSF CAREER Award for his work on cloud
security. Dr. Hasan is also a recipient of the 2013 Google RISE Award, a 2013 Information
Society Innovation Fund Award. 2013 Deutsche-Welle Best of Blogs and Online Innovation
award, a 2011 Google Faculty Research Award, the 2009 NSF Computing Innovation
Fellowship and the 2003 Chancellor Award and Gold Medal from Bangladesh University
of Engineering and Technology. He is a founding member of Wikimedia Bangladesh
chapter, a long term administrator of Bangla and English Wikipedias, and also the founder
of Shikkhok.com – an award-winning online education platform for advancing STEM
education in rural areas of India and Bangladesh which has won the 2013 Google RISE
Award and 2013 Information Society Innovation Fund Award. His BanglaBraille project
has won the 2014 The Bobs award in the best innovation category.

Received: December 1, 2013; Accepted: April 9, 2014.

