
Computer Science and Information Systems 11(4):1337–1359 DOI: 10.2298/CSIS131203076K

A New Approach to Instruction-Idioms Detection
in a Retargetable Decompiler

Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

Faculty of Information Technology, IT4Innovations Centre of Excellence
Brno University of Technology, Božetěchova 1/2, 612 66 Brno, Czech Republic

ikroustek@fit.vutbr.cz, xpokor32@stud.fit.vutbr.cz, kolar@fit.vutbr.cz

Abstract. Retargetable executable-code decompilation is a one of the most com-
plicated reverse-engineering tasks. Among others, it involves de-optimization of
compiler-optimized code. One type of such an optimization is usage of so-called
instruction idioms. These idioms are used to produce faster or even smaller exe-
cutable files. On the other hand, decompilation of instruction idioms without any
advanced analysis produces almost unreadable high-level language code that may
confuse the user of the decompiler.
In this paper, we revisit and extend the previous approach of instruction-idioms
detection used in a retargetable decompiler developed within the Lissom project.
The previous approach was based on detection of instruction idioms in a very-early
phase of decompilation (a front-end part) and it was inaccurate for architectures
with a complex instruction set (e.g. Intel x86). The novel approach is based on de-
laying detection of idioms and reconstruction of code to the later phase (a middle-
end part). For this purpose, we use the LLVM optimizer and we implement this
analysis as a new pass in this tool. According to experimental results, this new
approach significantly outperforms the previous approach as well as the other com-
mercial solutions.

Keywords: compiler optimizations, reverse engineering, decompiler, Lissom, in-
struction idioms, LLVM, LLVM IR

1. Introduction

Machine-code decompilation is a reverse-engineering discipline focused on reverse com-
pilation. It performs an application recovery from binary executable files back into a high-
level language (HLL) representation (e.g. C source code). Within the computer and infor-
mation security, decompilation is often used for analysis of binary executable files. This
is useful for vulnerability detection, malware analysis, compiler verification, code migra-
tion, etc.

In contrast to compilation, the process of decompilation is much more difficult be-
cause the decompiler must deal with incomplete information on its input (e.g. information
used by the compiler but not stored within the executable file). Furthermore, the input ma-
chine code is often heavily optimized by one of the modern compilers (e.g. GCC, LLVM,
MSVC). This makes decompilation even more challenging.

Furthermore, the process of decompilation is an ambiguous problem equivalent to
the halting problem for a Turing machine [5]. This applies for example to a problem of
separating code and date from the input binary program. There exist several heuristics and

1338 Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

algorithms to deal with this problem, but it makes it only partially computable — not in
all cases.

Code de-optimization is one of the necessary transformations used within decompil-
ers. Its task is to properly detect the used optimization and to recover the original HLL
code representation from the hard-to-read machine code. One example of this optimiza-
tion type is the usage of instruction idioms [38]. An instruction idiom is a sequence of
machine-code instructions representing a small HLL construction (e.g. an arithmetic ex-
pression or assignment statement) that is highly-optimized for its execution speed and/or
small size.

The instructions in such sequences are assembled together by using Boolean alge-
bra, arbitrary-precision arithmetic, floating-point algebra, bitwise operations, etc. There-
fore, the meaning of such sequences is usually hard to understand at the first sight. A
notoriously known example is the usage of an exclusive or to clear the register con-
tent (i.e. xor reg, reg) instead of an instruction assigning zero to this register (i.e.
mov reg, 0).

In our previous paper [21], we presented an approach of dealing with instruction-
idioms detection and code reconstruction during decompilation. The implementation was
tested on several modern compilers and target architectures. According to the experimen-
tal results, the proposed solution was highly accurate on the RISC (Reduced Instruction
Set Computer) processor families—up to 98%; however, this approach was inaccurate
(only 21%) for more complex architectures, such as CISC (Complex Instruction Set Com-
puter).

In this paper, we present an enhanced approach of instruction-idioms detection and
code reconstruction, which can be effectively used even on CISC architectures. It has
been adapted within an existing retargetable decompiler developed within the Lissom
project [22, 36]. Moreover, this decompiler is developed to be retargetable (i.e. indepen-
dent on a particular target platform, operating system, file format, or a used compiler).
Therefore, the proposed analysis has to be retargetable too.

This paper is organized as follows. In Section 2, we give an introduction to instruction
idioms and their usage within compiler optimizations. The most common instruction id-
ioms employed in the modern compilers are also presented and illustrated in there. Then,
we briefly describe the retargetable decompiler developed within the Lissom project in
Section 3. Afterwards, in Section 4, we present both of our approaches, the original one
and the novel one. Section 5 discusses the related work of instruction-idioms detection.
Experimental results are given in Section 6. In that section, we also compare both ap-
proaches together with one commercial solution. Section 7 closes the paper by discussing
future research.

2. Instruction Idioms used in Compilers

In present, the modern compilers use dozens of optimization methods for generating fast
and small executable files. Different optimizations are used based on the optimization
level selected by the user. For example, the GNU GCC compiler supports these optimiza-
tion levels1:

1 See http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html for de-
tails.

A New Approach to Instruction-Idioms Detection in a Retargetable Decompiler 1339

– O0 – without optimizations;
– O1 – basic level of speed optimizations;
– O2 – the common level of optimizations (the ones contained in O1 together with basic

function inlining, peephole optimizations, etc.);
– O3 – the most aggressive level of optimizations;
– Os – optimize for size rather than speed.

In the nowadays compilers, the emission of instruction idioms cannot be explicitly
turned on by some switch or command line option. Instead, these compilers use selected
sets of idioms within different optimization levels. Each set may have different purpose,
but multiple sets may share the same (universal) idioms.

There are several reasons why to use instruction idioms. The main reasons are given
next.

– The most straightforward reason is to exchange slower instructions with the faster
ones. These optimizations are commonly used even in the lower optimization levels.

– The floating-point unit (FPU) might be missing, but a programmer still wants to use
floating-point numbers and arithmetic. Compilers solve this task via floating-point
emulation routines (also known as software floating point or soft-float in short). Such
routines are generated instead of hardware floating-point instructions and they per-
form the same operation by using available (integer) instructions.

– Compilers often support an optimization-for-size option. This optimization is useful
when the target machine is an embedded system with a limited memory size. An
executable produced by a compiler should be as small as possible. In this case, the
compiler substitutes a sequence of instructions encoded in more bits with a sequence
of instructions encoded in less bits in general. This can save some space in instruction
cache too.

Another type of optimization classification is to distinguish them based on the target
architecture. Some of them depend on a particular target architecture. If a compiler uses
platform-specific information about the generated instructions, these instructions can be
classified as platform-specific. Otherwise, they are classified as platform-independent.

As an example of a platform-independent idiom, we can mention the div instruc-
tion representing fixed-point division. Fixed-point division (signed or unsigned) is one
of the most expensive instruction in general. Optimizing division leads to a platform-
independent optimization.

On the other hand, clearing the content of a register by using the xor instruction (men-
tioned in the introduction) is a highly platform-specific optimization. Different platforms
can use different approaches to clear the register content. As an example, consider the
zero register on MIPS ($zero or $0), which always contains the value of 0. Using this
register as a source of zero bits may be a faster solution than using the xor instruction.

Furthermore, different compilers use different instruction idioms to fit their optimi-
zation strategies. For example, GNU GCC uses an interesting optimization when making
signed comparison of a variable. When a number is represented on 32-bits and bit num-
ber 31 is representing the sign, logically shifting the variable right by 31 bits causes to set
the zeroth bit equal to the original sign bit. The C programming language classifies 1 as

1340 Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

true and 0 as a false, which is the expected result of the given less-than-zero comparison.
This idiom is shown in Figure 1. Figure 1a represents a part of a source code with this
construction. The result of its compilation with optimizations enabled is depicted in Fig-
ure 1b. We illustrate the generated code on the C level rather than machine-code level for
better readability.

int main(void)

{
int a, b;

/∗ ... ∗/

b = a < 0;

/∗ ... ∗/
}

(a) Input.

int main(void)

{
int a, b;

/∗ ... ∗/

b = lshr(a, 31);

/∗... ∗/
}

(b) Output (for better readability in C).

Fig. 1: Example of an instruction idiom (C code).

The compiler used the before-mentioned instructions idiom—replacing the compari-
son by the shift operation. The non-standardized lshr() function is used in the output
listed in Figure 1b. The C standard does not specify whether operator ”>>” means logical
or arithmetical right shift. Compilers deal with it in an implementation-defined manner.
Usually, if the left-hand-side number used in the shift operation is signed, arithmetical
right shift is used. Analogically, logical right shift is used for unsigned numbers.

In Table 1, we can see a shortened list of instruction idioms used in common com-
pilers. This list was retrieved by studying the source codes responsible for code gener-
ation (this applies to open-source compilers—GNU GCC 4.7.1, Open Watcom 1.9, and
LLVM/clang 3.3) and via reverse engineering of executable files generated by these
compilers (this method was used for other compilers—Microsoft Visual Studio C++ Com-
piler 16 and 17, Borland C++ 5.5.1, and Intel C/C++ Compiler XE13). Some of these
instruction idioms are widespread among modern compilers. We have also found out that
actively developed compilers, such as GNU GCC, Visual Studio C++, and Intel C/C++
Compiler, are using these optimizations heavily. For example, they generate the idiv
instruction (fixed signed division) only in rare cases on the Intel x86 architecture. Instead,
they generate optimized division by using magic number multiplication.

3. Lissom Project Retargetable Decompiler

In this section, we briefly describe the concept of an automatically generated retargetable
decompiler developed within the Lissom project [22]. This decompiler aims to be in-
dependent on any particular target architecture, operating system, object file format, or

A New Approach to Instruction-Idioms Detection in a Retargetable Decompiler 1341

Table 1: Shortened list of instruction idioms found in compilers.

Instruction idiom G
N

U
G

C
C

V
is

ua
lS

tu
di

o
C

++

In
te

lC
/C

++
C

om
pi

le
r

O
pe

n
W

at
co

m

B
or

la
nd

C
C

om
pi

le
r

L
LV

M

Less than zero test X × X × × X
Greater or equal to zero test X × × × × X

Bit clear by using xor X X X X X X
Bit shift multiplication X X X X X X

Bit shift division X X X X X X
Division by -2 X × × × × X

Expression -x - 1 X X × × × ×
Modulo power of two X X X × × X

Negation of a float X × × × × ×
Assign -1 by using and × X X × × ×

Multiplication by an invariant X X X X × X
Signed modulo by an invariant X × X × × X

Unsigned modulo by an invariant X X X × × X
Signed division by an invariant X X X × × X

Unsigned division by an invariant X X X × × X
Substitution by copysignf() X × × × × ×

Substitution by fabsf() X × × × × ×

originally used compiler. The concept of the decompiler is depicted in Figure 2. Its de-
tailed description can be found in [36]. Currently, the decompiler supports decompilation
of MIPS, ARM, and Intel x86 executable files stored in different file formats.

The input binary executable file is preprocessed at first. The preprocessing part tries
to detect the used file format, compiler, and (optional) packer, see [18] for details. Af-
terwards, it unpacks and converts the examined platform-dependent application into an
internal uniform Common-Object-File-Format (COFF)-based representation. Currently,
we support conversions from UNIX ELF, Windows Portable Executable (WinPE), Apple
Mach-O, Symbian E32, and Android DEX file formats. The conversion is done via our
plugin-based converter, described in [20, 17]. Afterwards, such a COFF file is processed
in the decompilation core that consists of three basic parts—a front-end, a middle-end,
and a back-end. The last two of them are built on top of the LLVM Compiler Infrastruc-
ture [34]. LLVM Intermediate Representation (LLVM IR) [23] is used as an internal code
representation of the decompiled applications in all particular decompilation phases.

After that, the unified COFF files are processed by the front-end part.Within this part,
we use the ISAC architecture description language [24] for an automatic generation of the
instruction decoder. The decoder translates the machine-code instructions into sequences
of LLVM IR instructions. The resulting LLVM IR sequence characterizes behaviour of
the original instruction independently on the target platform. This intermediate program

1342 Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

target
architecture

 models

DECOMPILER

COFF

B A C K - E N D

G
E
N
E
R
A
T
O
R

MIPS

x86

ARM

...

input
application

C Python’ ...

Preprocessing

...ELF WinPE

detected
architecture,
compiler...

LLVM IR

LLVM IR

M I D D L E - E N D
Idiom analysis

F R O N T - E N D

Fig. 2: The concept of the Lissom project retargetable decompiler.

representation is further analysed and transformed in the static-analysis phase of the front-
end. This part is responsible for eliminating statically linked code, detecting the used ABI,
recovery of functions, etc. [36]. When debugging information (e.g. DWARF, Microsoft
PDB) or symbols are present in the input application, we may utilize them to get more
accurate results, see [19].

The output of the front-end part (i.e. LLVM IR code representing the input appli-
cation) is sizable. The main reason is because it reflects a complete behaviour of each
machine-code instruction, which may not be necessary. For example, each side-effect of
an instruction (e.g. setting a register flag based on instruction operands) is represented via
the LLVM IR code, but results of these side-effects may not be used anywhere. There-
fore, the front-end output is further processed within the middle-end phase, which is built
on top of the LLVM opt tool. This phase is responsible for reduction and optimization
of this code by using many built-in optimizations available in LLVM (e.g. optimizations
of loops, constant propagation, control-flow graph simplifications) as well as our own
passes. Besides our decompilation project, opt is normally used as an optimization part
of the LLVM compiler toolchain.

Finally, the back-end part converts the optimized intermediate representation into the
target high-level language (HLL). Currently, we support C and a Python-like language.
The latter is very similar to Python, except a few differences—whenever there is no sup-
port in Python for a specific construction, we use C-like constructs. During the back-end
conversion, high-level control-flow constructs, such as loops and conditional statements,
are identified, reconstructed, and further optimized. Finally, it is emitted in the form of
the target HLL.

A New Approach to Instruction-Idioms Detection in a Retargetable Decompiler 1343

The decompiler is also able to produce the call graph of the decompiled application,
control-flow graphs for all functions, and an assembly representation of the application.

4. Idiom Analysis in the Retargetable Decompiler

The aim of the decompiler presented in the previous section is to allow retargetable de-
compilation independently on the particular target platform or the used compiler. There-
fore, the methods of instruction-idioms detection and code reconstruction have to be re-
targetable too. For this purpose, we present two approaches that use the unified code
representation in the LLVM IR format.

LLVM IR is a set of low-level instructions similar to assembly instructions. More-
over, LLVM IR is platform-independent and strongly typed, which meets our require-
ments. Therefore, machine instructions from different architectures can be easily mapped
to sequences of LLVM IR instructions. This brings an ability to implement platform-
independent instruction-idioms analysis.

The first approach was presented in our previous work [21]. We implemented this
approach within the front-end part of the decompiler. However, according to our exper-
imental results, this approach was not optimal for complex programs and architectures.
Therefore, later in this section, we propose an advanced approach implemented in the
middle-end phase. In the following text, we describe both approaches, compare them, and
describe their disadvantages.

4.1. Original Approach

The simplified algorithm of instruction-idioms detection in the front-end is depicted in
Algorithm 1. It sequentially inspects instructions and tries each one of them as a possible
start of any instruction idiom (marked as 1, 2, . . . , n). Every instruction that follows has
to use the expected operands and results. If an instruction idiom is found (via a func-
tion FIND IDIOM X), the inspection continues after the last instruction belonging to this
detected idiom. Note that any instruction inserted by a compiler into a sequence repre-
senting an instruction idiom causes a failure in the instruction-idioms detection. In other
words, this approach of instruction-idioms analysis is highly dependent on the order of
instructions. If this order is violated or another instruction is scheduled by a compiler, the
detection of instruction idioms fails, see Section 4.2 for details.

Algorithm 1 Detection of instruction idioms in the front-end phase.
instruction i = BasicBlock.start

while i ̸= BasicBlock.end do
i += FIND IDIOM 1(i)
i += FIND IDIOM 2(i)
. . .
i += FIND IDIOM n(i)

end while

1344 Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

This algorithm is similar to a peephole technique used in optimizing compilers [6]. It
operates on a basic-block level, where each basic block contains a continuous sequence
of instructions described via LLVM IR operations. A particular idiom is detected only
if a basic block contains predefined LLVM IR instructions stored in a proper order and
they must contain expected operand values (e.g. constant, register number). Whenever an
instruction idiom is detected, it is substituted by its more readable de-optimized version,
once again in the LLVM IR form. While examining instructions in an idiom sequence,
we may found unrelated instructions (e.g. inserted by a code-motion compiler optimi-
zation). In that case, the algorithm fails to detect the idiom. It should be noted that this
algorithm does not search for a particular idiom over multiple basic blocks. An example
of a traversal by this algorithm is depicted in Figure 3.

......

%v1 = load i32∗ %stack var 8, align 4

.

%v2 = lshr i32 %v1, 31

.

%v3 = add i32 %v2, %v1

.

%v4 = and i32 %v3, 1

.

%res = sub i32 %v4, %v2

.

...

Fig. 3: Example of instruction-idioms inspection in the front-end part. All instructions
are inspected sequentially.

An example demonstrating this substitution on the LLVM IR level is shown in Fig-
ure 4. Figure 4a represents the already mentioned xor bit-clear instruction idiom. To use
register content, a register value has to be loaded into a typed variable %1. By using the
xor instruction, all bits are zeroed and the result (in variable %2) can be stored back into
the same register. To transform this idiom into its de-optimized form, a proper zero as-
signment has to be done. This de-optimized LLVM IR code is shown in Figure 4b. In this
case, the typed variable %2 holds zero, which can be directly stored in the register.

The detection of an instruction idiom in the front-end part is a challenging task be-
cause of the complexity of the input LLVM IR code. For example, the expected operand
values (e.g. values used for magic number multiplication) may not be stored as clearly
as in the original HLL source code. For example, the original HLL constant may not be
stored directly as a number (i.e. an immediate value), but it may be computed through
several machine-code instructions. These instructions fold the original value at run-time
based on different resources (e.g. register value, memory content). For example, the MIPS

A New Approach to Instruction-Idioms Detection in a Retargetable Decompiler 1345

%1 = load i32∗ @regs0

%2 = xor i32 %1, %1

store i32 %2, i32∗ @regs0

(a) Optimized form of an instruction idiom in LLVM IR.

store i32 0, i32∗ @regs0

(b) De-optimized form of an instruction idiom in LLVM IR.

Fig. 4: Example of the bit-clear xor instruction-idiom transformation.

instruction set does not allow direct load of a 32-bit immediate value and it has to be done
using more instructions (e.g. lui and ori). Therefore, the operand value is not stored
directly within one instruction but it is assembled by an instruction sequence. This is quite
complicated because the idiom-detection phase (as well as the rest of the decompiler) is
done statically and run-time information is unavailable. To deal with this problem, we
utilize a static-code interpreter, originally used for function reconstruction—see [36] for
a detailed description of the interpreter.

Using an interpreter to statically compute a value stored in a register is quite common
task in instruction-idioms analysis. An example is shown in Figure 5. An interpreter has
to be run to statically compute a number stored in register @regs3 by using the back-
tracking of previously used operations and their operands. The result obtained in this case
is 680390859. This number is used in optimized division by number 101 performed by
the magic-number multiplication on ARM and the GNU GCC compiler. Another similar
issue is accessing the data segment to load constants; the interpreter can solve this issue
as well.

4.2. Novel Approach

As has been noted, the original approach (described in Section 4.1) was implemented in
the front-end phase. However, this analysis does not fit in this phase. The LLVM IR repre-
sentation in the front-end is on a very low level. With only a few exceptions, one machine
code instruction is usually translated to multiple LLVM IR instructions. If we realise that
a program usually contains thousands of instructions, we have a very large set of LLVM
IR instructions to be inspected. This causes a negative impact on decompilation time and
accuracy. However, both of these metrics can be enhanced if we inspect instruction idioms
on a more optimized form.

Moreover, the front-end represents instructions in a native way—as a list of LLVM IR
instructions. Implementing instruction-idioms analysis in this way is not easy due to the
position of instructions, especially on CISC architectures (e.g. Intel x86). For example,
CISC superscalar processors have instructions with varying execution time that can oc-
cupy different CPU2 units (e.g. adder, multiplier, branch unit) at a different time. Further-
more, different techniques are used to reduce the run-time, such as maximal utilization

2 Central processing unit.

1346 Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

%a = add i32 679477248, 0

store i32 %a, i32∗ @regs3

%b = load i32∗ @regs3

%b 1 = add i32 913408, 0

%b 2 = add i32 %b 1, %b

store i32 %b 2, i32∗ @regs3

%c = load i32∗ @regs3

%c 1 = add i32 203, 0

%c 2 = add i32 %c 1, %c

store i32 %c 2, i32∗ @regs3

; @regs3 contains value 680390859

; 680390859 = 203 + 913408 + 679477248

Fig. 5: An example of a constant computation in LLVM IR.

of CPU units (e.g. Thornton’s or Thomasulo’s algorithm [28, 1]). By using these tech-
niques, superscalar processors can fetch and decode instructions more effectively. There-
fore, modern compilers try to optimize instruction positions to improve performance and
they also try to avoid instruction hazards (data, structural, or control) via spreading of
instructions to different places.

As well as any other instruction, instruction idioms can be also spread across basic
blocks. Looking for such a shuffled instruction idiom in a linear search, used in the origi-
nal approach, can lead to a failure if advanced optimizations were turned on at the compile
time. Therefore, a more sophisticated algorithm has to be used.

On the other hand, the middle-end phase represents instructions also as a sequence.
However, these instructions can be easily inspected in a tree way—by using a derivation
tree (see LLVM pattern matching [34]). Inspecting a derivation tree can remove problems
with positioning of instructions. Furthermore, the main goal of the middle-end part is to
optimize instructions and remove duplicate or redundant instructions, which results in a
low-level transformation from machine code into LLVM IR. Therefore, we decided to
move the front-end implementation of instruction-idioms analysis to the middle-end part.

For example, if we compare a simple sequence of machine code calculating multipli-
cation, depicted in Figure 6, between the front-end and middle-end, there is a significant
difference in code complexity in favor of the middle-end. This program, illustrated in as-
sembly language, represents a part of a program that is being decompiled. Its instructions
have to be decoded and stored as LLVM IR in the front-end part, see Figure 7.

; ...

mov @reg2 , address

mul @reg2 , 21

; ...

Fig. 6: Example of a program for decompilation (assembly code).

A New Approach to Instruction-Idioms Detection in a Retargetable Decompiler 1347

; ...

%0 = load i32∗ %address

store i32 %0, i32∗ @reg2

%1 = load i32∗ @reg2

%1 64 = sext i32 %1 to i64

%tmp1 = add i32 0, 0

%2 = add i32 21, 0

%2 64 = sext i32 %2 to i64

%3 = mul i64 %1 64, %2 64

%imm 32 = add i64 32, 0

%4 = lshr i64 %3, %imm 32

%5 = trunc i64 %4 to i32

%6 = trunc i64 %3 to i32

%tmp2 = add i32 0, 0

store i32 %6, i32∗ @reg0

%tmp3 = add i32 2, 0

store i32 %5, i32∗ @reg2

; ...

Fig. 7: LLVM IR representation of code from Figure 6 (in the front-end part).

Translation from machine instructions into LLVM IR is done for every single instruc-
tion and every dependence is omitted because there is no context information yet. This
approach causes generation of a very large number of LLVM IR instructions. Such a
representation is used in the front-end phase because it is a very early phase of the de-
compilation process.

LLVM IR representation in the front-end phase is not suitable for a high-level analysis,
such as instruction-idioms analysis because of its complexity. Moreover, representation of
instructions in LLVM IR is highly dependent on the target architecture. As can be seen
in Figure 7, the result of the multiplication instruction (mul) on the used architecture
is a 64-bit number stored in two registers. On some architectures the result of such a
multiplication instruction is only a 32-bit number. As has been stated in introduction,
instruction-idioms analysis should be architecture independent. This is only one of the
problems related to inspecting instruction idioms in the front-end.

Contrariwise, the code depicted in Figure 7 is being heavily optimized during the
middle-end phase and the result is shown in Figure 8. As can be seen, all architecture-
dependent computations are removed; moreover, if the higher 32-bits of a 64-bit result
are not used, they are removed in dead-code-elimination optimization too. Looking for
an instruction idiom in such a straightforward representation is much easier, platform
independent, and it leads to better instruction-detection results.

; ...

%1 = load i32∗ @reg2

%2 = mul i32 %1, 21

store i32 %2, i32∗ @reg2

; ...

Fig. 8: LLVM IR representation of code from Figure 6 (in the middle-end part).

1348 Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

The algorithm used in the middle-end differs from the algorithm originally used in the
front-end (i.e. Algorithm 1). It is described in Algorithm 2. Every basic block is inspected
sequentially starting from the beginning. Every instruction is treated as a possible root of
a derivation tree containing one particular instruction idiom (again marked as 1, 2, . . . , n).
If so, the derivation tree is inspected and if an instruction idiom is found, it can be easily
transformed to its de-optimized form. Since a derivation tree does not depend on the posi-
tion of instructions in LLVM IR but rather on the use of instructions, position-dependent
problems are solved in this way.

Algorithm 2 Detection of instruction idioms in the middle-end phase.
function IDIOM INSPECTOR i(BasicBlock)

for all instruction in BasicBlock do
FIND IDIOM i(instruction)

end for
end function

IDIOM INSPECTOR 1(BasicBlock)
IDIOM INSPECTOR 2(BasicBlock)
. . .
IDIOM INSPECTOR N(BasicBlock)

An example of this algorithm is depicted in Figure 9. Its derivation tree is illustrated
in Figure 10.

As stated above, the main goal of the middle-end part is to optimize LLVM IR that
was analysed in the front-end. The middle-end uses different opt passes to get optimal
code for the back-end part. Instruction-idioms analysis has been developed as one of the
basic-block passes of opt. Some transformations are useful for instruction-idioms pass,
thus it is important to fit the instruction-idioms pass into a proper position within other
passes.

It is also important to mention that decompilation of an executable file is a time con-
suming process. The decompilation time highly depends on the size of the input exe-
cutable file. A good approach how to optimize instruction-idioms analysis is to use any
available information to save decompilation time. This is especially important when we
support many instruction idioms. Some of them are specific for a particular compiler and
therefore, they can be omitted from the detection phase whenever another compiler is de-
tected. On the other hand, detection of the used compiler (as described in [18]) may be
inaccurate in some cases and the algorithm will not detect any used compiler. In that case,
the idiom analysis tries to detect all the supported idioms. Another optimization approach
is to detect only the platform-specific idioms based on the target architecture and omit
idioms for other architectures.

However, the information about the architecture and compiler has to be propagated
into the middle-end because it is usually not available in this phase. The only input in
opt is a file with LLVM IR so this file has to carry this information by using the LLVM
metadata mechanism. This gives us an ability to inspect only instruction idioms that are
used by compilers on a given architecture.

A New Approach to Instruction-Idioms Detection in a Retargetable Decompiler 1349

......

%v1 = load i32∗ %stack var 8, align 4

.

...

.

%v2 = lshr i32 %v1, 31

.

...

.

%v3 = add i32 %v2, %v1

.

...

.

%v4 = and i32 %v3, 1

.

...

.

%res = sub i32 %v4, %v2

.

...

Fig. 9: Example of instruction-idioms inspection in the middle-end part. Instructions are
inspected in a tree-way.

sub

lshr

31x

and

1add

xlshr

31x

Fig. 10: Derivation tree created based on Figure 9.

The number of instructions in LLVM IR that are going to be analysed for instruc-
tion idioms should be as small as possible. As obvious, analysing less instructions takes

1350 Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

less time. Consider a signed division idiom, which was found in the GCC, Visual Stu-
dio and Intel C/C++ compilers. This instruction idiom can compute a magic number
used in the multiplication instruction on ARM as shown in Figure 5. Even the magic
number computed here is known at compile-time, it cannot be used in the multiplica-
tion instruction because of number of bits available in the multiplication instruction to
represent a constant immediate. This computation would require advanced analysis in the
instruction-idioms pass. LLVM opt can easily fold constants in an instruction combining
pass (instcombine).

This instruction combining pass is run multiple times during the processing in the
middle-end phase. However, besides our decompilation project, opt is normally used as
an optimization part of the LLVM compiler toolchain and it also uses instruction idioms
for code optimizations within the instruction combining pass. Therefore, this pass has
tendencies to bring back idioms instead of the de-optimized code. This reason leads to
turn some of the instruction combining pass optimizations off, mainly optimizations based
on instruction idioms. This disabling has to be done via direct modification of opt source
codes because there is no such command-line option, etc.

In present, we support detection of all instruction-idioms specified in Table 1, among
others. In Figure 11, we demonstrate a code reconstruction for one of these idioms. In this
figure, we can compare decompilation results with and without the instruction-idioms
analysis. Figure 11a illustrates a simple C program containing the division idiom. The de-
compilation result obtained without instruction-idioms analysis is depicted in Figure 11c.
It contains three shift operations and one multiplication by a magic value. Without the
knowledge of the fundamentals behind this idiom, it is almost impossible to understand
the resulting code. On the other hand, the decompilation result with instruction-idioms
analysis enabled is well readable and a user can focus on the meaning of the program, not
on deciphering optimizations done by a compiler, see Figure 11b.

In the conclusion of this section, we can state that the novel approach is more powerful
and robust than the original one. The LLVM opt, used as a core of the middle-end phase,
also supports passes over multiple basic blocks, which is promising for our future work.

5. Related Work

The fundamentals of instruction idioms and their usage within compiler optimizations are
well documented, see [38, 3, 32, 12, 14, 29]. From these publications, we can gain insights
into the principles behind instruction idioms as well as how and when to use them to
obtain more effective machine code.

Contrariwise, the detection of instruction idioms and code reconstruction from ma-
chine code is mostly an untouched area of machine-code decompilation. This topic is
only briefly mentioned in [5, 9, 37]. Nevertheless, some of the existing (non-retargetable)
decompilers support this feature. In order to observe the state of the art, we look closely
on their approaches.

We used a test containing five idioms from a larger list listed in Table 1. These idioms
are the most common ones (e.g. multiplication via left shift) and the support of idiom
detection within the tested decompiler should be easily discovered via these idioms. A
source code of this test is listed in Figure 12. Each expression of the printf function
represents one instruction idiom, whose meaning is described in Section 4. This source

A New Approach to Instruction-Idioms Detection in a Retargetable Decompiler 1351

int main(void)

{
int a;

/∗ ... ∗/

a = a / 10;

/∗ ... ∗/
}

(a) Input.

int main(void)

{
int a;

/∗ ... ∗/

a = a / 10;

/∗ ... ∗/
}

(b) Output with idiom analysis enabled.

int main(void)

{
int a;

/∗ ... ∗/

a = (lshr(a ∗ 1717986919 , 32) >> 2) − (a >> 31)

;

/∗ ... ∗/
}

(c) Output with idiom analysis disabled.

Fig. 11: C code example of decompilation with and without the idiom analysis.

code was compiled for different target platforms (i.e. processor architecture, operating
system, and file format) based on their support in each decompiler. Finally, each decom-
piler was tested by using this executable file and we analysed the decompiled results
afterwards.

Boomerang is the only existing open-source machine-code decompiler [4]. However,
it is no longer developed. According to our tests, it was able to reconstruct only the first
instruction idiom.

REC Studio (also known as REC Decompiler) is freeware, but not an open-source
decompiler. It has been actively developed for more than 25 years [30]. None of the in-
struction idioms was successfully reconstructed. We only noticed that REC Studio can
reconstruct the register cleaning idiom (via the xor instruction), described in Section 1.

SmartDec decompiler is another closed-source decompiler specialising on decompi-
lation of C++ code, see [31] for details. However, SmartDec was unable to reconstruct
any instruction idiom from the machine-code.

Hex-Rays decompiler [13] achieved the best results—three successfully reconstructed
idioms from five (it succeeded in the first, second, and fourth test). Therefore, we have

1352 Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

#include <stdio.h>
int main(void)

{
int a;

/∗ ... ∗/

printf("1. Multiply: %d\n", a ∗ 4);

printf("2. Divide: %d\n", a / 8);

printf("3. >= 0 idiom: %d\n", a >= 0);

printf("4. Magic sign−div: %d\n", a / 10);

printf("5. XOR by −1: %d\n", −a − 1);

return a;

}

Fig. 12: C source code used to test the decompilers.

chosen this decompiler for a more detailed comparison with our own solution, as de-
scribed in Section 6.

There are two other interesting projects. The dcc decompiler was the first one of its
kind, but it is unusable for modern real-world decompilation because it is no longer de-
veloped [33, 5]. On the other hand, the Decompile-it.com project looks promising, but the
public beta version [7] is probably still in an early stage of development and it cannot
handle any of these instruction idioms.

In conclusion, we cannot compare our idiom-detection algorithm with approaches
used in other tools because of two reasons. (1) They are not distributed as open-source.
(2) The open-source solutions do not support idiom recovery at all or they support only a
very limited number of idioms. On the other hand, we can compare our results with the
Hex-Rays Decompiler.

6. Experimental Results

This section contains an evaluation of both proposed approaches (i.e. the original one
from [21] and the novel one) of instruction-idioms detection and code reconstruction. The
decompiled results are also compared with the nowadays decompilation “standard”—the
Hex-Rays Decompiler [13] that is a plugin to the IDA disassembler [15]. We used the
latest versions of these tools, i.e. Hex-Rays Decompiler v1.8.0.130306 and IDA disas-
sembler v6.4.130306. The Hex-Rays Decompiler is not an automatically generated re-
targetable decompiler, such as our solution, and it supports only the Intel x86 and ARM
target architectures. Our solution also supports the MIPS architecture at the moment.

In our project, all the three mentioned architectures are described as instruction-
accurate models in the ISAC language in order to automatically generate our retargetable
decompiler. MIPS is a 32-bit processor architecture, which belongs to the RISC processor
family. The processor description is based on the MIPS32 Release 2 specification [27].
ARM is also a 32-bit RISC architecture. The ISAC model is based on the ARMv7-A spec-
ification with the ARM instruction set [2]. The last architecture used for the comparison

A New Approach to Instruction-Idioms Detection in a Retargetable Decompiler 1353

is Intel x86 (also known as IA-32) that belongs in the CISC processor family. The model
is based on the 32-bit processor core specified in [16] without extensions (e.g. x86-64).

We created 21 test applications in the C language. Each test is focused on the detection
of a different instruction idiom. The Minimalist PSPSDK compiler (version 4.3.5) [26]
was used for compiling MIPS binaries into the ELF file format, the GNU ARM toolchain
(version 4.1.1) [11] for ARM-ELF binaries, and the GNU compiler GCC version 4.7.2 [10]
for x86-ELF executables (the 32-bit mode was forced by the -m32 option).

As can be observed, we used the ELF file format in each test case. However, the same
results can be achieved by using the WinPE file format [35, 25]. All three compilers are
based on GNU GCC. The reason for its selection is the fact that it allows retargetable
compilation to all the three target architectures and it also supports most of the idioms
specified in Sections 2 and 4.

Different optimization levels were used in each particular test case. Because of dif-
ferent optimization strategies used in compilers, not every combination of source code,
compiler, and its optimization level leads to the production of an instruction idiom within
the generated executable file. Therefore, we count only the tests that contain instruction
idioms. Furthermore, it is tricky to create a minimal test containing an instruction idiom
without its removal by compiler during compilation.

An example of this problem is depicted by using a C code with the multiplication
idiom in Figure 13a. The result of this code can be computed during compilation. There-
fore, the compiler emits directly the result without the code representing its computation
(see the example in Figure 13b). Therefore, we use functions from the standard C library
for the initialization of variables used in idioms. For example, this can be done by using
statements a = rand(); or scanf("%d", &a);. An example of an enhanced test
is depicted in Figure 13c. Such code cannot be eliminated during compilation and the
instruction idiom is successfully generated in the executable file, see Figure 13d.

The testing was performed on Intel Core i5 (3.3 GHz), 16 GB RAM running a Linux-
based 64-bit operating system. The GCC compiler (v4.7.2) with optimizations enabled
(O2) was used to build the decompiler.

Finally, we enabled the emission of debugging information in the DWARF stan-
dard [8] by using the g option because both decompilers exploit this information to pro-
duce more accurate code, see [19] for details. The debugging information helps to elimi-
nate inaccuracy of decompilation (e.g. entry-point detection, function reconstruction) that
may influence testing. However, the debugging information does not contain information
about the usage of the idioms and therefore, its usage does not affect the idiom-detection
accuracy.

All test cases are listed in Table 2. The results of our original approach are marked as
Lissom1, the results of our new approach are marked as Lissom2, and finally, the results
of the Hex-Rays decompiler are marked as Hex-Rays.

The first column represents the description of a particular idiom used within the test.
The maximal number of points for each test on each architecture is five (i.e. one point for
each optimization level—O0, O1, O2, O3, Os). Some idioms are not used by compilers
based on the optimization level or target architecture. Therefore, the number of total points
can be lower than five. For example, the MIPS and ARM architectures lack a floating-
point unit (FPU) and the essential FPU operations are emulated via soft-float idioms.
On the other hand, the Intel x86 architecture implements these operations via the x87

1354 Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

Table
2:E

xperim
entalresults—

the
num

berofsuccessfully
detected

and
reconstructed

instruction
idiom

s.N
ote:severaltests

differonly
in

the
used

num
eric

constant;how
ever,differentinstruction

idiom
s

are
em

itted
based

on
this

value.

M
IPS

A
R

M
Intelx86

L
issom

1
L

issom
2

H
ex-R

ays
L

issom
1

L
issom

2
H

ex-R
ays

L
issom

1
L

issom
2

Tested
instruction

idiom
tests

(%
)

(%
)

tests
(%

)
(%

)
(%

)
tests

(%
)

(%
)

(%
)

i
n
t
A

=
i
n
t
B

<
0

5
100.0

100.0
5

0.0
100.0

100.0
5

0.0
0.0

100.0
i
n
t
A

=
i
n
t
B

>
=

0
5

100.0
100.0

5
0.0

100.0
100.0

5
0.0

100.0
100.0

i
n
t
A

=
0

0
-

-
0

-
-

-
1

100.0
100.0

100.0
i
n
t
A

=
i
n
t
B

*
4

5
100.0

100.0
5

100.0
100.0

100.0
5

100.0
100.0

100.0
i
n
t
A

=
i
n
t
B

/
-
2

0
-

-
5

100.0
100.0

100.0
4

100.0
0.0

100.0
i
n
t
A

=
i
n
t
B

/
4

1
0.0

100.0
5

100.0
100.0

100.0
4

100.0
0.0

100.0
i
n
t
A

=
i
n
t
B

/
1
0

0
-

-
4

100.0
100.0

100.0
4

100.0
0.0

100.0
i
n
t
A

=
i
n
t
B

/
1
2
0

0
-

-
4

100.0
100.0

100.0
4

100.0
0.0

100.0
u
i
n
t
A

=
u
i
n
t
B

/
7

0
-

-
4

100.0
100.0

100.0
4

100.0
0.0

100.0
u
i
n
t
A

=
u
i
n
t
B

/
9

0
-

-
4

100.0
100.0

100.0
4

100.0
0.0

100.0
i
n
t
A

=
-
i
n
t
B

-
1

5
100.0

100.0
5

0.0
100.0

100.0
5

100.0
100.0

100.0
i
n
t
A

=
i
n
t
B

%
2

0
-

-
5

40.0
80.0

80.0
4

0.0
0.0

100.0
i
n
t
A

=
i
n
t
B

%
3

0
-

-
4

100.0
100.0

100.0
4

100.0
0.0

100.0
i
n
t
A

=
i
n
t
B

%
5

0
-

-
4

100.0
100.0

100.0
4

100.0
0.0

100.0
i
n
t
A

=
i
n
t
B

%
8

0
-

-
4

75.0
100.0

100.0
4

25.0
0.0

100.0
u
i
n
t
A

=
u
i
n
t
B

%
3

0
-

-
4

100.0
100.0

100.0
4

100.0
0.0

100.0
u
i
n
t
A

=
u
i
n
t
B

%
5

0
-

-
4

100.0
100.0

100.0
4

100.0
0.0

100.0
u
i
n
t
A

=
u
i
n
t
B

%
8

5
100.0

100.0
5

20.0
100.0

100.0
5

0.0
0.0

100.0
f
l
o
a
t
A
=
-
f
l
o
a
t
B

5
100.0

100.0
5

0.0
100.0

100.0
0

-
-

-
f
l
o
a
t
A
=
c
o
p
y
s
i
g
n
(
f
l
o
a
t
B
,

f
l
o
a
t
C
)

5
100.0

100.0
5

0.0
100.0

100.0
0

-
-

-
f
l
o
a
t
A
=
f
a
b
s
(
f
l
o
a
t
B
)

5
100.0

100.0
5

0.0
100.0

100.0
0

-
-

-

Total
41

97.6
100.0

91
58.2

98.9
98.9

74
63.5

21.6
100.0

A New Approach to Instruction-Idioms Detection in a Retargetable Decompiler 1355

int main(void)

{
int a = 1;

a = a ∗ 8;

return a;

}

(a) Test C code.

int main(void)

{
return 8;

}

(b) Compiler-optimized code
without an instruction idiom.

#include <stdlib.h>
int main(void)

{
int a = rand();

a = a ∗ 8;

return a;

}

(c) Enhanced test C code.

#include <stdlib.h>
int main(void)

{
int a = rand();

a = a << 3;

return a;

}

(d) Compiler-optimized code with
an instruction idiom.

Fig. 13: Problem of idiom removal by compiler.

floating-point instruction extension. Therefore, the instruction idioms are not used in this
case.

The overall decompilation results are depicted in Figure 14. We can observe four facts
based on the results.

0

20

40

60

80

100

MIPS ARM Intel x86 Total

A
c
c
u
ra

c
y
 (

%
)

Hex-Rays decompiler
Lissom decompiler v1
Lissom decompiler v2

Fig. 14: Accuracy of instruction-idioms detection and code reconstruction. Note: the
total accuracy of Hex-Rays decompiler is calculated based on ARM and Intel x86 only.

1356 Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

(1) As we have mentioned earlier, the Hex-Rays decompiler does not support the
MIPS architecture. Therefore, we are unable to compare our results on this architecture.

(2) The results of the Hex-Rays decompiler on ARM and Intel x86 are very similar
(approximately 60%). Its authors covered the most common idioms for both architec-
tures (multiplication via bit shift, division by using magic-number multiplication, etc.).
However, the non-traditional idioms are covered only partially or not at all (e.g. integer
comparison to zero, floating-point idioms).

(3) Our original approach (i.e. idiom detection within the front-end phase) reaches its
limits on the Intel x86 architecture, where the accuracy drops to 21%.

(4) Our new approach (i.e. idiom detection within the middle-end phase) achieved
almost perfect results on all the architectures (99.5% in total); only one test for the ARM
architecture failed. It was a test calculating a modulo operation by 2 compiled with the Os
optimization. The generated machine code calculates this operation over multiple basic
blocks. In present, this is not covered by our approach. However. it can be easily solved
via a new opt pass. This is marked as a future work.

Furthermore, the new approach is even faster than the previous one—approximately
20% based on the target application, architecture, compiler, and compilation options.
There are two reasons for such an speed improvement: (1) The LLVM opt (used in the
middle-end phase) supports a framework for creating own passes over the input LLVM
IR code. Such passes are heavily optimized for speed and they can achieve a higher speed
than writing such a pass on your own (our previous approach). (2) In the new approach,
the instruction idioms are detected on an already optimized code (e.g. dead-code elimi-
nation pass). Therefore, it is necessary to search in a smaller amount of code than in the
previous approach.

7. Conclusion

In this paper, we presented a novel approach of instruction-idioms detection and code
reconstruction during the decompilation process of an existing retargetable decompiler.
This new approach is based on the previous one described in [21]. The novelty is im-
plemented via delaying the instruction-idioms detection phase from the front-end part
into the middle-end part. The novel instruction-idioms analysis has been successfully im-
plemented in the middle-end phase. The only limit of the current implementation is a
limitation to instruction idioms which operate on one basic block. In our study, we found
only one idiom that operates on two basic blocks. Transforming such an instruction idiom
in a single-basic-block-at-a-time pass is impossible.

To conclude the experimental results, our new approach is capable of detecting and re-
constructing instruction idioms for the common RISC and CISC architectures with a high
accuracy (i.e. more than 99%), which is better than existing non-retargetable decompilers
(some of them lacks this analysis as is demonstrated in Section 5).

By using the novel approach, we were able to increase the accuracy of reconstruction
from 21% to 100% on the Intel x86 architecture, and from 70% to 99% in total for all
architectures.

The future research lies in a further testing of the retargetable idiom detection and
code reconstruction by using executables created by different compilers and for different
target architectures (e.g. PowerPC). There is always a room for improvement by adding

A New Approach to Instruction-Idioms Detection in a Retargetable Decompiler 1357

new instruction idioms into our database of supported idioms. Finally, a usage of control-
flow analysis for instruction-idioms detection may be useful when dealing with more
aggressive optimizations.

Acknowledgments. This work was supported by the BUT grant FIT-S-14-2299 Research and ap-
plication of advanced methods in ICT, and by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Boston, 2nd edn. (2006)

2. ARM Limited: ARM Architecture Reference Manual: ARMv7-A and ARMv7-R edition,
ARM DDI 0406C edn. (2011), https://silver.arm.com/download/download.
tm?pv=1199569

3. Beeler, M., Gosper, R.W., Schroeppel, R.: HAKMEM. Massechusetts Institute Of Technology
(1972)

4. Boomerang: http://boomerang.sourceforge.net/ (2013)
5. Cifuentes, C.: Reverse Compilation Techniques. Ph.D. thesis, School of Computing Science,

Queensland University of Technology, Brisbane, QLD, AU (1994)
6. Davidson, J.W., Whalley, D.B.: Quick compilers using peephole optimization. Software: Prac-

tice and Experience 19(1), 79–97 (1989)
7. Decompile-It.com – Online C Decompiler: http://decompile-it.com/ (2013)
8. DWARF Debugging Information Committee: DWARF Debugging Information Format, 4 edn.

(2010), http://www.dwarfstd.org/doc/DWARF4.pdf
9. Emmerik, M.J.V.: Static Single Assignment for Decompilation. Ph.D. thesis, University of

Queensland, Brisbane, QLD, AU (2007)
10. GCC: the GNU Compiler Collection: http://gcc.gnu.org/ (2013)
11. GNU ARM Toolchain: http://www.gnuarm.com/ (2012)
12. von Hagen, W.: The Definitive Guide to GCC. Apress (2006)
13. Hex-Rays Decompiler: www.hex-rays.com/products/decompiler/ (2013)
14. Hyde, R.: The Art of Assembly Language. No Starch Press, San Francisco, US-CA (2003)
15. IDA Disassembler: www.hex-rays.com/products/ida/ (2013)
16. Intel Corporation: Intel 64 and IA-32 architectures software developer’s manual volume 1:

Basic architecture (2013), http://download.intel.com/products/processor/
manual/253665.pdf

17. Křoustek, J., Kolář, D.: Object-file-format description language and its usage in retargetable de-
compilation. In: AIP Conference Proceedings (SCLIT’12). vol. 1479, pp. 466–469. American
Institute of Physics (AIP) (2012)

18. Křoustek, J., Kolář, D.: Preprocessing of binary executable files towards retargetable decompi-
lation. In: 8th International Multi-Conference on Computing in the Global Information Tech-
nology (ICCGI’13). pp. 259–264. International Academy, Research, and Industry Association
(IARIA), Nice, FR (2013)

19. Křoustek, J., Matula, P., Končický, J., Kolář, D.: Accurate retargetable decompilation using
additional debugging information. In: 6th International Conference on Emerging Security In-
formation, Systems and Technologies (SECURWARE’12). pp. 79–84. International Academy,
Research, and Industry Association (IARIA) (2012)

20. Křoustek, J., Matula, P., Ďurfina, L.: Generic plugin-based convertor of executable file formats
and its usage in retargetable decompilation. In: 6th International Scientific and Technical Con-
ference (CSIT’11). pp. 127–130. Ministry of Education, Science, Youth and Sports of Ukraine,

1358 Jakub Křoustek, Fridolı́n Pokorný, and Dušan Kolář

Lviv Polytechnic National University, Institute of Computer Science and Information Tech-
nologies (2011)

21. Křoustek, J., Pokorný, F.: Reconstruction of instruction idioms in a retargetable decompiler.
In: 4th Workshop on Advances in Programming Languages (WAPL’13). pp. 1507–1514. IEEE
Computer Society, Krakow, PL (2013)

22. Lissom: http://www.fit.vutbr.cz/research/groups/lissom/ (2013)
23. LLVM Assembly Language Reference Manual: http://llvm.org/docs/LangRef.

html (2013)
24. Masařı́k, K.: System for Hardware-Software Co-Design. VUTIUM, Brno University of Tech-

nology, Faculty of Information Technology, Brno, CZ, 1st edn. (2008)
25. Microsoft Corporation: Microsoft portable executable and common object file format spec-

ification. http://www.microsoft.com/whdc/system/platform/firmware/
PECOFF.mspx (2013), version 8.3

26. Minimalist PSPSDK: http://sourceforge.net/projects/minpspw/ (2013)
27. MIPS Technologies Inc.: MIPS32 Architecture for Programmers Volume II-A: The MIPS32

Instruction Set, MIPS MD00086 edn. (2010), https://www.mips.com/products/
architectures/mips32/

28. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann Publish-
ers, San Francisco, US-CA (1997)

29. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of
Scientific Computing. Cambridge University Press, Cambridge, UK, 3rd edn. (2007)

30. Reverse Engineering Compiler (REC): http://www.backerstreet.com/rec/rec.
htm (2013)

31. SmartDec: http://decompilation.info/ (2013)
32. Stallman, R.M., the GCC Developer Community: GNU Compiler Collection Internals. http:

//gcc.gnu.org/onlinedocs/gccint.pdf (2010)
33. The dcc Decompiler: http://itee.uq.edu.au/˜cristina/dcc.html (2013)
34. The LLVM Compiler Infrastructure: http://llvm.org/ (2013)
35. TIS Committee: Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specifi-

cation (1995), http://refspecs.freestandards.org/elf/elf.pdf
36. Ďurfina, L., Křoustek, J., Zemek, P., Kábele, B.: Detection and recovery of functions and their

arguments in a retargetable decompiler. In: 19th Working Conference on Reverse Engineering
(WCRE’12). pp. 51–60. IEEE Computer Society, Kingston, ON, CA (2012)

37. Ďurfina, L., Křoustek, J., Zemek, P., Kolář, D., Hruška, T., Masařı́k, K., Meduna, A.: Advanced
static analysis for decompilation using scattered context grammars. In: Applied Computing
Conference (ACC’11). pp. 164–169. World Scientific and Engineering Academy and Society
(WSEAS) (2011)

38. Warren, H.S.: Hacker’s Delight. Addison-Wesley, Boston, US-MA (2003)

Jakub Křoustek is a Ph.D. student at the Faculty of Information Technology, Brno Uni-
versity of Technology, Czech Republic. He received his MSc degree from the same uni-
versity in 2009. He is currently working on the Lissom research project as the leader of
the retargetable decompiler. His current research interests include reverse engineering,
malware detection, and compiler design, with special focus on code analysis and reverse
translation.

Fridolı́n Pokorný is a MSc student at the Faculty of Information Technology, Brno Uni-
versity of Technology, Czech Republic. He received his bachelor’s degree from the same
university in 2013. His research is focused on compilers and their code optimizations.

A New Approach to Instruction-Idioms Detection in a Retargetable Decompiler 1359

Dušan Kolář went to Brno University of Technology, Czech Republic, where he studied
computer science and cybernetics and obtained his degrees in 1994 and 1998. Since then,
he has been working at the university, presently at the Faculty of Information Technology.
His main research interests are formal languages and automata and formal models with
focus on their usage in compilers and formal models transformation.

Received: December 3, 2013; Accepted: July 7, 2014.

