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Abstract. Prediction of speedup obtained from parallelization plays an 
important role in converting serial applications into parallel ones. Several 
parameters affect the execution time of an application. In this paper we 
experimentally and theoretically study the effect of some of these 
parameters on the execution time of Message Passing Interface based 
applications 
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1. Introduction 

Speedup is defined as the ratio of serial execution time to the parallel 
execution time [1], it is used to express how many times a parallel program 
works faster than its serial version used to solve the same problem.  
   Prediction of speedup gained from parallelization is an important issue in 
converting serial applications into parallel ones. Amdahl's Law [2], [3] is one 
way of predicting the maximum achievable speedup for a given program. The 
law assumes that a fraction of a program's execution time was infinitely 
parallelizable with no overhead, while the remaining fraction was totally serial 
[4]. The law treats problem size as a constant and hence the execution time 
decreases as number of processors increases. Gustafson law [5] is another 
one that predicts maximum achievable speedup. The two laws ignore the 
communication cost; they overestimate the speedup value [6].  
   Many conflicting parameters such as parallel overhead, hardware 
architecture, programming paradigm, programming style may negatively affect 
the execution time of a parallel program making its execution time larger than 
that of the serial version and thus any parallelization gain will be lost [7]. In 
order to obtain a faster parallel program, these conflicted parameters need to 
be well optimized.  
   Execution time reduction is one of the most challenging goals of parallel 
programming.  
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   Theoretically, adding extra processors to a processing system leads to a 
smaller execution time of a program compared with its execution time using a 
fewer processors system or a single machine[2].  
   Practically, when a program is executed in parallel, the hypothesis that the 
parallel program will run faster is not always satisfied. If the main goal of 
parallelizing a serial program is to obtain a faster run then the main criterion to 
be considered is the speedup gained from parallelization.  
Various parallel programming paradigms can be used to write parallel 
programs such as OpenMP [8], Parallel Virtual Machine (PVM) [9], and 
Message Passing Interface (MPI) [10].  
   MPI is the most commonly used paradigm in writing parallel programs since 
it can be employed not only within a single processing node but also across 
several connected ones. MPI enables the programmer to control both data 
distribution and process synchronization. MPI standard has been designed to 
enhance portability in parallel applications, as well as to bridge the gap 
between the performance offered by a parallel architecture and the actual 
performance delivered to the application [11]. 
MPICH2 [12] is an MPI implementation that is working well on a wide range of 
hardware platforms and also supports using of C/C++ and FORTRAN 
programming languages. 
   In this paper we discuss some of the parameters that affect the parallel 
programs performance as a parallelization gain issue and also propose an 
experimental method to predict the speedup of MPI applications. We focus on 
the parallel programs written by MPI paradigm using MPICH2 implementation.  
   The paper is organized as follows: section 2 discusses the different 
challenging factors in MPI programming. Section 3 presents an experimental 
method to predict MPI-based application speedup. Theoretical speedup 
prediction is presented in section 4. In section 5, we present a comparison 
between the experimental and theoretical speedup prediction for some 
selected MPI-based applications.  

2. MPI programming Challenging Factors  

Several factors affect the performance of MPI-based parallel programs. These 
factors should be adapted to achieve the optimal performance.  

2.1  Problem decomposition 

 

When dividing the data into processes the programmer have to pay attention 
to the amount of load being processed by each processor. Load balancing is 
the task of equally dividing work among the available processes. This is easy 
to be programmed when the same operations are being performed by all the 
processes on different pieces of data.  
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   Irregular load distribution leads to load imbalance which cause some 
processes to finish earlier than others. Load imbalance is one source of 
overhead, so all tasks should be mapped onto processes as evenly as 
possible so that all tasks complete in the shortest amount of time to minimize 
the processors’ idle time which lead to a faster execution. 

2.2 Communication pattern 

 

In general, all data movement among processes can be accomplished using 
MPI send and receive routines. More over, a set of standard collective 
communication routines [13] are defined in MPI. Each collective 
communication routine has a parameter called a communicator, which 
identifies the group of participating processes. The collective communication 
routines allow data movement among all processors or just a specified set of 
processors [14].  
   The cost of communication in the execution time can be measured in terms 
of latency and bandwidth. Latency is the time taken to set up the envelope for 
communication, where bandwidth is the actual speed of transmission. 
Regardless of the network hardware architecture the communication pattern 
affects the performance of MPI programs. Using collective communication 
pattern is more efficient than using of  point-to-point communication pattern 
[15], so the application programmer have to avoid using of the latter one as 
much as possible, specially for large size problems, for the following reasons: 

1. Although point-to-point pattern is a simple way of specifying 
communication in parallel programs; its use leads to large program size 
and complicated communication structure, which negatively affect the 
program performance. 

2. Send-receive operation does not offer fundamental performance 
advantages over collective operations. The latter offer efficient 
implementations without changing the applications. 

3. In practice, using the non-blocking versions of send-receive, MPI_Isend 
and MPI_Irecv, often lead to slower execution than the blocking version 
because of the extra synchronization. 

2.3 Message size 

 

Message size can be a very significant contributor to MPI application 
performance. The effect of message size is also influenced by latency, 
communication pattern and number of processors. To achieve an optimal 
performance, the application programmer should take the following 
considerations into account:  

1. In most cases, increasing the message size will yield better performance. 
For communication intensive applications, the smaller message size 
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reduces MPI application performance because latency badly affects short 
messages..  

2. For smaller message size with less number of processors, it is better to 
implement broadcasting in terms of non-blocking point-to-point 
communication whereas for other cases broadcasting using MPI_Bcast 
saves time significantly. 

2.4 Message passing protocol 

 

There are two common message passing protocols, eager and rendezvous 
[16], [17]. Eager protocol is an asynchronous protocol that allows a send 
operation to complete without acknowledgement from a matching receive. 
Rendezvous protocol is a synchronous protocol which requires an 
acknowledgement from a matching receive in order to complete the send 
operation. 
MPI message passing protocols affect the program performance. The 
performance is implementation dependent. So the application programmer 
has to consider the following circumstances: 
1. In case of eager protocol, the receiving process is responsible for 

buffering the message upon its arrival, especially if the receive operation 
has not been posted [16]. This operation is based upon the 
implementation's guarantee of a certain amount of available buffer space 
on the receive process. In this case, the application programmer has to 
pay attention to the following requirements to achieve a reasonable 
performance  

a. Message sizes must be small. 

b. Avoid using of intensive communication to decrease the time 
consumed by the receive process side to pull messages from the 
network and/or copy the data into buffer space.  

2. If the receiving process buffer space can't be allocated or the limits of the 
buffer are exceeded rendezvous protocol is used. In this protocol, sender 
process sends message envelope to destination process which receives 
and stores that envelope. When buffer space is available, destination 
process replies to sender that requested data can be sent, hence sender 
process receives reply from destination process and then sends data 
[17]. In this case, the application programmer has to pay attention to the 
following requirements to achieve a reasonable performance 

a. Message sizes must be large enough to avoid the time consumed 
for handshaking between sender and receiver.  

b. Using non-blocking sends with waits/tests to prevent program 
from blocking while waiting for a receiving confirmation from 
receive process. 
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2.5 Processors’ number 

 

Adding extra processors to the system reduces the computation time but 
increases the communication time. The increase in communication time may 
be larger than the decrease in computation time which leads to a dramatic 
decreasing of performance. In practice, speedup does not increase linearly as 
the number of processors increases but tends to saturate and accordingly the 
efficiency drops as the number of processors increases [5].  
   The effect of processor’s number is also influenced by the problem size. 
Speedup and efficiency increase as the problem size increases on the same 
number of processors. If increasing the number of processors reduces 
efficiency, and increasing the problem size increases efficiency, the 
application programmer should be able to keep efficiency constant by 
increasing both simultaneously. 

2.6 Running processes 

 

MPI implementations allow the programmer to run his application using 
arbitrary number of processes and processors. The number of processes may 
be less than, equal to, or greater than the number of processors. It is common 
to develop parallel applications with a small number of processes on a single 
processor. As the application becomes more fully developed and stable, 
larger testing runs can be conducted on actual clusters to check for scalability 
and performance bottlenecks. 
The number of processes per processor affects the application performance 
so the application programmer has to be aware of the following 
considerations: 
1. In general, maximum performance is achieved when each process has 

its own processor. When the number of processes is less than or equal 
to the number of processors, the application will run at its peak perfor-
mance. Since the total system is either underutilized (there are unused 
processors) or fully utilized (all processors are being used), the 
application is not hindered by several parameters such as context 
switching, cache misses, or virtual memory thrashing caused by other 
local processes [18]. 

2. Running too many processes, the processors will thrash, continually 
trying to give each process its fair share of run time.  

3. Running too few processes may not enable the programmer to run 
meaningful data through his application, or may not cause error 
conditions that occur with larger numbers of processes. 
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3. Experimental Speedup prediction 

In some cases, the predicted performance may differ from that achieved 
experimentally. Since both Amdahl's and Gustafson laws ignore the 
communication cost as mentioned in section 1, we present an experimental 
method to predict the speedup of MPI applications as a performance measure 
taking into account the communication cost.  
   Since modern parallel machines are very costly and not easy to be access, 
we used an experimental system consists of 8 DELL machines. Each of these 
machines consists of Intel i386 based P4-1.6GHz processor with 512MB 
memory running on Microsoft Windows XP Professional Service Pack 2.    
These machines are connected via a Fast Ethernet 100Mbps switch. These 
machines are not as powerful as the recent cluster machines in terms of the 
hardware and performance but they can reasonably perform for testing 
purposes and also for solving small and middle size parallel problems. 
MPICH2 version 1.0.6p1, is used as a message passing implementation. 

3.1 The proposed method 

 
The proposed method is summarized in the following steps: 
 

1. Execute the serial version of MPI application on a single processor 
machine. 

2. Record the serial execution time, sT . 

3. Execute the parallel MPI application on the same single processor 
machine repeatedly using arbitrary number of MPI processes, 1, 2, 3,…, 
n. 

4. Record the parallel execution times, nTpTpTp ,....,, 21 , for each run. 

5. Graph the obtained results as a two dimensional graph. The X-axis for 
MPI processes number and the Y-axis for the parallel execution 

times, nTpTpTp ,....,, 21 . 

6. If the parallel execution time is rapidly increases as the number of MPI 
processes increases, this implies that the MPI application will exhibit a 
poor speedup if it is run in parallel on multiple physical processors. 

7. If the parallel execution time remains constant or slowly increases as the 
number of MPI processes increases, this implies that the MPI application 
will exhibit a linear speedup if it is run in parallel on multiple physical 
processors. 

 
We applied this method on two MPI applications. The first one solves the 
concurrent wave equation [19] which is represented by a partial differential 
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equation to describe the propagation of waves along a flexible vibrating string 
stretched between two points on the x-axis. 
   The second application uses brute-force algorithm [20], [21] to find the 
number of primes and also the largest prime number within an interval of 
integers [22]. The two applications are also executed in parallel on multiple 

physical processors. The recorded serial execution time, sT  for both 

applications is used to find out their experimental speedup to be compared 
with the predicted ones. 

3.2 Predicted versus experimental results  

 

The parallel MPI applications that solve both wave equation and prime 
numbers generator problems were executed; serial execution time, parallel 
execution time on a single processor using multiple processes and also 
parallel execution time on multiple processors for both problems are shown in 
table 1. 
 
Table 1. Serial and parallel execution times for Wave Equation and Primes Generator 
 

Problem 
Serial 

execution 
time 

Parallel execution 

Single physical 
processor 

Multiple physical 
processors 

MPI 
processes 

Execution 
time 

Physical 
processors 

Execution 
time 

Problem 
1 

Wave 
Equation 

0.80216 

1 1.3561 1   1.3561 

2 3.6942 2   4.0952 

3 6.3833 4   1.2112 

4 9.4002 8 11.4501 

5 12.5629   

6 15.301   

7 18.1778   

8 21.5001   

9 24.1733   

10 27.3349   

Problem 
2 

Primes 
Generator 

55.625 

2 55.5887 1 57.625 

4 55.464 2 32.6704 

8 54.9653 4 17.38331 

10 55.5158 6 11.58861 

16 55.1428 8   8.2103 

20 55.9213   
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Applying the proposed speedup prediction method to wave equation problem 
using 10 MPI processes on a single physical processor we predicted that the 
application will exhibit a poor speedup if it is executed in parallel using 
multiple physical processors.  
   Our prediction is based on that the execution time is rapidly increases as 
the number of MPI processes as shown in figure 1.  
To prove that our prediction was true, we executed the same MPI code on 8 
physical processors. Knowing the execution time of the serial code version, 
the experimental speedup was calculated. Figure 2 shows that the maximum 
speedup achieved by 8 physical processors was only 0.66228534 and hence 
our prediction was true. 
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Fig. 1. Execution time using 10 
processes on a single CPU  for 
problem 1 

 
Fig. 2. Experimental speedup for 
problem 1 

 
To be unbiased, we also re-executed the same parallel code using different 
number of processes on the same 8 physical processors. Figure 3 shows that 
the execution time was negatively affected as the number of MPI processes 
increases except in case of running a small number of MPI processes using 8 
physical processors.  
   The experimental results show that there is no significant speedup 
improvement as shown in figure 4. This also proves that our prediction was 
true. 
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Fig. 3.   Effect of  processes number 
on  execution time using 8 CPUs  for 
problem1 

Fig. 4. Experimental vs. ideal speedup 
for problem 1 
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Applying the proposed method to prime numbers generator problem using 20 
MPI processes on a single physical processor; we predicted that the 
application will exhibit a linear speedup if it is executed in parallel using 
multiple physical processors.  
   Our prediction is based on that the execution time is slowly increases or 
seems to be constant as the number of MPI processes as shown in figure 5. 
Running the same MPI code on 8 physical processors achieved a linear 
speedup as shown figure 6 and hence our prediction was also true. 
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Fig. 5. Execution time using 20 
processes on a single CPU  for 
problem 2 

Fig. 6. Experimental speedup for 
problem2 

4. Theoretical Speedup Prediction  

From the theoretical point of view, speedup is challenged by various factors 
such as computation complexity and memory usage. Parallelizing sequential 
algorithms adds several extra challenges such as application speedup and 
how can it be affected by the number of cores and/ or the number of the 
running processes. 
   Several Studies [23], [24] , [25] have been addressed the performance of 
MPI applications on several hardware platforms, but little attention has been 
focused on using multi-core  architectures supported by Microsoft Windows as 
an operating system and MPICH2 as an MPI implementation. 
   Three parallel sorting algorithms namely Bubble sort, Merge sort and Quick 
sort are designed and implemented using MPI. The effect of the number of 
cores and also the number of processes on the algorithms speedup is 
theoretically studied and compared with the experimental speedup. 
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4.1 Sorting Algorithms 

 
The main function of sorting algorithms is to place data elements of a list in a 
certain order. Several algorithms are introduced to solve this problem.  

Sequential sorting algorithms. Sequential sorting algorithms are classified 

into two categories. The first category, "distribution sort", is based on 

distributing the unsorted data items to multiple intermediate structures which 

are then collected and stored into a single sorted list. The second one, 

"comparison sort", is based on comparing the data items to find the correct 
relative order [26].  

   In this paper we focus on comparison based sorting algorithms. These 
algorithms use various approaches in sorting such as exchange, partition, and 
merge. 
   The exchange approach repeats exchanging adjacent data items to produce 
the sorted list as in case of bubble sort [27]. 
The partitioning approach is a "divide and conquer" strategy based on dividing 
the unsorted list into two sub-lists according to a pivot element selected from 
the list. The two sub-lists are sorted and then combined giving the sorted list 
as in case of quick sort [28]. 
   Merge approach is also a divide and conquer strategy that does not depend 
on a pivot element in portioning process. The approach repeatedly divides the 
original list into sub-lists until the sub-lists have only one data item. Then 
these elements are merged together given the sorted list as in case of merge 
sort [29]. 

Parallelizing sorting algorithms. Parallelizing sorting algorithms needs a 

careful design to achieve well efficient results because of the high level date 
dependency evolved within these algorithms that exhibits parallelism. 

   Sequential versions of bubble sort, quick sort and merge sort are 
parallelized using C ++ binding of MPI under MPICH2 for Windows. The 
"scatter/ merge" paradigm is used in parallelization. 
The used paradigm has three fundamentals phases, scatter phase, sort 
phase and merge phase. The first phase is responsible for distributing the 
original unsorted data list among the MPI process in such a way each of them 
accepts a part of the original data to be manipulated with these parallel 
processes. 
  
   In sort phase, each process sorts its local unsorted data list using one of the 
selected sorting algorithms. All local sorted data are sent from these "slave" 
processes to only one process which serves as a master process to generate 
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the sorted list in the merge phase. An MPI skeleton of this paradigm is shown 
in figure 7. 
  1. Initialize MPI environment. 

  2. Determine MPI processes' number (p) and their id's. 

  /* Scatter Phase  */ 

  3. If  id=master then  

  4.     get unsorted list data  items of size n 

  5.     compute partition size, s = n/p 

  6.     broadcast s and n to all processes  

  7. endif 

  8. scatter sub-lists to all running processes 

  /*  Sorting Phase */ 

 9. call Selected_Sorting_Algorithm ( sub-list, s) 

 /* Merge Phase */ 

10.  while step< p do 

11.    if   id is even then 

12.       Send even-sub-list to process id + 1 

13.       Receive odd-sub-list from processor id + 1 

14.       Merge even and odd sub-lists into sorted-list 

15.       Replace even-sub-list by the first half of  

          sorted-list 

16.    else if id > 0 then 

17.       Receive even-sub-list from process id - 1 

18.       Send odd-sub-list to process id – 1 

19.       Merge even and odd sub-lists into sorted-list 

20.       Replace odd-sub-list by the second half of  

          sorted-list  

21.    end if 

22. End while 

23. Finalize MPI environment 

24. End 
 
Fig. 7. MPI scatter/ merge paradigm 
 

4.2 Theoretical speedup prediction 

 

In sequential bubble sort, the computation complexity is )( 2nO , n is the 

unsorted list size, in both best and average case. 
The parallel version complexity of bubble sort based on "scatter/ merge" 

paradigm is estimated as )( 2

2

P
nO , so the time will be reduced by a factor of 

2P , P is the number of processors. This is due to the partitioning of the total 
size n of the original list among the running processes P.  This implies a 
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theoretical super linear speedup. In case of using only two cores we expect 

that the computation complexity of parallel bubble sort will be )(
2

mP
nO , m is 

the number of processes and P is the number of physical cores.  

   Sequential merge sort algorithm behaves as )log( nnO computational 

complexity in all of its cases, worst, average and best [30]. We estimated the 
parallelized version complexity in case of using a dual core processor 

as overheadtotal
m

n
P

)log(
2

. The total overhead is the sum of inter-

process communications overhead and the MPI processes initialization 
overhead.  
In case of sequential quick sort, the efficiency of the algorithm is influenced 

the pivot element selection method; we get worst case )( 2nO  when the 

selected pivot is the left most data item. If the pivot is carefully selected, the 

algorithm behaves in its best case as )log( nnO complexity [30]. In case of 

parallelized version, we estimated the complexity for a dual core processor 

as overheadtotal
m

n
mP

n
)log(

2
.  

5. Experimental- Theoretical Comparison 

 

An experiment is carried out and applied to the implemented parallel version 
of the concerned sorting algorithms. The experiment is designed to address 
the affect of parallel processes number, and also the number of used cores on 
the execution time.  

5.1 Steps of the experiment  

 

1. Set the number of system cores to 1 and reboot the system. 

2. Execute the parallel MPI application on the same single core 
repeatedly using arbitrary number of MPI processes, 1, 2, 3... , n for 
the same data with the same size. 

3. Record execution time. 

4. Set the number of system cores to 2 and reboot the system. 

5. Repeat steps 2-4 with the same data and size. 
 
 
We used an experimental system consists of Pentium[R] Dual-Core CPU 
E5500@ 2.80 GHZ, 3.21 GB of RAM running on Microsoft Windows XP 
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Professional Service Pack 2. The experiments codes were written in C++ 
using MPICH2 version 1.0.6p1, as a message passing implementation. 

5.2 Experimental results  

 
 

We applied the experiment to the three parallel implementations with a fixed 

data size 
5102 for bubble sort and 

6106 for merge sort and quick sort 

respectively with 1,2, ..64 parallel process using both a single and dual cores 
as shown in table 2. 
   We profiled the execution of the tested implementations using jumpshot [31] 
to address the inter-processes communication. Also the total overhead and 
computation costs are measured. 
As the theoretical expectation, the execution time of bubble sort is reduced as 
the number of parallel processes increases in case of using either single or 
dual cores as shown in figure 8. On other hand merge sort and quick sort do 
not exhibit a speedup behavior as processes number increases as shown in 
figure 9 and figure 10. 
 
Table 2. Experimental Results 

 

Number 

of cores 

Number  
of 

processes 

Execution time in seconds 

Bubble sort,  
5102  

date items 

Merge sort,  
6106  

date items 

Quick sort,  
6106  

Date items 

1 

1 457.375  5.718  4.437 

2 229.250   5.765  4.500 

4 115.859  5.906  4.562 
8  57.812  6.296  4.859 

16  28.953  6.953  5.421 

32  15.140  8.421  6.890 

64   9.0460 11.687 10.14 

2 

1 460.796 5.609 4.203 

2 117.546 4.031 3.203 

4  57.937 4.234 3.328 
8  29.109 4.328 3.453 

16  14.646 4.640 3.796 

32   7.625 4.968 4.265 
64   4.687 7.109 6.265 
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(a) single core (b) dual core 

 
Fig. 8. Experimental and theoretical execution time of parallel bubble sort 
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(a) single core (b) dual core 

 
Fig. 9. Experimental and theoretical execution time of parallel merge sort 
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Fig. 10. Experimental and theoretical execution time of parallel quick sort 

 
   To interpret these result, we profiled the execution of the tested 
implementations using jumpshot to address the inter-processes 
communication. Also the total overhead and computation costs are measured. 
Figure 11 shows how the running parallel processes communicate with each 
others. In bubble sort (figure 11.a) there is a low communication overhead 
compared with that of computations in contrast to figures 11.b and 11.c that 
show a higher communication overhead. The excessive inter-process 
communications overhead noticed in both merge sort and quick sort increases 
the total execution time. 
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(a) bubble sort (b) merge sort 

 

 
 

 

(c) quick sort (d) legend 
 

Fig. 11. Jumpshot time line for the experiment 

 
   We also measured the total overhead of parallel processes compared with 
the computation cost for the three implementations regarding the number of 
processes and also the number of cores used as shown in figure 12 , figure 
13 and figure 14. 
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(a) single core (b) dual core 
 
Fig. 12. Bubble sort overhead/ computation ratio 

 
 

 
 

 
 

Fig. 13. Merge sort overhead/ 

computation ratio 

Fig. 14.  Quick sort overhead/ 

computation ratio 

6. Related Work 

There are two major approaches for parallel performance prediction. The first 
approach is to build an analytical model for the application under 
consideration [32], [33], [34], [35]. The main advantage of this approach is its 
low cost. However, constructing analytical models of parallel applications 
requires a well understanding of the algorithms and their implementations, 
and also the models are constructed manually by domain experts, which limit 
their accessibility to normal users. Moreover, a model built for an application 
cannot be applied to another one.  
   The second approach is to develop a system simulator to execute 
applications to predict their performance. Simulation techniques can capture 
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detailed performance behavior at all levels, and can be used automatically to 
model a given program. However, an accurate system simulator is extremely 
expensive. Existing simulators such as BigSim and MPI-SIM [36], [37] are 
inadequate to simulate the very large problems. 
   Trace-driven simulation [38] and macro-level simulation [39] have better 
performance than detailed system simulators, since they only need to 
simulate the communication operations.  
   Yang et al. [40] proposed a cross-platform prediction method based on 
relative performance between target platforms without program modeling, 
code analysis, or architecture simulation.  
Lee et al. [41] presented piecewise polynomial regression models and artificial 
neural networks that predict application performance as a function of its input 
parameters.  
   Barnes et al. [42] employ the regression based approaches to predict 
parallel program scalability and their method shows good accuracy for some 
applications. However, the number of processors used for training is still very 
large for better accuracy and their method only supports load-balanced 
workload. 
   Statistical techniques have been used widely for studying program 
behaviors from large-scale data [43].  
   In this paper we present an experimental method that can be used in 
speedup prediction for a parallel application without using neither high cost 
resources nor building an analytical models or simulators. 
The experimental results were compared with the predicted theoretical 
results. We found that experimental results are very close to the theoretical 
ones  

7. Conclusion 

In this paper we have studied the conflicting parameters that affect the parallel 
programs execution experimentally and theoretically, especially for MPI-based 
applications, showing some recommendations to be followed to achieve a 
reasonable performance.  
   The problem nature is one of the most important factors that affect the 
parallel program speedup. If the problem can be divided into independent 
subparts and no communication is required, except to split up the problem 
and combine the final results, then the resultant parallel program will exhibit a 
linear speedup. If the same instruction set are applied to all data and 
processes communication is synchronous, speedup will be directly 
proportional to the computation -communication ratio. If there are different 
instruction sets to be applied to all data to solve a specific problem and the 
inter-process communication is asynchronous, the speedup of the resultant 
parallel application will be negatively affected with extra communication 
overhead. 
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   We also proposed an experimental method that aids in speedup prediction. 
It was applied to predict the speedup of MPI applications that solve wave 
equation and prime numbers generator problems. The predicted speedup was 
as the same as experimental speedup achieved when using multiple physical 
processors for both applications. 
   Theoretical speedup prediction requires extra analysis such as algorithm 
complexity. The effect of both running processes number and the number of 
cores on the algorithm complexity have been studied for three parallel sorting 
algorithms.  
   The theoretical predicted speedup has been compared with the 
experimental speedup for the three algorithms. Our theoretical prediction of 
speedup was very close to the experimental results; this gives a good 
indication about the scalability of the proposed method. 
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