
DOI: 10.2298/CSIS120529047E

Experimental and Theoretical Speedup Prediction

of MPI-Based Applications

Alaa Elnashar and Sultan Aljahdali

 Computer Science Department
College of Computers and Information Technology

P.O.B. 888, 21947 Taif, Saudi Arabia
{a.ismail, aljahdali}@tu.edu.sa

Abstract. Prediction of speedup obtained from parallelization plays an
important role in converting serial applications into parallel ones. Several
parameters affect the execution time of an application. In this paper we
experimentally and theoretically study the effect of some of these
parameters on the execution time of Message Passing Interface based
applications

Keywords: Parallel programming, Message Passing Interface, Speedup

1. Introduction

Speedup is defined as the ratio of serial execution time to the parallel
execution time [1], it is used to express how many times a parallel program
works faster than its serial version used to solve the same problem.
 Prediction of speedup gained from parallelization is an important issue in
converting serial applications into parallel ones. Amdahl's Law [2], [3] is one
way of predicting the maximum achievable speedup for a given program. The
law assumes that a fraction of a program's execution time was infinitely
parallelizable with no overhead, while the remaining fraction was totally serial
[4]. The law treats problem size as a constant and hence the execution time
decreases as number of processors increases. Gustafson law [5] is another
one that predicts maximum achievable speedup. The two laws ignore the
communication cost; they overestimate the speedup value [6].
 Many conflicting parameters such as parallel overhead, hardware
architecture, programming paradigm, programming style may negatively affect
the execution time of a parallel program making its execution time larger than
that of the serial version and thus any parallelization gain will be lost [7]. In
order to obtain a faster parallel program, these conflicted parameters need to
be well optimized.
 Execution time reduction is one of the most challenging goals of parallel
programming.

Alaa Elnashar and Sultan Aljahdali

1248 ComSIS Vol. 10, No. 3, June 2013

 Theoretically, adding extra processors to a processing system leads to a
smaller execution time of a program compared with its execution time using a
fewer processors system or a single machine[2].
 Practically, when a program is executed in parallel, the hypothesis that the
parallel program will run faster is not always satisfied. If the main goal of
parallelizing a serial program is to obtain a faster run then the main criterion to
be considered is the speedup gained from parallelization.
Various parallel programming paradigms can be used to write parallel
programs such as OpenMP [8], Parallel Virtual Machine (PVM) [9], and
Message Passing Interface (MPI) [10].
 MPI is the most commonly used paradigm in writing parallel programs since
it can be employed not only within a single processing node but also across
several connected ones. MPI enables the programmer to control both data
distribution and process synchronization. MPI standard has been designed to
enhance portability in parallel applications, as well as to bridge the gap
between the performance offered by a parallel architecture and the actual
performance delivered to the application [11].
MPICH2 [12] is an MPI implementation that is working well on a wide range of
hardware platforms and also supports using of C/C++ and FORTRAN
programming languages.
 In this paper we discuss some of the parameters that affect the parallel
programs performance as a parallelization gain issue and also propose an
experimental method to predict the speedup of MPI applications. We focus on
the parallel programs written by MPI paradigm using MPICH2 implementation.
 The paper is organized as follows: section 2 discusses the different
challenging factors in MPI programming. Section 3 presents an experimental
method to predict MPI-based application speedup. Theoretical speedup
prediction is presented in section 4. In section 5, we present a comparison
between the experimental and theoretical speedup prediction for some
selected MPI-based applications.

2. MPI programming Challenging Factors

Several factors affect the performance of MPI-based parallel programs. These
factors should be adapted to achieve the optimal performance.

2.1 Problem decomposition

When dividing the data into processes the programmer have to pay attention
to the amount of load being processed by each processor. Load balancing is
the task of equally dividing work among the available processes. This is easy
to be programmed when the same operations are being performed by all the
processes on different pieces of data.

Experimental and Theoretical Speedup Prediction of MPI-Based Applications

ComSIS Vol. 10, No. 3, June 2013 1249

 Irregular load distribution leads to load imbalance which cause some
processes to finish earlier than others. Load imbalance is one source of
overhead, so all tasks should be mapped onto processes as evenly as
possible so that all tasks complete in the shortest amount of time to minimize
the processors’ idle time which lead to a faster execution.

2.2 Communication pattern

In general, all data movement among processes can be accomplished using
MPI send and receive routines. More over, a set of standard collective
communication routines [13] are defined in MPI. Each collective
communication routine has a parameter called a communicator, which
identifies the group of participating processes. The collective communication
routines allow data movement among all processors or just a specified set of
processors [14].
 The cost of communication in the execution time can be measured in terms
of latency and bandwidth. Latency is the time taken to set up the envelope for
communication, where bandwidth is the actual speed of transmission.
Regardless of the network hardware architecture the communication pattern
affects the performance of MPI programs. Using collective communication
pattern is more efficient than using of point-to-point communication pattern
[15], so the application programmer have to avoid using of the latter one as
much as possible, specially for large size problems, for the following reasons:

1. Although point-to-point pattern is a simple way of specifying
communication in parallel programs; its use leads to large program size
and complicated communication structure, which negatively affect the
program performance.

2. Send-receive operation does not offer fundamental performance
advantages over collective operations. The latter offer efficient
implementations without changing the applications.

3. In practice, using the non-blocking versions of send-receive, MPI_Isend
and MPI_Irecv, often lead to slower execution than the blocking version
because of the extra synchronization.

2.3 Message size

Message size can be a very significant contributor to MPI application
performance. The effect of message size is also influenced by latency,
communication pattern and number of processors. To achieve an optimal
performance, the application programmer should take the following
considerations into account:

1. In most cases, increasing the message size will yield better performance.
For communication intensive applications, the smaller message size

Alaa Elnashar and Sultan Aljahdali

1250 ComSIS Vol. 10, No. 3, June 2013

reduces MPI application performance because latency badly affects short
messages..

2. For smaller message size with less number of processors, it is better to
implement broadcasting in terms of non-blocking point-to-point
communication whereas for other cases broadcasting using MPI_Bcast
saves time significantly.

2.4 Message passing protocol

There are two common message passing protocols, eager and rendezvous
[16], [17]. Eager protocol is an asynchronous protocol that allows a send
operation to complete without acknowledgement from a matching receive.
Rendezvous protocol is a synchronous protocol which requires an
acknowledgement from a matching receive in order to complete the send
operation.
MPI message passing protocols affect the program performance. The
performance is implementation dependent. So the application programmer
has to consider the following circumstances:
1. In case of eager protocol, the receiving process is responsible for

buffering the message upon its arrival, especially if the receive operation
has not been posted [16]. This operation is based upon the
implementation's guarantee of a certain amount of available buffer space
on the receive process. In this case, the application programmer has to
pay attention to the following requirements to achieve a reasonable
performance

a. Message sizes must be small.

b. Avoid using of intensive communication to decrease the time
consumed by the receive process side to pull messages from the
network and/or copy the data into buffer space.

2. If the receiving process buffer space can't be allocated or the limits of the
buffer are exceeded rendezvous protocol is used. In this protocol, sender
process sends message envelope to destination process which receives
and stores that envelope. When buffer space is available, destination
process replies to sender that requested data can be sent, hence sender
process receives reply from destination process and then sends data
[17]. In this case, the application programmer has to pay attention to the
following requirements to achieve a reasonable performance

a. Message sizes must be large enough to avoid the time consumed
for handshaking between sender and receiver.

b. Using non-blocking sends with waits/tests to prevent program
from blocking while waiting for a receiving confirmation from
receive process.

Experimental and Theoretical Speedup Prediction of MPI-Based Applications

ComSIS Vol. 10, No. 3, June 2013 1251

2.5 Processors’ number

Adding extra processors to the system reduces the computation time but
increases the communication time. The increase in communication time may
be larger than the decrease in computation time which leads to a dramatic
decreasing of performance. In practice, speedup does not increase linearly as
the number of processors increases but tends to saturate and accordingly the
efficiency drops as the number of processors increases [5].
 The effect of processor’s number is also influenced by the problem size.
Speedup and efficiency increase as the problem size increases on the same
number of processors. If increasing the number of processors reduces
efficiency, and increasing the problem size increases efficiency, the
application programmer should be able to keep efficiency constant by
increasing both simultaneously.

2.6 Running processes

MPI implementations allow the programmer to run his application using
arbitrary number of processes and processors. The number of processes may
be less than, equal to, or greater than the number of processors. It is common
to develop parallel applications with a small number of processes on a single
processor. As the application becomes more fully developed and stable,
larger testing runs can be conducted on actual clusters to check for scalability
and performance bottlenecks.
The number of processes per processor affects the application performance
so the application programmer has to be aware of the following
considerations:
1. In general, maximum performance is achieved when each process has

its own processor. When the number of processes is less than or equal
to the number of processors, the application will run at its peak perfor-
mance. Since the total system is either underutilized (there are unused
processors) or fully utilized (all processors are being used), the
application is not hindered by several parameters such as context
switching, cache misses, or virtual memory thrashing caused by other
local processes [18].

2. Running too many processes, the processors will thrash, continually
trying to give each process its fair share of run time.

3. Running too few processes may not enable the programmer to run
meaningful data through his application, or may not cause error
conditions that occur with larger numbers of processes.

Alaa Elnashar and Sultan Aljahdali

1252 ComSIS Vol. 10, No. 3, June 2013

3. Experimental Speedup prediction

In some cases, the predicted performance may differ from that achieved
experimentally. Since both Amdahl's and Gustafson laws ignore the
communication cost as mentioned in section 1, we present an experimental
method to predict the speedup of MPI applications as a performance measure
taking into account the communication cost.
 Since modern parallel machines are very costly and not easy to be access,
we used an experimental system consists of 8 DELL machines. Each of these
machines consists of Intel i386 based P4-1.6GHz processor with 512MB
memory running on Microsoft Windows XP Professional Service Pack 2.
These machines are connected via a Fast Ethernet 100Mbps switch. These
machines are not as powerful as the recent cluster machines in terms of the
hardware and performance but they can reasonably perform for testing
purposes and also for solving small and middle size parallel problems.
MPICH2 version 1.0.6p1, is used as a message passing implementation.

3.1 The proposed method

The proposed method is summarized in the following steps:

1. Execute the serial version of MPI application on a single processor
machine.

2. Record the serial execution time, sT .

3. Execute the parallel MPI application on the same single processor
machine repeatedly using arbitrary number of MPI processes, 1, 2, 3,…,
n.

4. Record the parallel execution times, nTpTpTp ,....,, 21 , for each run.

5. Graph the obtained results as a two dimensional graph. The X-axis for
MPI processes number and the Y-axis for the parallel execution

times, nTpTpTp ,....,, 21 .

6. If the parallel execution time is rapidly increases as the number of MPI
processes increases, this implies that the MPI application will exhibit a
poor speedup if it is run in parallel on multiple physical processors.

7. If the parallel execution time remains constant or slowly increases as the
number of MPI processes increases, this implies that the MPI application
will exhibit a linear speedup if it is run in parallel on multiple physical
processors.

We applied this method on two MPI applications. The first one solves the
concurrent wave equation [19] which is represented by a partial differential

Experimental and Theoretical Speedup Prediction of MPI-Based Applications

ComSIS Vol. 10, No. 3, June 2013 1253

equation to describe the propagation of waves along a flexible vibrating string
stretched between two points on the x-axis.
 The second application uses brute-force algorithm [20], [21] to find the
number of primes and also the largest prime number within an interval of
integers [22]. The two applications are also executed in parallel on multiple

physical processors. The recorded serial execution time, sT for both

applications is used to find out their experimental speedup to be compared
with the predicted ones.

3.2 Predicted versus experimental results

The parallel MPI applications that solve both wave equation and prime
numbers generator problems were executed; serial execution time, parallel
execution time on a single processor using multiple processes and also
parallel execution time on multiple processors for both problems are shown in
table 1.

Table 1. Serial and parallel execution times for Wave Equation and Primes Generator

Problem
Serial

execution
time

Parallel execution

Single physical
processor

Multiple physical
processors

MPI
processes

Execution
time

Physical
processors

Execution
time

Problem
1

Wave
Equation

0.80216

1 1.3561 1 1.3561

2 3.6942 2 4.0952

3 6.3833 4 1.2112

4 9.4002 8 11.4501

5 12.5629

6 15.301

7 18.1778

8 21.5001

9 24.1733

10 27.3349

Problem
2

Primes
Generator

55.625

2 55.5887 1 57.625

4 55.464 2 32.6704

8 54.9653 4 17.38331

10 55.5158 6 11.58861

16 55.1428 8 8.2103

20 55.9213

Alaa Elnashar and Sultan Aljahdali

1254 ComSIS Vol. 10, No. 3, June 2013

Applying the proposed speedup prediction method to wave equation problem
using 10 MPI processes on a single physical processor we predicted that the
application will exhibit a poor speedup if it is executed in parallel using
multiple physical processors.
 Our prediction is based on that the execution time is rapidly increases as
the number of MPI processes as shown in figure 1.
To prove that our prediction was true, we executed the same MPI code on 8
physical processors. Knowing the execution time of the serial code version,
the experimental speedup was calculated. Figure 2 shows that the maximum
speedup achieved by 8 physical processors was only 0.66228534 and hence
our prediction was true.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11

Number of Processes

E
x
e
c
u
tio

n
 T

im
e
 (

s
e
c
o
n
d
s
)

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

Number of Processors

S
p
e
e
d
 u

p

Experimental

Ideal

Fig. 1. Execution time using 10
processes on a single CPU for
problem 1

Fig. 2. Experimental speedup for
problem 1

To be unbiased, we also re-executed the same parallel code using different
number of processes on the same 8 physical processors. Figure 3 shows that
the execution time was negatively affected as the number of MPI processes
increases except in case of running a small number of MPI processes using 8
physical processors.
 The experimental results show that there is no significant speedup
improvement as shown in figure 4. This also proves that our prediction was
true.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Number of MPI Processes

E
x
e
c
u
tio

n
 T

im
e
 (

s
e
c
o
n
d
s
) 8 CPUs 4 CPUs

2 CPUs 1 CPU

0

2

4

6

8

10

12

1 3 5 7 9 11

Number of Processes

S
p
e
e
d
 U

p

Ideal 8 CPUs

4 CPUs 2 CPUs
1 CPU

Fig. 3. Effect of processes number
on execution time using 8 CPUs for
problem1

Fig. 4. Experimental vs. ideal speedup
for problem 1

Experimental and Theoretical Speedup Prediction of MPI-Based Applications

ComSIS Vol. 10, No. 3, June 2013 1255

Applying the proposed method to prime numbers generator problem using 20
MPI processes on a single physical processor; we predicted that the
application will exhibit a linear speedup if it is executed in parallel using
multiple physical processors.
 Our prediction is based on that the execution time is slowly increases or
seems to be constant as the number of MPI processes as shown in figure 5.
Running the same MPI code on 8 physical processors achieved a linear
speedup as shown figure 6 and hence our prediction was also true.

0

15

30

45

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Processes

E
x
e
x
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

Number of Processors

S
p
e
e
d
 u

p

Experimental

Ideal

Fig. 5. Execution time using 20
processes on a single CPU for
problem 2

Fig. 6. Experimental speedup for
problem2

4. Theoretical Speedup Prediction

From the theoretical point of view, speedup is challenged by various factors
such as computation complexity and memory usage. Parallelizing sequential
algorithms adds several extra challenges such as application speedup and
how can it be affected by the number of cores and/ or the number of the
running processes.
 Several Studies [23], [24] , [25] have been addressed the performance of
MPI applications on several hardware platforms, but little attention has been
focused on using multi-core architectures supported by Microsoft Windows as
an operating system and MPICH2 as an MPI implementation.
 Three parallel sorting algorithms namely Bubble sort, Merge sort and Quick
sort are designed and implemented using MPI. The effect of the number of
cores and also the number of processes on the algorithms speedup is
theoretically studied and compared with the experimental speedup.

Alaa Elnashar and Sultan Aljahdali

1256 ComSIS Vol. 10, No. 3, June 2013

4.1 Sorting Algorithms

The main function of sorting algorithms is to place data elements of a list in a
certain order. Several algorithms are introduced to solve this problem.

Sequential sorting algorithms. Sequential sorting algorithms are classified

into two categories. The first category, "distribution sort", is based on

distributing the unsorted data items to multiple intermediate structures which

are then collected and stored into a single sorted list. The second one,

"comparison sort", is based on comparing the data items to find the correct
relative order [26].

 In this paper we focus on comparison based sorting algorithms. These
algorithms use various approaches in sorting such as exchange, partition, and
merge.
 The exchange approach repeats exchanging adjacent data items to produce
the sorted list as in case of bubble sort [27].
The partitioning approach is a "divide and conquer" strategy based on dividing
the unsorted list into two sub-lists according to a pivot element selected from
the list. The two sub-lists are sorted and then combined giving the sorted list
as in case of quick sort [28].
 Merge approach is also a divide and conquer strategy that does not depend
on a pivot element in portioning process. The approach repeatedly divides the
original list into sub-lists until the sub-lists have only one data item. Then
these elements are merged together given the sorted list as in case of merge
sort [29].

Parallelizing sorting algorithms. Parallelizing sorting algorithms needs a

careful design to achieve well efficient results because of the high level date
dependency evolved within these algorithms that exhibits parallelism.

 Sequential versions of bubble sort, quick sort and merge sort are
parallelized using C ++ binding of MPI under MPICH2 for Windows. The
"scatter/ merge" paradigm is used in parallelization.
The used paradigm has three fundamentals phases, scatter phase, sort
phase and merge phase. The first phase is responsible for distributing the
original unsorted data list among the MPI process in such a way each of them
accepts a part of the original data to be manipulated with these parallel
processes.

 In sort phase, each process sorts its local unsorted data list using one of the
selected sorting algorithms. All local sorted data are sent from these "slave"
processes to only one process which serves as a master process to generate

Experimental and Theoretical Speedup Prediction of MPI-Based Applications

ComSIS Vol. 10, No. 3, June 2013 1257

the sorted list in the merge phase. An MPI skeleton of this paradigm is shown
in figure 7.
 1. Initialize MPI environment.

 2. Determine MPI processes' number (p) and their id's.

 /* Scatter Phase */

 3. If id=master then

 4. get unsorted list data items of size n

 5. compute partition size, s = n/p

 6. broadcast s and n to all processes

 7. endif

 8. scatter sub-lists to all running processes

 /* Sorting Phase */

 9. call Selected_Sorting_Algorithm (sub-list, s)

 /* Merge Phase */

10. while step< p do

11. if id is even then

12. Send even-sub-list to process id + 1

13. Receive odd-sub-list from processor id + 1

14. Merge even and odd sub-lists into sorted-list

15. Replace even-sub-list by the first half of

 sorted-list

16. else if id > 0 then

17. Receive even-sub-list from process id - 1

18. Send odd-sub-list to process id – 1

19. Merge even and odd sub-lists into sorted-list

20. Replace odd-sub-list by the second half of

 sorted-list

21. end if

22. End while

23. Finalize MPI environment

24. End

Fig. 7. MPI scatter/ merge paradigm

4.2 Theoretical speedup prediction

In sequential bubble sort, the computation complexity is)(2nO , n is the

unsorted list size, in both best and average case.
The parallel version complexity of bubble sort based on "scatter/ merge"

paradigm is estimated as)(2

2

P
nO , so the time will be reduced by a factor of

2P , P is the number of processors. This is due to the partitioning of the total
size n of the original list among the running processes P. This implies a

Alaa Elnashar and Sultan Aljahdali

1258 ComSIS Vol. 10, No. 3, June 2013

theoretical super linear speedup. In case of using only two cores we expect

that the computation complexity of parallel bubble sort will be)(
2

mP
nO , m is

the number of processes and P is the number of physical cores.

 Sequential merge sort algorithm behaves as)log(nnO computational

complexity in all of its cases, worst, average and best [30]. We estimated the
parallelized version complexity in case of using a dual core processor

as overheadtotal
m

n
P

)log(
2

. The total overhead is the sum of inter-

process communications overhead and the MPI processes initialization
overhead.
In case of sequential quick sort, the efficiency of the algorithm is influenced

the pivot element selection method; we get worst case)(2nO when the

selected pivot is the left most data item. If the pivot is carefully selected, the

algorithm behaves in its best case as)log(nnO complexity [30]. In case of

parallelized version, we estimated the complexity for a dual core processor

as overheadtotal
m

n
mP

n
)log(

2
.

5. Experimental- Theoretical Comparison

An experiment is carried out and applied to the implemented parallel version
of the concerned sorting algorithms. The experiment is designed to address
the affect of parallel processes number, and also the number of used cores on
the execution time.

5.1 Steps of the experiment

1. Set the number of system cores to 1 and reboot the system.

2. Execute the parallel MPI application on the same single core
repeatedly using arbitrary number of MPI processes, 1, 2, 3... , n for
the same data with the same size.

3. Record execution time.

4. Set the number of system cores to 2 and reboot the system.

5. Repeat steps 2-4 with the same data and size.

We used an experimental system consists of Pentium[R] Dual-Core CPU
E5500@ 2.80 GHZ, 3.21 GB of RAM running on Microsoft Windows XP

Experimental and Theoretical Speedup Prediction of MPI-Based Applications

ComSIS Vol. 10, No. 3, June 2013 1259

Professional Service Pack 2. The experiments codes were written in C++
using MPICH2 version 1.0.6p1, as a message passing implementation.

5.2 Experimental results

We applied the experiment to the three parallel implementations with a fixed

data size
5102 for bubble sort and

6106 for merge sort and quick sort

respectively with 1,2, ..64 parallel process using both a single and dual cores
as shown in table 2.
 We profiled the execution of the tested implementations using jumpshot [31]
to address the inter-processes communication. Also the total overhead and
computation costs are measured.
As the theoretical expectation, the execution time of bubble sort is reduced as
the number of parallel processes increases in case of using either single or
dual cores as shown in figure 8. On other hand merge sort and quick sort do
not exhibit a speedup behavior as processes number increases as shown in
figure 9 and figure 10.

Table 2. Experimental Results

Number

of cores

Number
of

processes

Execution time in seconds

Bubble sort,
5102

date items

Merge sort,
6106

date items

Quick sort,
6106

Date items

1

1 457.375 5.718 4.437

2 229.250 5.765 4.500

4 115.859 5.906 4.562
8 57.812 6.296 4.859

16 28.953 6.953 5.421

32 15.140 8.421 6.890

64 9.0460 11.687 10.14

2

1 460.796 5.609 4.203

2 117.546 4.031 3.203

4 57.937 4.234 3.328
8 29.109 4.328 3.453

16 14.646 4.640 3.796

32 7.625 4.968 4.265
64 4.687 7.109 6.265

Alaa Elnashar and Sultan Aljahdali

1260 ComSIS Vol. 10, No. 3, June 2013

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 16 32 64

number of processes

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

experimental

theoretical

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 16 32 64

number of processes

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

experimental

theoretical

(a) single core (b) dual core

Fig. 8. Experimental and theoretical execution time of parallel bubble sort

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70

number of processes

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

experimental

theoritical

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

number of processes

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

experimental

theoritical

(a) single core (b) dual core

Fig. 9. Experimental and theoretical execution time of parallel merge sort

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

number of processes

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

experimental

theoritical

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

number of processes

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

experimental

theoritical

(a) single core (b) dual core

Fig. 10. Experimental and theoretical execution time of parallel quick sort

 To interpret these result, we profiled the execution of the tested
implementations using jumpshot to address the inter-processes
communication. Also the total overhead and computation costs are measured.
Figure 11 shows how the running parallel processes communicate with each
others. In bubble sort (figure 11.a) there is a low communication overhead
compared with that of computations in contrast to figures 11.b and 11.c that
show a higher communication overhead. The excessive inter-process
communications overhead noticed in both merge sort and quick sort increases
the total execution time.

Experimental and Theoretical Speedup Prediction of MPI-Based Applications

ComSIS Vol. 10, No. 3, June 2013 1261

(a) bubble sort (b) merge sort

(c) quick sort (d) legend

Fig. 11. Jumpshot time line for the experiment

 We also measured the total overhead of parallel processes compared with
the computation cost for the three implementations regarding the number of
processes and also the number of cores used as shown in figure 12 , figure
13 and figure 14.

Alaa Elnashar and Sultan Aljahdali

1262 ComSIS Vol. 10, No. 3, June 2013

(a) single core (b) dual core

Fig. 12. Bubble sort overhead/ computation ratio

Fig. 13. Merge sort overhead/

computation ratio

Fig. 14. Quick sort overhead/

computation ratio

6. Related Work

There are two major approaches for parallel performance prediction. The first
approach is to build an analytical model for the application under
consideration [32], [33], [34], [35]. The main advantage of this approach is its
low cost. However, constructing analytical models of parallel applications
requires a well understanding of the algorithms and their implementations,
and also the models are constructed manually by domain experts, which limit
their accessibility to normal users. Moreover, a model built for an application
cannot be applied to another one.
 The second approach is to develop a system simulator to execute
applications to predict their performance. Simulation techniques can capture

Experimental and Theoretical Speedup Prediction of MPI-Based Applications

ComSIS Vol. 10, No. 3, June 2013 1263

detailed performance behavior at all levels, and can be used automatically to
model a given program. However, an accurate system simulator is extremely
expensive. Existing simulators such as BigSim and MPI-SIM [36], [37] are
inadequate to simulate the very large problems.
 Trace-driven simulation [38] and macro-level simulation [39] have better
performance than detailed system simulators, since they only need to
simulate the communication operations.
 Yang et al. [40] proposed a cross-platform prediction method based on
relative performance between target platforms without program modeling,
code analysis, or architecture simulation.
Lee et al. [41] presented piecewise polynomial regression models and artificial
neural networks that predict application performance as a function of its input
parameters.
 Barnes et al. [42] employ the regression based approaches to predict
parallel program scalability and their method shows good accuracy for some
applications. However, the number of processors used for training is still very
large for better accuracy and their method only supports load-balanced
workload.
 Statistical techniques have been used widely for studying program
behaviors from large-scale data [43].
 In this paper we present an experimental method that can be used in
speedup prediction for a parallel application without using neither high cost
resources nor building an analytical models or simulators.
The experimental results were compared with the predicted theoretical
results. We found that experimental results are very close to the theoretical
ones

7. Conclusion

In this paper we have studied the conflicting parameters that affect the parallel
programs execution experimentally and theoretically, especially for MPI-based
applications, showing some recommendations to be followed to achieve a
reasonable performance.
 The problem nature is one of the most important factors that affect the
parallel program speedup. If the problem can be divided into independent
subparts and no communication is required, except to split up the problem
and combine the final results, then the resultant parallel program will exhibit a
linear speedup. If the same instruction set are applied to all data and
processes communication is synchronous, speedup will be directly
proportional to the computation -communication ratio. If there are different
instruction sets to be applied to all data to solve a specific problem and the
inter-process communication is asynchronous, the speedup of the resultant
parallel application will be negatively affected with extra communication
overhead.

Alaa Elnashar and Sultan Aljahdali

1264 ComSIS Vol. 10, No. 3, June 2013

 We also proposed an experimental method that aids in speedup prediction.
It was applied to predict the speedup of MPI applications that solve wave
equation and prime numbers generator problems. The predicted speedup was
as the same as experimental speedup achieved when using multiple physical
processors for both applications.
 Theoretical speedup prediction requires extra analysis such as algorithm
complexity. The effect of both running processes number and the number of
cores on the algorithm complexity have been studied for three parallel sorting
algorithms.
 The theoretical predicted speedup has been compared with the
experimental speedup for the three algorithms. Our theoretical prediction of
speedup was very close to the experimental results; this gives a good
indication about the scalability of the proposed method.

References

1. Grama, A., Gupta, A., Kumar, V.: Isoefficiency Function: A Scalability Metric

for Parallel Algorithms and Architectures. IEEE Parallel and Distributed
Technology, Special Issue on Parallel and Distributed Systems: From Theory
to Practice, Vol. 1, No. 3, 12-21. (1993)

2. Amdahl, G. M.: Validity of the Single Processor Approach to achieving Large
Scale Computing Capabilities. In Proceedings of the AFIPS Spring Joint
Computer Conference. 483–485. (1967)

3. Sun, X., Chen, Y.: Reevaluating Amdahl's law in the multicore era. Journal of
Parallel Distributed Computers, 183-188. (2010)

4. Hill, M. D., Marty, M. R.: Amdahl’s Law in the Multicore Era. IEEE Computer
Society, Vol. 41, No. 7. 33-38. (2008)

5. Gustafson, J.: Reevaluating Amdahl's Law. Communications of the ACM, Vol.
31, No. 5. 532-533. (1988)

6. Karp, A. H., Flatt, H.: Measuring Parallel Processor Performance.
Communication of the ACM Vol. 33 No. 5. (1990)

7. Donghwan, J. G., Chris, L., Michael, T.: Kismet: Parallel Speedup Estimates
for Serial Programs. Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). (2011)

8. Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J.
M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H.,
Daniel, D. J., Graham, R. L., Woodall, T. S.: Open MPI: Goals, Concept, and
Design of a Next Generation MPI Implementation. In Proceedings, 11th
European PVM/MPI Users’ Group Meeting, Budapest, Hungary. 97–104.
(2004)

9. Sunderam, V. S.: PVM: A framework for parallel distributed computing.
Concurrency: Practice & Experience, Vol. 2, No. 4. 315–339, (1990)

10. Aoyama, Y., Nakano, J.: Practical MPI Programming. International Technical
Support Organization, IBM Coorporation SG24-5380-00. (1999)

11. Buntinas, D., Mercier, G., Gropp, W.: Implementation and Evaluation of
Shared-Memory Communication and Synchronization Operations in MPICH2
using the Nemesis Communication Subsystem. Parallel Computing, Vol. 33,
No. 9. 634-644. (2007)

http://en.wikipedia.org/wiki/Communications_of_the_ACM

Experimental and Theoretical Speedup Prediction of MPI-Based Applications

ComSIS Vol. 10, No. 3, June 2013 1265

12. Gropp, W.: MPICH2: A New Start for MPI Implementations. In Recent
Advances in PVM and MPI: 9th European PVM/MPI Users’ Group Meeting,
Linz, Austria, (2002)

13. The MPI Forum. The MPI-2: Extensions to the Message Passing Interface,
Available at http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.
(1997)

14. Karwande, A., Yuan, X., Lowenthal, D. K.: CC-MPI: A Compiled
Communication Capable MPI Prototype for Ethernet Switched Clusters.
Journal of Parallel and Distributed Computing, Vol. 65, No. 10, 1123-1133.
(2005)

15. Gorlatch, S.: Send-Receive Considered Harmful: Myths and Realities of
Message Passing. ACM Transactions on Programming Languages and
Systems, Vol. 26, No. 1, 47–56.(2004)

16. Liu, J., Vishnu, A., Panda, D. K.: Building Multirail InfiniBand Clusters: MPI-
Level Design and Performance Evaluation. In Proceedings of the ACM/IEEE
SC2004 Conference, 33 – 33. (2004)

17. Brightwell, R., Underwood, K. D.: Evaluation of an Eager Protocol
Optimization for MPI. 10th European PVM/MPI Users' Group Meeting,
Venice, Italy, 327-334. (2003)

18. Squyres, J. M.: Processes, Processors, and MPI. Cluster World, MPI
Mechanic Vol. 1 No. 2. 8-11. (2004)

19. El-Nashar, A.: To Parallelize or not to Parallelize, Speedup Issue.
International Journal of Distributed and Parallel Systems, IJDPS, Vol. 2, No.
(2011).

20. Mohammad A., Saleh, O., Abdeen, R. A.: Occurrences Algorithm for String
Searching Based on Brute-force Algorithm. Journal of Computer Science,
Vol. 2, No 1, 82-85. (2006)

21. Atkin, O. L., Bernstein, D. J.: Prime sieves using binary quadratic forms.
Mathematics of Computation Vol. 73. 023–1030. (2004)

22. Aziz, I., Haron, N., Tanjung, L. , Dagang, W. W.: Parallelization of Prime
Number Generation Using Message Passing Interface. WSEAS Transactions
on Computers, Vol. 7, No. 4. 291-303. (2008)

23. Mallón, D. A., Taboada, G. L. , Teijeiro, C., Touriño, J., Fraguela, B. B.,
Gómez, A., Doallo, R. , Mouriño, J. C.: Performance Evaluation of MPI, UPC
and OpenMP on Multicore Architectures. EuroPVM/MPI LNCS 5759, Springer
Berlin Heidelberg. 174-184. (2009)

24. Thakur, R., Gropp, W., Toonen, B.: Optimizing the synchronization operations
in MPI one-sided communication. International Journal of High-Performance
Computing Applications, Vol 19 No. 2. 119–128. (2005)

25. Gropp, W., Thakur, R.: Revealing the Performance of MPI RMA
Implementations. Proceedings of the 14th European PVM/MPI Users' Group
Meeting (Euro PVM/MPI 2007), 272-280. (2007)

26. Rashid, L., Hassanein, W., Hammad, M.: Analyzing and enhancing the
parallel sort operation on multithreaded architectures. Journal of
Supercomputing, Vol. 53, No. 2. 293-312. (2010)

27. Astrachan, O.,: Bubble sort: An Archaeological Algorithmic Analysis. ACM
SIGCSE Bulletin, Vol. 35 No. 1. (2003)

28. Tsigas, P., Zhang, Yi.: A Simple, Fast Parallel Implementation of
Quicksort and its Performance Evaluation on Sun Enterprise 10000.
Proceedings of the 11th EUROMICRO Conference on Parallel Distributed
and Network-Based Processing (PDP). 372 – 381. (2003)

http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
http://www.springerlink.com/content/?Author=Guillermo+L.+Taboada
http://www.springerlink.com/content/?Author=Carlos+Teijeiro
http://www.springerlink.com/content/?Author=Juan+Touri%c3%b1o
http://www.springerlink.com/content/?Author=Basilio+B.+Fraguela
http://www.springerlink.com/content/?Author=Andr%c3%a9s+G%c3%b3mez
http://www.springerlink.com/content/?Author=Andr%c3%a9s+G%c3%b3mez
http://www.springerlink.com/content/?Author=Ram%c3%b3n+Doallo
http://www.springerlink.com/content/?Author=J.+Carlos+Mouri%c3%b1o
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Rashid:Layali_K=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hassanein:Wessam.html

Alaa Elnashar and Sultan Aljahdali

1266 ComSIS Vol. 10, No. 3, June 2013

29. Lyer, B. R., Dias, D.M.: System Issues in Parallel Sorting for Database
Systems. Proceedings of the International Conference on Data Engineering,
246-255. (2003)

30. Biggar, P., Gregg, D.: Sorting in the Presence of Branch Prediction and
Caches. Technical Report TCD-CS-2005-57 Department of Computer
Science, University of Dublin, Trinity College, Dublin 2, Ireland. (2005)

31. Chan, D. A. , Lusk, R., Gropp, W. :Jumpshot-4 Users Guide. Mathematics
and Computer Science Division, Argonne National Laboratory. (2007)

32. Barker, K. J., Pakin S., and Kerbyson D. J.: A performance model of the krak
hydrodynamics application. ICPP’06, 245–254. (2006)

33. Zhai, J., Chen, W., and Zheng, W.: PHANTOM: Predicting Performance of
Parallel Applications on Large-Scale Parallel Machines Using a Single Node.
PPoPP’10. Bangalore, India. ACM 978-1-60558-708-0/10/1. 305-314 (2010)

34. Kerbyson, D. J., Alme, H. J., Hoisie, A., Petrini, F., Wasserman, H. J., and
Gittings, M.: Predictive performance and scalability modeling of a large-scale
application. SC’01. 37– 48. (2001)

35. Mathias, M., Kerbyson, D., and Hoisie, A.: A performance model of non-
deterministic particle transport on large-scale systems. Workshop on
Performance Modeling and Analysis. ICCS (2003)

36. Wilmarth, T., Zheng, G. J. et al.: Performance prediction using simulation of
large-scale interconnection networks in POSE. Proc. 19th Workshop on
Parallel and Distributed Simulation. 109–118. (2005)

37. Zheng, G., Kakulapati, G., and Kale, L. V.: Bigsim: A parallel simulator for
performance prediction of extremely large parallel machines. IPDPS’04. 78–
87. (2004)

38. Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., and
Purkayastha, A.: A framework for application performance modeling and
prediction. SC’02, 1–17. (2002)

39. Susukita, R., Ando, H., et al.: Performance prediction of large-scale parallell
system and application using macro-level simulation. SC’08. 1–9. (2008)

40. Yang, L. T., Ma, X., and Mueller, F.: Cross-platform performance prediction of
parallel applications using partial execution. SC’05, 40. (2005)

41. Lee, B. C., Brooks, D. M., and de Supinski, B. R. et al.: Methods of inference
and learning for performance modeling of parallel applications. PPoPP’07,
249–258. (2007)

42. Barnes, B. J., Rountree, B., Lowenthal, D. K., Reeves, J., de Supinski, B.,
and Schulz, M.: A regression-based approach to scalability prediction.
ICS’08. 368–377. (2008)

43. Sherwood, T., Perelman, E., Hamerly, G., and Calder, B.: Automatically
characterizing large scale program behavior. ASPLOS. 45–57.(2002)

Alaa I. Elnashar received his B.Sc., M.Sc. and Ph.D. Minia University, Egypt,
in 1988, 1994 and 2005. He is a faculty in Computer Science Dept., Minia
University, Egypt. Dr. Elnashar was a postdoctoral fellow at Kanazawa
University, Japan. His research interests are in the area of Software
Engineering, Software Testing, and parallel programming. At present, Dr.
Elnashar is an Assistant professor, Department of Computer Science, College
 of Computers and Information Technology, Taif University, Saudi Arabia.

Experimental and Theoretical Speedup Prediction of MPI-Based Applications

ComSIS Vol. 10, No. 3, June 2013 1267

Sultan Aljahdali, Ph.D. secured B.S. from Winona State University,
Minnesota in 1992, M.S. with honor from Minnesota State University,
Minnesota, 1996, and Ph.D. Information Technology from George Mason
University, U.S.A, 2003. Currently Dr. Aljahdali is the Dean of the college of
computers and information systems at Taif University. His research interest

includes software testing, developing software reliability models, computer
 security, and medical imaging.

Received: May 29, 2012; Accepted: December 06, 2012

