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Abstract. Retargeting a compiler’s back end to a new architecture
is a time-consuming process. This becomes an evident problem in
the area of programmable graphics hardware (graphics processing
units, GPUs) or embedded processors, where architectural changes
are faster than elsewhere. We propose the object-oriented rewrite sys-
tem OORS to overcome this problem. Using the OORS language, a
compiler developer can express the code generation and optimiza-
tion phase in terms of cost-annotated rewrite rules supporting complex
non-linear matching and replacing patterns. Retargetability is achieved
by organizing rules into profiles, one for each supported target archi-
tecture. Featuring a rule and profile inheritance mechanism, OORS
makes the reuse of existing specifications possible. This is an improve-
ment regarding traditional approaches. Altogether OORS increases
the maintainability of the compiler’s back end and thus both decreases
the complexity and reduces the effort of the retargeting process. To
show the potential of this approach, we have implemented a code gen-
eration and a code optimization pattern matcher supporting different
target architectures using the OORS language and introduced them in
a compiler of a programming language for CPUs and GPUs.

1. Introduction

As the number of different hardware architectures is steadily growing, easily
retargetable compilers are most valuable. Amongst others, this applies to
graphics processing units (GPUs). For the last few years the performance
of GPUs has been increasing at a much faster rate than that of general-
purpose processors and now exceeds the peak performance of high-end
CPUs. The amount of transistors on graphics chips has been growing by
a factor of 32 every two years [3]; 16 times faster than the CPU transistor
count growth that Moore’s Law predicts. Thus, GPUs have become more
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and more interesting for general-purpose programming [19]. Several high-
level languages, such as Brook for GPUs [4] or CGIS [17, 14], have emerged
to exploit the vast computational power that GPUs have to offer. Easily re-
targetable compilers for these languages are necessary, because new GPU
architectures are released at a fast rate (e. g., NVIDIA’s NV40 in 2004, G70
in 2005, and G80 in 2006). Naturally, the same applies to compilers support-
ing embedded systems, where a wide variety of different architectures with
common heritage exists (e. g., Freescale’s MPC555, MPC565, MPC755 and
derivatives).

To decrease the complexity of the retargeting process and to keep the
compiler maintainable in the long run, we propose the object-oriented rewrite
system OORS. The idea of OORS originated from the fact that new archi-
tectures share many features with their predecessors, but offer an extended
instruction set (apart from other new features). If a new instruction set archi-
tecture is released with minor differences to an already supported one, only
small changes to an existing back end are required. So, the key feature of
our approach is to be found in the reusability of existing specifications. We
realized this by introducing object-oriented language features in the yacc-
like OORS language. Easily making the reuse of existing specifications pos-
sible, the proposed language enables a compiler developer to implement
an OORS code generator or code optimizer which is less complex than a
hand-written one. Consequently, the OORS implementation is much easier
to read and to maintain in the long run. Our experiences in introducing new
GPU architectures (NV40/G80) in the CGIS compiler supports this claim.

Basically, an OORS specification describes a pattern matcher that trans-
lates attributed input strings into attributed output strings. Given a set of
rewrite rules, the pattern matcher processes the input string as follows. First
the pattern matcher tries to match the possibly non-contiguous pattern of
each rewrite rule against the input string. If multiple rules are applicable, the
pattern matcher computes the non-constant costs of each rule to determine
the rule to apply. Finally, the selected rule emits an attributed string that is
appended to the output string. After consuming the whole input string, the
pattern matcher terminates.

The aim of this paper is to introduce the OORS language, its syntax and
semantics and to demonstrate its applicability in real word applications. Ad-
ditionally, this paper briefly introduces the pattern matcher generator OORG
that compiles an OORS specification into a C++ dynamically retargetable
pattern matcher. We show its applicability by means of a real-life compiler
for GPUs and SIMD CPUs.

The remainder of this paper (an extended version of [15]) is structured
as follows: Section 2 discusses related work. The object-oriented rewrite
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system OORS is introduced in Section 3. This section covers both the OORS
language and the matching process. Section 4 introduces the pattern match-
er generator OORG and demonstrates the integration of an OORS pattern
matcher in a compiler. Section 5 concludes this paper and discusses future
work. Finally, the appendix found at the end of this paper presents some
compiler-unrelated applications of OORS.

2. Related Work

Numerous other approaches have been suggested for code generator gen-
erators. Below we discuss related work.

Emmelmann et al. [9] propose BEG, a generator for efficient back ends.
Using the description language BEGL, the developer implements tree-pat-
tern matchers for code generation in terms of cost-annotated rewrite rules.
In contrast to the OORS language, BEGL offers no rule-inheritance mecha-
nism. The reuse of existing specifications is thus not possible. Additionally,
a BEG pattern matcher is dedicated to a single target architecture only. The
major difference is to be found in the processed input data. BEG code gener-
ators process trees, whereas OORS pattern matchers operate on instruction
sequences.

In [13], Fraser et al. introduce the code generator BURG for the bottom-
up rewrite system BURS which is similar to BEG. BURG is able to gen-
erate tree-pattern matchers for fast optimal instruction selection. A BURG-
generated tree-parser is able to find an optimal parse of an input tree in
linear time. As in BEGL, the BURG grammar does not feature mechanisms
that make the reuse of existing specification possible. Additionally, BURS
code generators are only able to generate code for a single architecture.
BURG-generated code selectors are used in the ANSI C compiler lcc [12].

Ferdinand et al. [11] solve the code selection problem with determinis-
tic finite tree automata that are generated automatically from regular tree
grammars. In contrast to BURG, the left-hand and the right-hand side of
rules are not limited to leafs or nodes with one or two child nodes. In con-
trast to OORS, the costs of a rule must be constant and thus cannot depend
on the matched instructions. Similar to BURG, the developer cannot inherit
rewrite rules from each other to easily copy reusable properties. As in the
other approaches, it is not possible to target multiple architectures.

In [1], Alt et al. propose the CoSy model, which provides a framework
for flexible combination and embedding of compiler phases to ease the
construction of parallel and optimizing compilers. Using three different lan-
guages, the compiler developer can implement the different phases of a
compiler on a high level of abstraction. Additionally, the developer is able to
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specify the control flow and the interactions of the compiler phases. Existing
implementations of compiler phases can be simply reused. However, if any
modifications to the implementation are required, the framework requires
copy-and-pasting of that implementation before the developer can change
the code. Just as in the approaches discussed above, the code generator is
based on tree-pattern matching. A comparison with OORS is hardly possi-
ble, because OORS is designed to only implement the code generation and
code optimization phase.

Dias and Ramsey [8] propose a recognizer for machine-independent
code selection and code optimization. A recognizer is generated automati-
cally from a declarative machine description that describes properties of the
target platform. The generated recognizer requires the compiler to represent
intermediate code in the form of machine-independent register-transfer lists
(RTLs) [7]. By means of a declarative machine description, the recognizer
tries to generate better RTLs. The recognizer will continue until no more
optimizations can be applied. The recognizer omits a previously generated
RTL, if the new RTL cannot be implemented on the target platform accord-
ing to the machine description. The authors have successfully generated
and tested a recognizer for the x86 back end in the Quick C-- compiler [5].
This approach differs greatly from OORS pattern matchers, as the developer
does not have to explicitly implement the code optimizer. The effort is shifted
to implementing a complete machine description.

Farfeleder et. al [10] describe a similar approach. By means of a new
architecture description language (ADL), the authors are able to derive an
optimized tree-pattern matching instruction generator, a register allocator
and an instruction scheduler. To demonstrate the applicability of the new
ADL, the authors have implemented an ADL-generated compiler for the xD-
SPcore digital signal processor. Again, the effort is shifted to implementing
a complete machine description.

In [16], Lerner et al. introduce Rhodium, which is a new language for
compiler optimizations, whose soundness can be proven automatically. The
developer specifies optimizations in terms of transformation rules that are
automatically proven to be semantics-preserving. Rhodium optimizations
are not bound to a specific target architecture, because they process input
programs transformed into a C-like intermediate language. In this way, the
optimizations are automatically retargetable. However, the main goal of their
approach is the automated soundness proofs of the compiler optimizations.
Rhodium optimizations do not directly compete with OORS optimizations,
because OORS operates on the instruction level. Apart from that, the ap-
proach is out of scope for this paper, because OORS was not designed for
providing automated soundness proofs.
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The following approaches provide methods to implement transformations
on the source code level and are thus not directly comparable but nonethe-
less related to OORS.

The Turing eXtender Language TXL [6] is a powerful, special-purpose
programming language originally designed for rapidly prototyping of lan-
guage dialects. It is, however, a quite general source code transformation
system. A transformational grammar is interpreted in functional style, con-
suming a source program and therewhile constructing a transformed source
program (possibly in another language). This usage in source-to-source
transformations and the basic consumption model form the fundamental dif-
ferences to OORS. TXL features grammar overrides, which offer an exten-
sion mechanism similar to OORS’ inheritances.

Larger program transformation frameworks such as the ASF+SDF Meta-
Environment [22, 23] or Stratego/XT [2] offer a more general set of capabil-
ities than OORS. OORS does not directly compete with these approaches,
instead opting for providing a smaller and more specific transformational de-
scription.

In [24], Warth and Piumarta propose OMeta, a new object-oriented lan-
guage for pattern matching. The main purpose of OMeta is to provide devel-
opers with a convenient way of implementing tokenizers, parsers, and tree
transformers, all of which can be extended using object-oriented mecha-
nisms. Apart from the object-oriented language aspects, OMeta also allows
processing of arbitrary data and not just streams of characters. The main
difference to OORS is that OMeta rules describe transformations of tree
patterns instead of list patterns.

OORS differs in many ways from the approaches presented above. One
difference concerns the way in which the subjects of pattern matching are
represented: OORS operates on sequences of instructions, not on trees.
This is because OORS is also employed in the code optimization phase. By
representing the subject of matching as an instruction sequence, schedul-
ing properties can be expressed alongside with other low-level optimizations
(see Section 3.3). Another important point is that OORS features object-
oriented language constructs that make the reuse of existing specifications
easily possible. Apart from CoSy [1] and Stratego/XT [2], none of the pre-
sented approaches was designed with reusability in mind.

3. Object-Oriented Rewrite System

In this section, we introduce the key concepts of the OORS language and
discuss the pattern matching process. For the sake of simplicity, we mainly

ComSIS Vol. 4, No. 2, December 2007 5



Gernot Gebhard and Philipp Lucas

concentrate on code generation. Section 3.3 discusses the changes to the
matching process required to realize code optimization.

3.1. Rules

As mentioned in Section 1, an OORS pattern matcher processes attributed
strings, which are sequences of instructions. We assume that each instruc-
tion is an instance of a class of the compiler’s internal representation (e. g.,
a binary instruction could be an instance of the BinaryInstruction class) with
a common base class (e. g., Instruction). The available attributes of each in-
struction object (operands, modifiers, etc.) are then defined by the member
functions of the corresponding class. So to speak, OORS rewrite rules de-
termine transformations on sequences of instruction objects. The behavior
of each rule is determined by the following four aspects:

search pattern: The search pattern determines constraints on the structure
of the input that must be fulfilled before the pattern matcher may apply
the rule. A search pattern is a non-empty, ordered or unordered, possi-
bly discontinuous sequence over instruction classes (item patterns). By
using wildcard patterns, the developer can specify search pattern with
an arbitrary lookahead.

Each symbol of the search pattern may be guarded by a local side con-
dition, which is simply a boolean expression over the instructions and
their attributes. Using local side conditions, the developer is able to spec-
ify non-linear search patterns. For instance, a local side condition could
check whether an operand of the currently matched instruction and the
target of a previously matched instruction are of the same type (see Ex-
ample 3).

condition: The condition corresponds to the local side conditions intro-
duced above, but it can also check global properties. Syntactically, the
main difference to the local conditions is that the developer implements
a boolean function instead of a single boolean expression. An undefined
condition function is assumed to return true. Condition functions come
in handy when deriving rules from each other (see Section 3.2).

costs: The cost function associates a weight to each matched instance of
the search pattern. The computed costs need not be constant and may
depend on the matched instruction objects. If multiple rules match the
input sequence, the pattern matcher determines the rule to apply ac-
cording to the associated costs.

replace pattern: The replace pattern determines the generated instruction
sequence that the pattern matcher appends to the output sequence
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when applying the rule. Each element of the replace pattern corresponds
to a constructor call of the instruction class with appropriate arguments.
It is possible to access previously generated instructions when initializing
a new instruction object.

Simple Rules Example 1 demonstrates how to specify a simple code gen-
eration rule that compiles a binary instruction for which the target architec-
ture has a direct counterpart. The rule matches any binary instruction object.
Thus, there is no need to implement a rule for every single binary instruction.
This keeps the specification both readable and maintainable in the long run.

Example 1 (Rule that compiles any abstract binary instruction into its coun-
terpart). Matched instructions objects can be accessed via $$ and $i-op-
erators. The $i-operators enumerate both the matched and the generated
operations uniformly and in their static order: The BinOp of the search pat-
tern is $1 and the generated GPUBinOp is $2.

r u l e binary {

search: [ BinOp ]

cost: { re tu rn 1; }

rep lace : [ GPUBinOp ($1->opcode ,$1->tgt ,$1->op1 ,$1->op2) ]

}

Figure 1 illustrates the effect on the input and output instruction sequence
after applying the rule binary. Note that the rule matches any binary instruc-
tion and not only a substraction instruction as shown in the figure.

Generic rules like the one shown in Example 1 are not always sufficient:
Some instructions may require special rules. Example 2 shows how to com-
pile the exponentiation operator for recent GPU architectures.

Example 2 (Code generation rule for a special unary operator). Instruction
sets of recent GPU architectures do not feature an exponentiation operator.
Instead, their instruction set contains the EX2 instruction, which computes
powers of two. By using the identity ex = 2x/ ln(2) (because 2x = (eln(2))x),
we are able to compute ex on the GPU using the rule exp.

r u l e exp {

search: [ UnOp($$->opcode == OP_EXP ) ]

cost: { re tu rn 2; }

rep lace : [ GPUBinOp (OP_MUL , SymReg (TYPE_FLOAT ), $1->op ,
Const(TYPE_FLOAT , 1/ln (2))) ,

GPUUnOp (OP_EX2 , $1->tgt , $2->tgt) ]

}

In contrast to the absolute $i references, $$ always refers to the currently
processed instruction object, just like in yacc and related tools. Thus, the
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search pattern specifies a local condition on the UnOp-object. Note that in
the replacement pattern it is necessary to access both the matched instruc-
tion ($1) and the first generated instruction ($2). The target of $2, the new
temporary value, is used as an operand to the final exponentiation operation.

Fig. 1: Input and output instruction sequence before and after applying the rule
binary.

Complex Rules In some cases, the developer might want to match instruc-
tions objects that are not necessarily adjacent to each other in the input
instruction sequence. Example 3 demonstrates a typical case.

Example 3 (Complex code generation rule). GPU architectures feature a
combined sine-cosine instruction SCS [18]. From a single operand c, the in-
struction writes sin c and cos c into two register components. The following
rule combines sine and cosine instructions in the intermediate representa-
tion into a single SCS operation. The wildcard pattern (*-pattern) denotes that
the two instructions need not be adjacent to each other.1 The curly braces
in the search pattern indicate an unordered sequence: The instructions may
be matched in any order.

r u l e scs {

search: { UnOp($$-> opcode == OP_COS ),

*,

UnOp($$-> opcode == OP_SIN ) }

condit ion : { re tu rn $1->op == $3->op; }

cost: { re tu rn 1; }

rep lace : [ GPUUnOp (OP_SCS , SymReg ($1->tgt , $3->tgt),
$1->op) ]

}

1 In this case, $2 would refer not to a single instruction but to the length of the
matched sequence; see Example 8 for an application for this.
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Figure 2 illustrates the effect on the input and output instruction sequence
after applying the rule scs. The figure demonstrates that the pattern matcher
must not apply the rule in every case. For instance, if an instruction in-
between the matched instructions modifies the operand or the target of the
second matched instruction, the transformation will most likely modify the
semantics of the input program and is thus invalid in general. Note that ev-
ery rule with at least one wildcard pattern in its search pattern is subject
to this negative side-effect. Thus, a special, semantics-preserving check is
required.

Fig. 2: Input and output instruction sequence before and after applying the rule scs.

The OORS language enables the developer to implement such a seman-
tics-preserving check. The developer implements a global implicit condition,
which decides whether the rule in question may be applied. This implicit
condition is only checked for rules whose search pattern contains a wildcard
pattern. This function checks for data dependencies between the matched
instructions, which would prevent a reordering. For example, in rule scs, the
function has to check whether the instruction sequence matched by the wild-
card pattern writes the target or operand of the following instruction (write-
write or write-read dependency) or uses its target (read-write dependency).
Additionally, for architectures with guarded executions, it has to be checked
that no instruction matched in the wildcard pattern writes to a guard register.

Under certain circumstances, it might not be sufficient to generate the
same sequence of instructions all the time. Some instructions might have
to be translated into different instruction sequences depending on the type
of their operators or similar side conditions. For this reason, the OORS lan-
guage allows the developer to guard any sequence of instructions to gen-
erate via if-then-else statements. This enables the developer to integrate
all possible alternatives into a single replace pattern, which keeps the pat-
tern matcher specification readable. Example 4 shows the usage of guards
within replace patterns.
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Example 4 (Rule generating different instruction sequences for the same
instruction type). On GPU architectures, each register is a float vector com-
prising four components (called r g b a). In the source language, and thus
in the intermediate instructions, operations work on scalars or on vectors
with a length of at most 4; in general, the native arithmetic instructions also
support such vectorial operations. However, some instructions operate only
on scalar operands. Thus, special treatment is required if an operand of the
correlative abstract instruction is of vector type. To resolve this problem, a
sequence of the same scalar instructions has to be generated for each vec-
tor component. The rule sin generates code for the SIN-instruction, which
computes the sine of its operand. When generating the corresponding GPU
code, the rule has to make sure to select the correct vector components
(e. g., cmp(’r’) directs the instruction object to read from and write to the
r-component).2

r u l e sin {

search: [ UnOp($$->opcode == OP_SIN ) ]

cost: { re tu rn $1->tgt -> components ; }

rep lace : [ i f ($1-> useComponent(’r’)) [

GPUUnOp ($1->opcode , $1->tgt , $1->op , cmp (’r’))

],

i f ($1-> useComponent(’g’)) [

GPUUnOp ($1->opcode , $1->tgt , $1->op , cmp (’g’))

],

i f ($1-> useComponent(’b’)) [

GPUUnOp ($1->opcode , $1->tgt , $1->op , cmp (’b’))

],

i f ($1-> useComponent(’a’)) [

GPUUnOp ($1->opcode , $1->tgt , $1->op , cmp (’a’))

] ]

}

To further improve the maintainability and compositionality of the pattern
matcher specifications, the OORS language introduces the notion of inter-
mediate replace patterns. The developer specifies a replace pattern not on
the instruction set of the target architecture, but on the intermediate instruc-
tions. This kind of rule is specified by the keyword intermediate instead
of replace. These intermediate instructions are then subject to the match-
ing process as usual. The benefit of the intermediate instructions is to allow
compositional specifications. For example, a vectorial tan instruction has to
be implemented by sequences of native sin and cos instructions just like
in Example 4, followed by a division; a much more complicated way than
just specifying an intermediate level sin-cos-div sequence and letting the

2 The components need not be consecutive.
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matcher then generate the component-wise native instructions from these
intermediate instructions, as shown in Example 5.

Example 5 (Rule that compiles instructions by creating an intermediate ba-
sic block). Using the immediate keyword the developer expresses that a
matched sequence of instructions is to be treated as the sequence spec-
ified in the immediate pattern. In this fashion, the developer is able to im-
plement complex code generation or optimization steps on a higher level of
abstraction.

r u l e tan {

search: [ UnOp($$-> opcode == OP_TAN ) ]

cost: { re tu rn $1->tgt ->components ; }

in te rmed ia te: [ UnOp(OP_SIN , TmpVar ($1->op ->type), $1->op),
UnOp(OP_COS , TmpVar ($1->op ->type), $1->op),
BinOp (OP_DIV , $1->tgt , $2->tgt , $3->tgt) ]

}

3.2. Rule Sets

An OORS pattern matcher specification comprises rules, which are orga-
nized into profiles. A profile represents a set of rules dedicated to a specific
target architecture. During runtime, the host compiler (the compiler using
the generated code-generator) selects the corresponding profile to be used
for processing the input program(s). In this section, we first describe the
matching process with respect to a single profile. Afterwards, we discuss
the specifications mechanism concerning multiple profiles and their relation-
ships.

Matching For a given profile, the pattern matcher tries to match the input
instruction sequence against the search patterns until every input symbol
has been covered. In a greedy matching mode, the input is processed left-
to-right, where always the rule with the lowest costs is selected. In case of
a tie, the first specified rule is chosen. The pattern matcher employs back-
tracking in case the current match cannot be enlarged further while some
input instructions remain unmatched.

In contrast to the greedy matching, an optimal matching mode investi-
gates all possible matches to select the one with the globally optimal costs.
If costs are not negative, we do not need to exhaustively explore the search
space, but can prune the search space as soon as it can be determined that
the current, incomplete match cannot outpace a previously found match.

Independent of the used matching mode, the pattern matcher only gen-
erates the target instruction sequence after a complete match of the input
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stream has been found. In such a case, the pattern matcher sequentially ap-
plies the matched rules by first generating the instruction objects specified
in the replace patterns and then deleting the matched instruction objects.

Inheritance To keep an OORS pattern matcher specification readable and
thus maintainable in the long run, the OORS language comprises rule and
profile inheritance mechanisms. The developer can derive a new profile from
existing ones. The new profile inherits all rules, may add new rules and may
omit and modify inherited rules. Example 6 demonstrates the profile and rule
inheritance mechanism.

Example 6 (Profile and rule inheritance). The source language features a
dot-product operating on vector operands. The target architectures support
the dot-product for vectors of three and four components. The newer G80
architecture supports also the dot-product for vectors of two components,
whereas before it had to be realized using multiplication and addition. Thus,
the NV40 profile comprises two distinct rules to cover all kinds of operands.
p r o f i l e NV40 {

r u l e dp2 {

search: [ BinOp($$-> opcode == OP_DP) ]

condit ion : { re tu rn $1->tgt -> components == 2; }

cost: { re tu rn 2; }

rep lace : [ /* MUL , ADD */ ]

}

r u l e dp : extends dp2 {

condit ion : { re tu rn $1->tgt -> components > 2; }

cost: { re tu rn 1; }

rep lace : [ GPUBinOp (OP_DP , $1->tgt , $1->op1 , $1->op2 ) ]

}

}

p r o f i l e G80 : extends NV40 {

omit NV40 ::dp , NV40:: dp2;

r u l e dp : extends NV40::dp {

condit ion : { re tu rn $1->tgt -> components > 1; }

}

}

The G80 profile is specified as an extension of the NV40 profile. So, it inher-
its per default all NV40 rules. The G80 profile omits the two NV40 rules dp

and dp2 and specifies a new, general rule as a modification of the inherited
dp-rule.

However, when deriving rules from each other, the developer has to keep
certain constraints in mind. Example 7 demonstrates two common pitfalls
that might occur.
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Example 7 (Two common rule inheritance pitfalls). In this example it is as-
sumed that instances of the classes A and B may occur in any input instruc-
tion stream, whereas instances of the classes C and D may appear in the
generated instruction stream. Each class, except A, is assumed to imple-
ment the function check, which takes no arguments and returns a boolean
value.
Finally, it is assumed that the developer has implement the rule base as
follows:

r u l e base {

search: [ A, B ]

rep lace : [ C, D ]

}

The rule base matches the sequence AB and translates that sequence into
the target sequence CD. Apart from that, the rule is virtual, because the cost
function is not defined. Thus, the rule base is not used during runtime. In-
stead of redefining that rule, the developer specifies the following other rules:

– First, the user derives the rule first, which features a condition and cost
function. In contrast to the rule base, the rule first only accepts those
input sequences AB, where the function check of the matched object B
returns true:

r u l e first : extends base {

condit ion : { re tu rn $2->check (); }

cost: { re tu rn 2; }

}

As every instance of the class B implements the function check, it is valid
to derive the rule first from the rule base in this fashion.

– Furthermore, the user derives the rule second from the rule first and
replaces the inherited search pattern as follows:

r u l e second : extends first {

search: [ A ]

}

However, the rule specification is not valid, because the inherited condi-
tion function accesses a second matched object of the search pattern,
which only matches one object of the input stream. The developer must
override the rule’s condition function to make the rule specification valid.
This kind of error can be detected statically.

– Instead, the user modifies the rule second, such that the search pattern
now matches two instances of the class A:

r u l e second : extends first {

search: [ A, A ]

}
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On the first look, this rule definition appears to be valid, as the rule’s con-
dition is now able to access the second matched object. However, this
rule specification is also invalid, because the class A does not implement
the function check. This kind of error can also be checked statically by
the type checking during the compilation of the generated code. Again,
the developer must reimplement the rule’s condition to make the specifi-
cation valid.

– Finally, the user defines the rules third and fourth. The rule third is
derived from the rule first, and modifies the inherited replace pattern,
such that the generated instance of the class C is passed to the construc-
tor of the class D. The rule fourth inherits the properties from the rule
third and overrides the search pattern, such that it accepts the object
sequence ABB:

r u l e third : extends first {

rep lace : [ C, D($3) ]

}

r u l e fourth : extends third {

search: [ A, B, B ]

}

Because the rule third derives from a valid rule and its replace pattern is
also valid, there is nothing wrong with that rule. The interesting question
is now, which object instance is passed to the constructor of the class
D, when the pattern matcher applies the rule fourth. According to the
semantics of the $-operator, one would expect that the second instance
of the class B, is passed to the constructor. If so, the new search pattern
would implicitly modify the inherited replace pattern, which contradicts
the common notion of inheritance3. However, as it is known that $3 has
been specified in a different context, it is statically possible to associate
the pattern access with the correct object instance. So, if the developer
overrides the search pattern, the inherited replace pattern needs not be
reimplemented, if the replace pattern contains inter-pattern accesses.

The rule inheritance mechanism is very powerful, enabling the developer to
specify the behavior of an OORS pattern matcher on a very high level of
abstraction. The developer no longer has to cope with the actual matching.
Instead, the user simply has to identify the instruction sequence patterns the
pattern matcher should replace.

3 This means that an inherited property remains unmodified unless it has been ex-
plicitly overridden.
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3.3. Optimization

The pattern matching approach can also be used for code optimization. In
contrast to the generational mode discussed in Section 3.2, both matching
and replacement are performed on a single sequence. The pattern matcher
searches for instances of the search patterns and literally replaces matched
instructions with the generated instructions. This process is repeated until no
more rules can be applied, that is, until a fixpoint has been reached. Thus,
there is no need for backtracking.

In this way, it is possible to represent low-level code optimizations in
OORS, such as instruction rescheduling (see Example 8, Figure 3) or in-
struction merging, such as MUL and ADD into MAD (see Example 9).

Example 8 (TriCore instruction rescheduling optimization). On many recent
architectures, the instruction order has a major influence on the execution
time. For instance, the TriCore architecture [21] is only able to dispatch two
instructions at once, if the first instruction will be executed in the arithmetic-
logical unit (ALU) and the second instruction will be issued to the load-store
unit (LSU). So, the following rule tries to pull a distant memory instruction
behind an arithmetic-logical instruction. Although the implicit condition will
verify whether possible side effects occur, the developer has to check man-
ually whether it is safe to push the memory instruction in front of the sec-
ond matched instruction (see the condition line; the absence of conflicts
with the wildcard is guaranteed by the implicit condition). The cost func-
tion favors the match with the greatest distance between the ALU- and the
LSU-instruction (for a wildcard pattern, the $-operator denotes the number
of instructions the pattern has matched). Figure 3 shows this graphically.
r u l e reschedule {

search: [ Op($$->isIssuedTo (ALU )),
Op(!$$-> isIssuedTo (LSU )),
*,

Op($$->isIssuedTo (LSU )) ]

condit ion : { re tu rn !$2-> conflictsWith($4); }

cost: { re tu rn -$3; }

rep lace : [ $1, $4, $2 ]

}

Example 9 (Instruction merging). Example 8 showed how to reorder instruc-
tions, but the optimization step of OORS can also create and delete instruc-
tions. If a target processor supports a multiply-accumulate operation com-
puting a · b + c in a single step4, a multiplication and an addition with appro-

4 If the operation is fused (rounds only after the final addition, not after the inter-
mediate multiplication), a transformation of a multiplication-addition sequence into
this operation may change the precision of the result.
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Fig. 3: Valid and invalid match of the reschedule rule. The first match (dark-gray) is
invalid, because there is a definition-use dependency between mov.d d2,a3 and ld

a3,[a2]0 (the first instruction reads from and the second instruction writes to register
a3). The rule’s condition prevents this match from being accepted.

priate targets be combined into a new, ternary operation. Local conditions
on the matched BinOp instructions ensure that the target of the multiplication
($1) is present as exactly one operand of the addition ($3).

r u l e merge_mad {

search: [ BinOp ($$->opcode == OP_MUL ),

*,

BinOp ($$->opcode == OP_ADD &&

($1->tgt == $$->op1 ||

$1->tgt == $$->op2 ) &&

$1->op1 != $1->op2) ]

condit ion : { /* $1->tgt used only in $3 */ }

cost: { re tu rn -1; }

rep lace : [ TerOp (OP_MAD , $3->tgt , $1->op1 , $1->op2 ,
($1->tgt == $3->op1 )?$3->op2 :$3->op1) ]

}

Because the replace pattern does not copy the matched instructions (by
including them via the $-references), the matched instructions are deleted
from the instruction stream. The cost function returns −1, because the static
instruction count will decrease by 1 after applying the rule merge mad.

4. Practice

In Section 4.1, we introduce the pattern matcher generator OORG and show
how to integrate OORG-generated pattern matchers into existing applica-
tions. Furthermore, we discuss requirements on the integration process in
Section 4.2. Afterwards, we present experimental results with OORS code
generation and code optimization pattern matchers being employed in the
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CGIS compiler in Section 4.3. Section 4.4 briefly introduces the debugging
capabilities of OORG-generated pattern matchers.

4.1. Compiler Integration

The integration of OORS pattern matchers works in much the same way
as for tools such as yacc or lex (see Figure 4). From the pattern matching
specification, OORG generates a C++-file implementing the matcher. This
file has to be compiled and linked with the main compiler. The compiler se-
lects at runtime the profile to be used in a particular compilation and calls the
generated matcher for each basic block, passing the sequence of intermedi-
ate instructions and receiving the sequence of target instructions. To easily
cater for minor variations of the desired rule set, the application program can
switch on and off certain rules. For example, different sets of optimizations
can be selected in this way.

The CGIS compiler [17, 14] can compile a common input program for
GPUs and for SIMD CPUs, using a common intermediate representation.
OORG-generated matchers are employed in three phases; the actual match-
ers used in a compilation are selected at runtime depending on the actual
target. An early optimizer performs various transformations on intermediate
code, which are needed for implementation on SIMD CPUs. A generator
transforms the sequence of of intermediate instructions, which are common
for GPUs and SIMD CPUs, into a target-specific instruction sequence. To
this end, there are three hierarchies of profiles: For various generations of
GPUs, SSE, and AltiVec. In a later phase, the GPU code is transformed by
an OORG-generated peephole optimizer.

Fig. 4: Integration of OORS into an existing application.

4.2. Requirements on the Integration

To integrate an OORG-generated pattern matcher into a compiler, a certain
infrastructure needs to be present. The representation of the intermediate

ComSIS Vol. 4, No. 2, December 2007 17



Gernot Gebhard and Philipp Lucas

code as a sequence of virtual instructions per basic block, where each in-
struction is an instance of some class, is the basic requirement for the tool’s
applicability. Other work has to be done, however, to achieve a complete
integration.

Currently, our pattern matcher generator OORG only supports C++. This
inescapably means that at least those parts of the compiler must be im-
plemented in C++, where OORS pattern matchers should come into play.
Furthermore, the current implementation uses the standard template library
STL [20] for internal representation. Thus, the compiler likewise has to use
the STL to represent sequences of instructions. However, adopting OORG
to a different object-oriented language, such as Java or C#, or to using dif-
ferent types of data structures for internal representation does not pose an
insuperable problem.

When planning to integrate OORS into an existing compiler, the devel-
oper inevitably has to face these restrictions. When it comes to implement-
ing rules for code generation or code optimization, the developer has to take
other problems into account, as discussed in the following.

One requirement is that of accurate liveness information at the instruc-
tions. The liveness is explicitly needed by certain transformations, e. g., the
elimination of the intermediate multiplicative result by the rule merge mad in
Example 9 is valid only if it is not live after the addition instruction. In the
same rule, it is guaranteed that the liveness of the intermediate result spans
until the addition instruction5, because this is verified by the reordering con-
straint across a *-pattern checked by the implicit condition (see Section 3.1).
That implicit condition itself has to be written by the designer of the rule set.
However, this dependency analysis is quite simple given the instruction’s
representation.

In our examples, the cost function was rather straightforward, because
there were no conflicting optimization cases: Although a particular subse-
quence of instructions could be matched in a multitude of ways, there al-
ways was one match which could be statically and locally determined to be
preferable. Thus, the cost functions in the rules needed only to make sure
that the preferable match is chosen to achieve the optimal result.

In general, however, the situation is more complex: Different optimiza-
tions might preclude one another. For example, consider the combined Ex-
amples 8 and 9. In an architecture which can issue the simple arithmetical
operations of multiplication and addition simultaneously to the memory in-
structions, but cannot do so for the more complicated accumulation instruc-
tion, the two optimization goals conflict, and it is not immediately obvious
how the conflict can be resolved locally.

5 We assume that it is live at all.
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In these kinds of situation, the compiler writer has to use heuristics to
statically approach a predicted, dynamic result, just like he would have to
do in other code optimization methods. However, OORS can still aid the
programmer by its backtracking or global search, which can achieve a guar-
anteed static optimum.

4.3. Experimental Results

This section demonstrates the OORG-generated code generation and code
optimization pattern matcher that are employed in the CGIS compiler. We
have compiled eight examples for the NV40 and the G80 architecture. The
NV40 code generator pattern matcher comprises 42 rules, whereas the G80
code generator pattern matcher contains 48 rules. The G80 code generation
profile inherits most NV40 rules, but replaces some NV40 rules with more
specialized ones. The NV40 and the G80 profile of the code optimization
pattern matcher comprise 12 rules, which realize simple optimizations, such
as dead code elimination, constant folding, and constant propagation. Both
optimization profiles use the same rule set.

The example applications comprise image filters (demosaic, laplace and
skeleton), simulations (game of life and wave propagation), a mathematical
algorithm (mandelbrot), a raycaster and an encryption algorithm (RC5). We
have compiled these examples on a Pentium 4 2.6GHz with 512MB RAM
running under Linux (Ubuntu 6.06). To determine the values shown in Table 1
and Table 2, we have compiled the test examples seven times and omitted
the worst and the best run.

Table 1 shows the time required to compile and optimize the exam-
ples using the NV40 profile. On average, the NV40 code generation pattern
matcher compiles an abstract instruction within 0.23ms. The code optimiza-
tion pattern matcher is slightly slower and optimizes an instruction within
0.35ms.

Table 2 shows the time to compile and optimize the examples for the G80
architecture. The G80 code generation pattern matcher is slightly slower
than the NV40 code generation pattern matcher, which is expected, because
the G80 profile comprises more rules than the NV40 profile. On average, it
takes about 0.25ms to compile an abstract instruction. Unsurprisingly, the
G80 code optimization pattern matcher is just as fast as the NV40 code
optimization pattern matcher.

For both profiles, the CGIS compiler spends approximately 10% of the
total compile time within the code generation and the code optimization pat-
tern matcher. So, the influence of OORG-generated code generation and
code optimization pattern matchers of the overall runtime is negligible.
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Table 1: Time to compile and optimize examples for the NV40 architecture. RC5
could not be compiled, because the NV40 architecture does not support integer arith-
metic.

Test Abstract Instr. Gen. Instr. Gen. Time (ms) Opt. Instr. Opt. Time (ms)
demosaic 113 88 17.8 83 4.0
laplace 93 70 10.4 66 5.4

life 85 76 7.2 74 13.2
mandelbrot 145 105 18.8 92 14.8

raycaster 673 471 100.6 447 319.6
RC5 – – – – –

skeleton 760 456 313.6 456 67.0
wave 346 255 56.4 243 77.2

Average 316.4 217.3 75.0 208.7 75.2

However, there is room available for performance improvements. Cur-
rently, OORG-generated pattern matchers match the rules one after another,
which is somewhat inefficient. A great deal of time could be saved, if the gen-
erated pattern matchers would match the used rules in parallel. Additionally,
other minor improvements to the OORS library could further decrease the
runtime of OORG-generated pattern matchers.

Table 2: Time to compile and optimize examples for the G80 architecture.

Test Abstract Instr. Gen. Instr. Gen. Time (ms) Opt. Instr. Opt. Time (ms)
demosaic 113 88 17.8 83 6.0
laplace 93 70 13.6 66 4.0

life 85 76 9.0 74 13.2
mandelbrot 145 105 18.5 92 15.8

raycaster 673 471 114.6 447 172.8
RC5 136 113 18.2 111 59.0

skeleton 760 456 339.2 456 232.0
wave 346 255 64.2 243 71.6

Average 293.9 204.3 74.4 196.5 71.8

Retargeting the CGIS compiler to the NV40 and G80 compiler was not
much of an effort in terms of lines of OORS code (locs). The basis of the
OORS code generation pattern matcher forms an NV30 profile, which com-
prises about 770 locs. The NV40 profile inherits from the NV30 profile adding
about 200 locs to the pattern matcher specification. Adding support for the
G80 GPU architecture required another 350 locs.
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Retargeting the code optimization pattern matcher required even less ef-
fort. An initial NV30 optimization profile comprising about 300 locs provides
the basic functionality. The NV40 optimization profile adds just a single rule
in 20 locs. The G80 optimization profile is just one line of code (the G80
optimization profile is an alias of the NV40 optimization profile).

4.4. Debugging

To understand how a pattern matcher processes its input, the OORS library
provides the use with a debugger interface. During runtime, this interface
receives different kind of events that describe a state transition within the
generated pattern matcher. Currently, the debugger interface emits five dif-
ferent classes of events, which are introduced in the following.

rule events: The currentRule event informs the debugger that a new rule
starts to match the current input. If a rule has finished matching the
current input instruction stream, the pattern matcher emits the finishRule
event. When the pattern matcher is going to apply the rule, the debugger
interface receives the applyRule event.

match events: Whenever a rule creates a new alternative6, the generated
pattern matcher emits the newAlternative event. To indicate which alter-
native is currently being processed, the pattern matcher produces the
currentAlternative event. To report that an alternative could not be pro-
cessed any further, the debugger interface receives the deleteAlternative
event.

condition events: Before an item pattern may match an object of the input
stream, the pattern matcher must first check the local side condition of
that item pattern. The checkItemPattern event reports, whether the local
side condition is satisfied (in case not, a deleteAlternative event follows).

pattern events: The events matchItemPattern and matchWildcardPattern
indicate that an item pattern or a wildcard pattern respectively has been
matched against a symbol of the input stream. Whenever a rule decides
not to match the input stream against a wildcard pattern, the pattern
matcher emits the finishWildcardPattern event.

basic block events: After processing a basic block has finished, the pat-
tern matcher generates the finishBasicBlock event, which reports the
sum of the costs of the applied rules.

6 An alternative represents the current, unfinished match of a rule.
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5. Conclusion and Future Work

In this paper, we have presented the new object-oriented rewrite system
OORS with applications in code generation and code optimization. Using
the presented OORS language, a developer is able to implement the code
generation and code optimization phase of a compiler’s back end in terms of
pattern matchers. Retargetability is achieved by organizing rules into pro-
files, one for each supported hardware architecture. In contrast to other
approaches, the OORS language features constructs, such as a rule and
profile inheritance mechanism, that make the reuse of existing specification
possible. Thus, an OORS pattern matcher specification is maintainable as
well as easily retargetable in the long run.

We have additionally introduced the pattern matcher generator OORG
that compiles an OORS specification into a C++ dynamically retargetable
pattern matcher. By means of the CGIS compiler, we have demonstrated
the usage of OORG-generated pattern matchers in a real world applica-
tion. OORG is open source and available for download on our homepage:
http://rw4.cs.uni-sb.de/ gebhard/projects/oors/.

The OORS language offers room for further improvements. Currently,
OORS pattern matchers process only basic blocks. This restriction decreas-
es the efficiency of certain optimizations, such as dead-code elimination. A
dead-code elimination rule is currently not in itself able to determine whether
the target register is still live, if e. g., a register is written at the end of a ba-
sic block. Thus, we want to extend OORS such that matches over the whole
control flow graph are possible. Apart from that, all instructions are assumed
to be pushed upwards past wildcard patterns (remember Example 8, where
a load-store instruction is pushed upwards). In some cases however, a de-
veloper might want to push instructions the other way around. To further im-
prove the expressiveness of OORS, we thus want to introduce a mechanism
that indicates the direction of a rule. Finally, we plan to improve the perfor-
mance of the OORG-generated pattern matchers. The current implementa-
tion generates pattern matchers that match each rule one after another. This
matching method becomes inefficient if the search patterns of two (or more)
rules share the same prefix. In such a case, the OORG-generated pattern
matcher would match that prefix multiple times. So, to overcome this draw-
back, we want to improve OORG, such that the generator produces pattern
matchers that match all rules in parallel.
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Appendix

Although the primary focus of OORS and the reason for its conception is
the use in code generation and optimization, it is, in fact, a very general list
pattern matcher. The following two examples show the use of OORS in this
more general sense. First, a list of elements is sorted by OORS’ optimization
capabilities: A sequence is not-optimal (and hence subject to an OORG-
generated optimization) if it contains an unsorted subsequence. Second, we
present an even more general example, where the pattern matcher is used
for static expression evaluation.
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List Sorting

This example shows how to realize a very simple list sorting algorithm, also
known as bubble sort. The pattern matcher sorts (optimizes) an arbitrary list
in either ascending or descending order with respect to the value of each
item. The pattern matcher comprises two profiles, one to sort a list in as-
cending order and the other to sort a list in descending order. Both profiles
contain a rule named sort that flips two adjacent items in the list depending
on their value. The rule in the profile Ascending checks if the value of the
first item is smaller than the value of the second item and flips both items
to push the cheap item to left and the expensive item to the right. Note that
it is not necessary to respecify the search pattern, the cost function or the
replace pattern, if another sorting behavior is desired.

p r o f i l e Ascending {

r u l e sort {

search: [ Item , Item ]

condit ion : { re tu rn $1->value () > $2->value (); }

cost: { re tu rn 1; }

rep lace : [ $2, $1 ]

}

}

p r o f i l e Descending {

r u l e sort : extends Ascending ::sort {

condit ion : { re tu rn $1->value () < $2->value (); }

}

}

Independent from the used sort profile, the pattern matcher sorts the list in
the desired order after a finite number of steps. As expected, the sorting
method is quite inefficient and has a worst runtime of O(n2), where n is the
length of the list. In any case, this example shows that OORS can be used
to implement various kinds of scheduling algorithms. Note in particular that
the search pattern need not be specified consecutively, that is, that it can
(re-)schedule distant elements.

Polish-Notation Calculator

This example demonstrates how to implement a Polish and a Reverse Polish
notation calculator in OORS. The Polish notation is a special kind of nota-
tion for logic, arithmetic and algebra. Under the assumption that the arity of
each operator is given, this notation is able to function without any kind of
parenthesis. The Polish notation is also known as prefix notation, because
it places the operators in front of their arguments. In contrast to the Polish
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notation, the Reverse Polish notation, also known as postfix notation, places
the operators after their arguments.

Given the expression e = (2 + ((2 ∗ 4.5)/0.5))/(3− 1.5). The expressions
ePN and eRPN are equivalent expressions in Polish and Reverse Polish no-
tation respectively:

ePN = / + 2 / x 2 4.5 0.5 − 3 1.5

eRPN = 2 2 4.5 x 0.5 / + 3 1.5 − /

Due to the simple structure of Polish notation expressions, a pattern
matcher that evaluates these expressions can be easily realized. The pat-
tern matcher “optimizes” a list of instances of the Object class, from which
the classes Operator and Number derive. Each number has a unique value
that can be accessed with the value function. An operator implements the
eval function that computes the result of the operation. To simplify this ex-
ample, it is assumed that all operators are binary. So, the pattern matcher is
implemented as follows:
p r o f i l e Polish {

r u l e Step {

search: [ Operator , Number , Number ]

cost: { re tu rn 1; }

rep lace : [ Number ($1->eval($2->value (), $3->value ())) ]

}

}

p r o f i l e ReversePolish {

r u l e Step {

search: [ Number , Number , Operator ]

cost: { re tu rn 1; }

rep lace : [ Number ($3->eval($1->value (), $2->value ())) ]

}

}

Depending on the given profile, the generated pattern matcher evaluates the
given expression by iteratively applying the rule step as long as possible. To
detect an invalid expression, the user simply has to check whether the final
expression only contains one instance of the class Number. The number of
necessary steps increases linearly with the number of operators. So, the
overall runtime is O(n), where n is the number of operators.
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