
UDC 004.43

A Generator of SQL Schema Specifications
Slavica Aleksić1, Ivan Luković1, Pavle Mogin2, Miro Govedarica1

1 University of Novi Sad, Faculty of Technical Sciences,
21000 Novi Sad, Trg Dositeja Obradovića 6, Serbia

{slavica, ivan, miro}@uns.ns.ac.yu
2 Victoria University of Wellington,

Wellington, P.O. Box 600, New Zealand
pmogin@mcs.vuw.ac.nz

Abstract. IIS*Case is an integrated CASE tool that supports the auto-
mation and intelligent support of complex and highly formalized design
and programming tasks in the development of an information system.
IIS*Case, as a tool from the class of domain oriented design environ-
ments, generates relational database schemas in 3rd normal form with all
relevant data constraints. SQL Generator is an IIS*Case tool that gener-
ates the implementation specification of a database schema according
to ANSI SQL:2003 standard. The generator may also produce a data-
base schema specification for Microsoft SQL Server or Oracle DBMSs.
The paper describes SQL Generator's traits, considers aspects of its
application, and shows its use in the implementation of a complex da-
tabase constraint using procedural mechanisms of a particular relational
DBMS. SQL Generator is implemented in Java and Oracle JDeveloper
environment.

1. Introduction

Integrated Information Systems*Case (IIS*Case) V.6.2 is a tool that provides
the automation and an intelligent support for performing complex and highly
formalized design and programming tasks in the development of an informa-
tion system. It is designed to provide complete support for: (i) developing da-
tabase (db) schemas that are complex with regard to the number of concepts
used, and (ii) software applications of an information system.

The form type is one of the main IIS*Case concepts. It is semantically rich
enough to enable expressing the elements of the static and dynamic struc-
tures in an application domain. By means of form types, a designer creates
simultaneously a model of the structure and behavior of various business
documents, and a conceptual db schema. Starting from the created concep-
tual schema, IIS*Case automatically generates a relational db schema in 3rd

normal form (3NF) with all relevant data constraints. Detailed information
about IIS*Case and its main concepts may be found in several authors' refer-
ences, as well as in [7, 9, 13, 18, 19].

IIS*Case is designed to provide a fast generation of db schemas and appli-
cation prototypes. Although the concept of the form type is highly formalized,

Slavica Aleksić, Ivan Luković, Pavle Mogin and Miro Govedarica

ComSIS Vol. 4, No. 2, December 2007 80

it is very close to the perception power of an average user, because it fits well
to the concept of a business document that is utilized by many end-users in
various application domains. Therefore, IIS*Case may support an intensive
and efficient communication among designers and end-users of an applica-
tion domain, throughout the software development process. We also defined
a methodological approach suitable for the application with IIS*Case in the
software development process. Consequently, we believe that it is a tool suit-
able for the application in the agile software development.

A case study illustrating main features of IIS*Case and the methodological
approach to its usage is given in [9].

Our main motives for the development of IIS*Case were (i) to provide the
generation of db schemas and fully operational application prototypes without
manual coding of programs, or even without knowing the syntax of a particu-
lar domain-specific or general-purpose programming language; (ii) to enable
designers and end-users to model the semantic of an application domain in a
natural way, using the concepts they are familiar with; (iii) to preserve the
formal correctness of the transformation process of initial designers' specifica-
tions into the target program code; and (iv) to define a comprehensive meth-
odological approach that supports usage of IIS*Case not only in small, but
also in large-scale projects. Therefore, we also believe that IIS*Case and our
approach are suitable for end-user development (EUD), as it is considered in
[3, 4, 21]. After a proper training, representative end-users may become able
to take part in the software development based on usage of IIS*Case, particu-
larly in requirements engineering and system specification tasks, where initial
design specifications are created, and also in testing of generated applica-
tions. Furthermore, IIS*Case has its own repository that can be implemented
as a database under an arbitrary DBMS, where all the design specifications,
created in the software development process, are stored and organized in
projects and their application systems. These specifications may be used as
application patterns in many projects in an application domain. Therefore, we
also consider IIS*Case as a tool from the class of domain oriented design
environments (DODE), as it is defined in [20].

SQL Generator is a tool of IIS*Case that utilizes SQL, as one of the most
common domain-specific languages [5, 10] applied at the level of db servers.
It generates implementation (SQL) specifications of relational db schemas.
One of the main reasons for the development of such a tool was to make db
designer's and developer's job easier, and particularly to free them from man-
ual coding and testing of SQL scripts. The goal was to provide an efficient
transformation of design specifications into error free SQL specifications.

There are a number of CASE tools that provide generation of SQL scripts.
Some of them are described in [2, 17, 22]. One of the advantages of our SQL
Generator is that it provides the implementation of some special cases of db
constraints. For example, in contrast to Oracle Server Generator [17], and Sy-
base Power Designer PDM [22], IIS*Case SQL Generator provides the imple-
mentation of not only the default, but also the partial and the full referential in-
tegrity constraints, according to [8]. For all those types of referential integrity
constraints, SQL Generator also allows selecting the following actions: No Ac-

A Generator of SQL Schema Specifications

ComSIS Vol. 4, No. 2, December 2007 81

tion, Cascade, Set Default and Set Null, both for deleting and updating in the
referenced table. Besides, SQL Generator provides the implementation of the
inverse referential integrity constraints [13, 14], which are not rare in the real
world and to the best of our knowledge, neither of the other CASE tools pro-
vides the same functionality. SQL Generator also produces a trigger that prohib-
its updates of a relation scheme primary key, if such a rule is specified in the
design.

SQL Generator provides creating SQL scripts according to the syntax of:
(i) ANSI SQL:2003 standard [8], (ii) DBMS Microsoft (MS) SQL Server
2000/2005 with Microsoft T-SQL [11, 12], and (iii) DBMS Oracle 9i/10g with
Oracle PL/SQL [15, 16].

In this paper we present basic features of SQL Generator that are already
implemented, and aspects of its application. We also present methods for
implementation of a selected db constraint, using mechanisms provided by a
relational DBMS. A complete description of SQL Generator may be found in
[1].

2. Generating the SQL Specifications of a DB Schema

IIS*Case generates 3NF relational db schemas with all the relation scheme
keys, null value constrains, unique constrains, referential and inverse referen-
tial integrity constraints. These schemas are stored in the IIS*Case repository.
The specification of the IIS*Case repository is given in [18]. The input into
SQL Generator is a schema stored in the repository.

Using SQL Generator, a user may produce SQL scripts for the creation of
tables, views, indexes, sequences, procedures, functions and triggers, even
without knowing SQL syntax and mechanisms for the implementation of con-
strains of a selected DBMS. SQL Generator may produce scripts for imple-
menting a new db schema, or modify an already existing one in the following
three ways: (i) by creating SQL scripts in files only for a later execution, (ii) by
creating and immediately executing SQL scripts under a selected db server
with an established connection, and (iii) by creating and immediately execut-
ing SQL scripts on a selected data source with an established connection via
an ODBC driver. In all three cases, generated SQL scripts are stored in one
or more files.

Figures 1-5 present screenshots of a form that is used to define values of
SQL Generator input parameters. The field DBMS (Fig. 1) enables the selection
of the type and version of a target db server. The radio button DDL Files only
(Fig. 1) provides the creation of SQL scripts in files only. The scripts may be
created in one, or more files (see the check box One File Only in Fig. 1). If a
user selects the former option, separate files are created for tables, constraints,
triggers and indexes. The main command file is also generated. It contains calls
to all the other script files. The radio button Database Source (Fig. 1) enables
the selection of either Oracle or MS SQL db server, establishing a connection,
and immediate execution of SQL scripts. In this case, SQL Generator creates a

Slavica Aleksić, Ivan Luković, Pavle Mogin and Miro Govedarica

ComSIS Vol. 4, No. 2, December 2007 82

script file, invokes the appropriate SQL tool, and passes necessary parameter
values for the script execution. The radio button ODBC Source (Fig. 1) enables
the creation and the immediate execution of SQL scripts in a selected ODBC
data source. An appropriate ODBC driver for the target db server must be in-
stalled and configured. SQL Generator supports the user authentication when it
works via an established connection. The field DB Schema Name (Fig. 1) en-
ables defining a db name that is then included in an appropriate CREATE
DATABASE command.

By means of the Selection panel (Fig. 2), a user picks relation schemes.
SQL Generator will produce the appropriate SQL commands for the selected
relation schemes only, and place them in script files. The list of selected rela-
tion schemes should not be empty. Otherwise, a user will get a warning and
the focus will be returned to the Selection panel automatically.

Fig. 1. SQL Generator - Target panel

Fig. 2. SQL Generator – Selection panel

By means of the Options panel (Fig. 3), a user defines which types of db
objects are to be generated. By checking the appropriate check-box items
(Fig. 3), he or she may decide to generate: (i) indexes for primary, alternate
and foreign keys, (ii) SQL CONSTRAINT clauses, (iii) triggers, and (iv) com-
ments.

If the Generate SQL CONSTRAINT Clauses check-box is checked, SQL
Generator produces the following CONSTRAINT clauses: PRIMARY KEY,
UNIQUE, CHECK and FOREIGN KEY, for each key, unique, tuple, or foreign
key constraint in db schema that may be implemented in a declarative way. If
Generate Triggers check-box is checked, SQL Generator will produce all the
db triggers, procedures and functions, necessary to implement db constraints
that cannot be expressed in a declarative way. For inverse referential integrity
constrains [13, 14], SQL Generator offers two ways of implementation: (i) by
means of SQL views and the appropriate stored procedures, or (ii) by means
of stored procedures only. If Include Comments check-box is checked, SQL

A Generator of SQL Schema Specifications

ComSIS Vol. 4, No. 2, December 2007 83

Generator will create comments in SQL code, comprising creation date and
time, and the selected type and version of the DBMS.

A user can select one of the following script generating methods. If the ra-
dio button Generate a New Database is selected (Fig. 1-5), SQL Generator
will produce scripts with CREATE statements, for the implementation of a new
db schema under a DBMS. Otherwise, if Regenerate a Database is selected,
it will regenerate, i.e. modify an already implemented db schema under a
DBMS. In the later case, the Modify panel (Fig. 4) is used. SQL Generator
uses the values for Host, Username, Password and DB Schema Name (Fig.
4) to establish a connection to the target database, compares the information
from IIS*Case repository with the information obtained from the data diction-
ary of the target database, and generates scripts containing the appropriate
CREATE, ALTER and DROP statements. If a user selects the radio button
Always use create statements, each modification is accomplished by dropping
old and then creating objects. Otherwise, if Use alter statements when possi-
ble is selected, SQL Generator will produce ALTER statements, whenever it
is possible.

Fig. 3. SQL Generator - Option panel

Fig. 4. SQL Generator - Modify panel

SQL Generator also supports the creation of sequence generators. A se-
quence generator specification is defined by the Sequence panel (Fig. 5). The
selection of sequence generator properties, and the way of its implementation
depends on the characteristics of the DBMS selected.

Slavica Aleksić, Ivan Luković, Pavle Mogin and Miro Govedarica

ComSIS Vol. 4, No. 2, December 2007 84

Fig. 5. SQL Generator - Sequence panel

Fig. 6. The form for reviewing script

Not all possible combinations of the selected generator options are always
valid. By pressing the Check button (Fig. 1-5), a user initiates a check of the
selected options. If some inconsistencies arise, a user gets the appropriate
warnings. Pressing the button Generate initiates the generation of SQL scripts
and their saving in one or more files. The content of each generated file can
be viewed, or modified through the form presented in Fig. 6. By pressing the
button Execute, a user can also start the execution of a script file on a se-
lected DBMS manually.

Generating SQL scripts may produce various kinds of warnings as a result
of potentially incorrect designer's decisions. For example, the following will
produce a warning: choosing a Set Null action for a constraint comprising a
not null attribute, or giving names that will cause the name of a trigger longer
than 30 characters in an Oracle DBMS. A separate panel Messages is used
to view the warnings.

3. Constraint Types Supported

SQL Generator implements constraints of the following types: domain con-
straints, key constraints, unique constraints, tuple constraints, native and
extended referential integrity constraints (default, partial, full), referential in-
tegrity constraints inferred from nontrivial inclusion dependencies (default,
partial, full), native inverse referential integrity constraints, and inverse refer-
ential integrity constraints inferred from nontrivial inclusion dependencies. [1,
6, 8, 13, 14]

According to [8], a designer qualifies each referential integrity constraint in
IIS*Case as a default, partial or full and this affects the way of its validation.
He or she also selects an action for preserving consistency in the case of an
attempt to violate the constraint during inserts, updates, or deletes. The pos-
sible actions are: No Action, Cascade, Set Default and Set Null. Before im-

A Generator of SQL Schema Specifications

ComSIS Vol. 4, No. 2, December 2007 85

plementing a constraint, SQL Generator analyzes designer's selections. If a
selected combination is not applicable, SQL Generator produces a warning.

Constraints are implemented by the declarative DBMS mechanisms, when-
ever it is possible. However, the expressivity of declarative mechanisms of
commercial DBMSs is usually limited in comparison to [8]. Therefore, SQL
Generator implements a number of constraints through the procedural
mechanisms.

4. An Example of the Procedural Implementation of a
Constraint

Common algorithms for controlling a constraint validation are given in [1, 6,
13]. The process of the procedural implementation of a constraint can be
unified. It consists of the following steps: (i) specifying a parameterized pat-
tern of the algorithm for a specific DBMS, (ii) replacing the pattern parameters
with real values, and (iii) generating an SQL script comprising necessary trig-
gers, procedures and functions. [1]

In this Section, we present an example of a procedural implementation of
the deletion operation using triggers. The operation deletes a set of tuples
from a relation r(Nj), where Nj is a relation scheme participating in a native,
partial referential integrity constraint Ni[X] ⊆ Nj[Y]. If a user selects ANSI SQL
as a target DBMS, the triggers are not needed, since the partial referential
integrity constraint is implemented declaratively, by means of the constraint
clause FOREIGN KEY and its subclause MATCH PARTIAL [8]. In the follow-
ing text, we present solutions of the deletion for DBMSs MS SQL Server and
Oracle, which currently do not support MATCH subclause. We suppose that
the reader is familiar with the syntax and concepts of SQL and T-SQL lan-
guages for MS SQL Server, and SQL and PL/SQL languages for Oracle
DBMS.

4.1. Implementation of the Constraint for MS SQL Server

Suppose a user selects MS SQL Server as a target DBMS. Since MS SQL
Server currently does not support the MATCH clause, a trigger is needed.
The parameterized generic pattern of such a trigger is shown in Fig. 7.

Slavica Aleksić, Ivan Luković, Pavle Mogin and Miro Govedarica

ComSIS Vol. 4, No. 2, December 2007 86

CREATE TRIGGER TRG_<Nj>_<ConstraintName>_DEL ON <Nj> FOR DELETE
AS
 DECLARE <DeclarationFor_Y>, <DeclarationFor_X>, <DeclarationFor_PK_u>
 DECLARE Cursor_<Nj> CURSOR FOR SELECT <AttributeSetFrom_Y> FROM
Deleted
 OPEN Cursor_<Nj>
 FETCH NEXT FROM Cursor_<Nj> INTO <VariablesFor_Y>
 WHILE @@FETCH_STATUS=0
 BEGIN

DECLARE Cursor_<Ni> CURSOR FOR
SELECT<AttributeSetFrom_X>, <AttributeSetFrom_PK_u> FROM <Ni>
WHERE <SelectionCriteria_ Cursor_Ni>
OPEN Cursor_<Ni>
FETCH NEXT FROM Cursor_<Ni> INTO <VariablesFor_X>, <Variables_PK_u>
WHILE @@FETCH_STATUS=0
BEGIN
 IF ExistPRI_<Ni> (<VariablesFor_X>)=0
 <Perform_Activity>
 FETCH NEXT FROM Cursor_<Ni> INTO <VariablesFor_X>, <Vari-

ables_PK_u>
END
CLOSE Cursor_<Ni>
DEALLOCATE Cursor_<Ni>
FETCH NEXT FROM Cursor_<Nj> INTO <VariablesFor_Y>

 END
 CLOSE Cursor_<Nj>
 DEALLOCATE Cursor_<Nj>

Fig. 7. The parameterized generic pattern of the trigger for the control of tuple dele-
tions

The purpose of the trigger is to check if there is a tuple u in r(Ni) that refer-
ences only a tuple v in r(Nj), which is marked for the deletion. If it is so, a speci-
fied action is initiated. Otherwise, v is deleted from r(Nj), regardless of the speci-
fied constraint action.

Since the trigger syntax of MS SQL Server does not include the FOR
EACH ROW clause, cascaded cursors are used in the parameterized pattern
in Fig. 7. In the process of generating a trigger from the pattern, parameter
<Nj> is replaced by the relation scheme name Nj and <Ni> is replaced by the
name of Ni. Each constraint has its own name that is embedded into the trig-
ger name by replacing the parameter <ConstraintName>. <Declaration-
For_Y> and <DeclarationFor_X> represent lists of variable declarations of the
form @<Attribute_From_Y> data type, and @<Attribute_From_X> data type,
for each attribute in Y and X, respectively. <DeclarationFor_PK_u> is a list of
variable declarations of the form @<Attribute_From_PKey> data type, each
one for a primary key attribute of Ni. Deleted in the statement DECLARE Cur-
sor_<Nj>... is a table with all tuples deleted from r(Nj).

The parameter <VariablesFor_Y> in Fig. 7 is replaced by the list of vari-
ables defined by <DeclarationFor_Y>, where each variable is of the form

A Generator of SQL Schema Specifications

ComSIS Vol. 4, No. 2, December 2007 87

@<Attribute_From_Y>. The variables take values from v[Y], where v is a tu-
ple marked for deletion. <AttributeSetFrom_Y> and <AttributeSetFrom_X>
represent the lists of all attributes from Y and X, respectively. <Attribute-
Set_PK_u> represent the list of primary key attributes of Ni. <SelectionCrite-
ria_Cursor_Ni> is specified as a sequence of comparison expressions con-
nected by the logical operator AND:

(<Attribute_From _X> IS NULL OR
<Attribute_From _X>=@<Attribute_From _Y>),

where each <Attribute_From _X> or <Attribute_From _Y> belongs to
<AttributeSetFrom_X> or <AttributeSetFrom_Y>, respectively.

The parameter <VariablesFor_X> is replaced by the list of variables de-
fined by <DeclarationFor_X>, where each variable is of the form @<Attribu-
te_From_X>. In the same way, <Variables_PK_u> is replaced by the list of
variables defined by <DeclarationFor_PK_u>. These variables take their val-
ues from a tuple u. Depending on the constraint action selected by the user,
parameter <Perform_Activity> is replaced by one of the following procedures:

• NoAction_<Nj>,
• SetNullPRI_<Nj>,
• SetDefaultPRI_<Nj> and
• CascadeDelPRI_<Nj>.

Current primary key values of <Varibales_PK_u> are passed to all of the
procedures, except to the first one.

The parameterized pattern of the function ExistPRI_<Ni> is shown in Fig. 8.
For each primary key value of a tuple u, <SelectionCriteria> is specified as a
sequence of comparison expressions connected by the logical operator AND:

(@<Attribute_From _X> IS NULL OR
v.<Attribute_From _Y> = @<Attribute_From _X>).

CREATE FUNCTION ExistPRI_<Ni> (<DeclarationFor_X>)
RETURNS int
AS
BEGIN
 DECLARE @Count int, @Ret int
 SELECT @Count = COUNT(*) FROM <Nj> v WHERE <SelectionCriteria>
 IF @Count != 0 SELECT @ret=1
 ELSE SELECT @ret=0
 RETURN @ret
END
Fig. 8. The parameterized pattern of the function ExistPRI_<Ni>

The procedure NoAction_<Nj> is presented in Fig. 9. It is used to imple-
ment the constraint action No Action. Procedure SetNullPRI_<Nj> is pre-
sented in Fig. 10. It is used to implement the constraint action Set Null. <At-
tribute_value> is a sequence of comma separated expressions, one for each
attribute from X, specified as follows:

u.<Attribute_From _X> = NULL.

Slavica Aleksić, Ivan Luković, Pavle Mogin and Miro Govedarica

ComSIS Vol. 4, No. 2, December 2007 88

<SelectionCriteria> is a sequence of expressions connected by AND, as
follows:

u.<Attribute_From _PK> = @<Attribute_From _PK>.

CREATE PROCEDURE NoAction_<Nj>
AS
 RAISERROR('Tuple cannot be deleted from the specified relation ', 16, 1)
 ROLLBACK TRAN

Fig. 9. The parameterized pattern of the No Action

CREATE PROCEDURE SetNullPRI_<Nj> (<DeclarationFor_PK_u>)
AS
 UPDATE u SET <Attribute_value> FROM <Ni> u WHERE <SelectionCriteria>

Fig. 10. The parameterized pattern of the Set Null action

The procedure SetDefaultPRI_<Nj> used to implement Set Default action is
presented in Fig. 11. <ValueAssignmentFrom_X> is replaced as follows:

@<Attribute_From _X>= u.<Attribute_From _X>.

<SelectionCriteria> is a sequence of expressions connected by AND, one
for each attribute from <Attribute_From_PK>, specified as follows:

(u.<Attribute_From _PK> = @<Attribute_From _PK>).

Since only the attributes having non null values are set to the default val-
ues, the first IF statement in Fig. 11 checks if there is at least one having a
non null value. <UpdateCondition> is a sequence of the expressions con-
nected by OR, one for each attribute in X, specified as follows:

@<Attribute_From _X> IS NOT NULL.

The bolded code in Fig. 11 is repeatedly generated, once for each attribute
in X. Therefore, for each attribute in X having a non null value, a string

'u.<Attribute_From_X> = default'

is concatenated to the current value of the variable @AttributesForUpd.
The WHERE clause of the UPDATE command in the string used in EXEC

command is correctly defined in Fig. 11, if the primary key of Ni consists of
the only one attribute. Otherwise, the clause is transformed to include an ex-
pression of the form

u.<Attribute_From_PK> = @<Attribute_From_PK>,

for each primary key attribute, and all such expressions are connected by the
AND operator.

A Generator of SQL Schema Specifications

ComSIS Vol. 4, No. 2, December 2007 89

CREATE PROCEDURE SetDefaultPRI_<Nj> (<DeclarationFor_PK_u>)
AS
 DECLARE <DeclarationFor_X>, @AttributesForUpd VARCHAR(255)
 SET @ AttributesForUpd = ' '
 SELECT <ValueAssignmentFrom_X> FROM <Ni> u WHERE <SelectionCriteria>
 IF (<UpdateCondition>)
 BEGIN

IF (@<Attribute_From _X> IS NOT NULL)
BEGIN
 IF @AttributesForUpd != ''
 SET @AttributesForUpd=@AttributesForUpd+',
 u.<attribute_from_X> = default'
 ELSE
 SET @AttributesForUpd = 'u.<attribute_from_X> = default'
END
EXEC ('UPDATE u SET ' + @AttributesForUpd + 'FROM <Ni> u WHERE
 u.<Attribute_From_PK>=' +@<Attribute_From_PK>)
SELECT <ValueAssignmentFrom_X> FROM <Ni> u WHERE
 <SelectionCriteria>
IF dbo.ExistPRI_<Ni>(<VariablesFor_X>)=0
BEGIN
 RAISERROR('Tuple cannot be deleted from the specified relation ', 16, 1)
 ROLLBACK TRAN
END

 END

Fig. 11. The parameterized pattern of the Set Default action

The procedure CascadeDelPRI_<Nj> used to implement Cascade action is
presented in Fig. 12. <SelectionCriteria> is an expression of the form <Selec-
tionCriteria1> AND <SelectionCriteria2>. <SelectionCriteria1> is a sequence
of expressions connected by AND, one for each attribute in <Attribu-
te_From_PK> specified as:

(u.<Attribute_From_PK> = @<Attribute_From_PK>).

<SelectionCriteria2> is a sequence of expressions connected by AND, one
for each attribute in X, specified as:

(u.<Attribute_From_X> IS NOT NULL).

CREATE PROCEDURE CascadeDelPRI_<Nj> (<DeclarationFor_PK_u>)
AS
 DELETE FROM <Ni> u WHERE <SelectionCriteria>

Fig. 12. The parameterized pattern of the Cascade action

Slavica Aleksić, Ivan Luković, Pavle Mogin and Miro Govedarica

ComSIS Vol. 4, No. 2, December 2007 90

4.2. Implementation of the Constraint for Oracle Server

Suppose a user selects Oracle as a target DBMS. Like MS SQL Server,
Oracle DBMS also does not support the MATCH clause. Therefore, triggers
are needed, again.

Contrary to MS SQL Server, Oracle DBMS provides both statement level
and row level triggers and action time specifications BEFORE and AFTER,
but does not support a temporary table with the name "Deleted" that contains
all currently deleted rows. Oracle DBMS also provides global variables in
packages. Due to the utilization of these features, the implementation of trig-
gers for the control of the tuple deletion in Oracle DBMS is significantly differ-
ent from that in MS SQL Server. Three triggers are needed in Oracle DBMS
for the control of the tuple deletion. (i) The first is a statement level BEFORE
DELETE trigger. It is used to empty a temporary collection of tuples needed in
the other two triggers. (ii) The second is a row level BEFORE DELETE trig-
ger. It is used to insert into the temporary collection tuples containing values
of all attributes from Y – one tuple for each row deleted. (iii) The third is a
statement level AFTER DELETE trigger. It is used to process all the tuples
from the temporary collection created in the second trigger, in a sequential
order. These triggers always fire sequentially in the specified order.

The parameterized generic pattern of the first trigger is presented in Fig.
13. It is used to initialize a temporary data structure that is declared in the
package <ConstraintName>_PCK to an empty state. Its parameterized ge-
neric pattern is shown in Fig. 14.

CREATE OR REPLACE TRIGGER TRG TRG_<Nj>_<ConstraintName>_RD1
BEFORE DELETE ON <Nj>
BEGIN
 <ConstraintName>_PCK.Del_Count := 0;
 <ConstraintName>_PCK.For_Del_<Nj>.DELETE;
END;

Fig. 13. The parameterized generic pattern of the first trigger for the control of tuple
deletions

CREATE OR REPLACE PACKAGE <ConstraintName>_PCK
IS
 TYPE TRecDel<Nj> IS RECORD (<DeclarationFor_Y>);
 TYPE TTabForDelete IS TABLE OF TRecDel<Nj> INDEX BY BINARY_INTEGER;
 For_Del_<Nj> <ConstraintName>_PCK.TTabForDelete;
 Del_Count NUMBER(8,0);
END;

Fig. 14. The parameterized generic pattern of the package <ConstraintName>_PCK

The collection variable For_Del_<Nj> is supposed to hold tuples with val-
ues of all attributes from Y, one for each tuple aimed at the deletion. <De-
clarationFor_Y> represents a list of variable declarations of the form

A Generator of SQL Schema Specifications

ComSIS Vol. 4, No. 2, December 2007 91

<Attribute_From _Y> <Nj>.<Attribute_From _Y>%TYPE,

one for each attribute in Y. Variable <ConstraintName>_PCK.Del_Count
holds the number of tuples to be deleted.

The parameterized generic pattern of the second trigger for the control of
tuple deletions is shown in Fig. 15. The parameter <Initialization_v> is re-
placed by the list of declarations, one for each attribute from Y:

v.<Attribute_From _Y> := :OLD.<Attribute_From _Y>.

For each attribute in Y, <AttributeValue_Y_u_For_Del_<Nj>> is specified
as

<Name_P>.For_Del_<Nj>(<Name_P>.Del_Count).<Attribute_From _Y> :=
 v.<Attribute_From _Y>,

where parameter <Name_P> is replaced with the name of the package
<ConstraintName>_PCK.

CREATE OR REPLACE TRIGGER TRG_<Nj>_<ConstraintName>RD2
 BEFORE DELETE ON <Nj>
 FOR EACH ROW
 DECLARE
 v <Nj>%ROWTYPE;
BEGIN
 <Initialization_v>
 IF Global_PCK.ExistPRI_<Nj> (v) THEN
 <Name_P>.Del_Count := <Name_P>.Del_Count + 1;
 <AttributeValue_Y_u_For_Del_<Nj>>
 END IF;
 END;

Fig. 15. The parameterized generic pattern of the second trigger for the control of the
tuple deletions

FUNCTION ExistPRI_<Ni> (u IN <Ni>%ROWTYPE)
RETURN BOOLEAN IS
 i NUMBER;
BEGIN
 SELECT COUNT(*) INTO i FROM <Nj> v WHERE <SelectionCriteria>
 IF i <> 0 THEN
 RETURN TRUE;
 ELSE
 RETURN FALSE;
 END IF;
END;

Fig. 16. The parameterized pattern of the function ExistPRI_<Ni>

The function ExistPRI_<Ni> that is called from the trigger in Fig. 15 has the
same meaning and name as the function in Fig. 8. It is specified in the scope
of the package Global_PCK. The parameterized pattern of the function Exist-

Slavica Aleksić, Ivan Luković, Pavle Mogin and Miro Govedarica

ComSIS Vol. 4, No. 2, December 2007 92

PRI_<Ni> for Oracle DBMS is shown in Fig. 16. For each attribute in Y, <Se-
lectionCriteria> is specified as a sequence of comparison expressions con-
nected by the logical operator AND:

(u.<Attribute_From _X> IS NULL OR
v.<Attribute_From _Y> = u.<Attribute_From _X>).

The parameterized generic pattern of the third trigger for the control of the
tuple deletions is shown in Fig. 17.

CREATE OR REPLACE TRIGGER TRG_<Nj>_<ConstraintName>RD3
AFTER DELETE ON <Nj>
DECLARE
 t <Nj>%ROWTYPE;
 u <Ni>%ROWTYPE;
CURSOR Cursor_<Ni> (<FormalParameters_ Cursor>)
IS SELECT * FROM <Ni>
WHERE (<SelectionCriteria_Cursor>);
BEGIN
 FOR i IN 1.. <ConstraintName>_PCK.Del_Count LOOP
 <Initialization_t>
 OPEN Cursor_<Ni>(<Parameters_ Cursor>);
 LOOP
 FETCH Cursor_<Ni> INTO u;
 EXIT WHEN Cursor_<Ni>%NOTFOUND;
 IF NOT Global_PCK.ExistPRI_<Ni> (u) THEN
 <Perform_Activity>
 END IF;
 END LOOP;
 CLOSE Cursor_<Ni>;
 END LOOP;
END;

Fig. 17. The parameterized generic pattern of the third trigger for the control of tuple
deletions

<FormalParameters_ Cursor> is a sequence of comma separated parame-
ters, one for each attribute from Y, specified as follows:

C_<Attribute_From _Y> <Nj>.<Attribute_From _Y>%TYPE.

<SelectionCriteria_Cursor> is a sequence of expressions connected by
AND, one for each attribute from X, as follows:

<Ni>.<Attribute_From_X> = C_<Attribute_From_Y> OR
<Ni>.<Attribute_From_Y> IS NULL.

The temporary variable t holds values of attributes in Y of a tuple marked
for deletion, while u holds a currently fetched tuple from Cursor_<Ni>. The
parameter <Initialization_t> is replaced as follows:

t.<Attribute_From_Y> :=
<Name_P>.For_Del_<Nj>(<Name_P>.Del_Count).<Attribute_From _Y>.

A Generator of SQL Schema Specifications

ComSIS Vol. 4, No. 2, December 2007 93

 <Parameters_ Cursor> is replaced by list of comma separated attributes
from Y:

t.<Attribute_From_Y>.

Depending on the constraint action selected by the user, parameter <Per-
form_Activity> is replaced by one of the following procedures:

• NoAction_<Nj>,
• SetNullPRI_<Nj>(u),
• SetDefaultPRI_<Nj>(v), or
• CascadeDelPRI_<Nj>(u).

The procedure NoAction_<Nj> is presented in Fig. 18. It is used to imple-
ment the constraint action No Action.

PROCEDURE NoAction_<Nj>
IS
 exc EXCEPTION;
BEGIN
 RAISE exc;
 EXCEPTION
 WHEN exc THEN RAISE_APPLICATION_ERROR
 (-20000, 'Tuple cannot be deleted from the specified relation ');
END;

Fig. 18. The parameterized pattern of the procedure No Action

The procedures SetNullPRI_<Nj>(u), SetDefaultPRI_<Nj>(v) and Cascad-
eDelPRI_<Nj>(u) are presented in Figures 19, 20 and 22, respectively. Cur-
rent attribute values of a tuple v, which is marked for deletion, are passed to
SetDefaultPRI_<Nj>, while current attribute values of a tuple u, that refer-
ences the tuple v, are passed to the procedures SetNullPRI_<Nj> and Cas-
cadeDelPRI_<Nj>.

The procedure SetNullPRI_<Nj> in Fig. 19 is used to implement the con-
straint action Set Null. <Attribute_value> is a sequence of comma separated
expressions, one for each attribute from X, specified as follows:

<Attribute_From _X> = NULL.

<SelectionCriteria> is a sequence of expressions connected by AND, as fol-
lows:

<Attribute_From _PK> = u.<Attribute_From _PK>.

PROCEDURE SetNullPRI_<Nj> (u IN <Ni>%ROWTYPE)
IS
BEGIN
 UPDATE <Ni>
 SET <Attribute_value> WHERE (<SelectionCriteria>);
END;

Fig. 19. The parameterized pattern of the Set Null action

Slavica Aleksić, Ivan Luković, Pavle Mogin and Miro Govedarica

ComSIS Vol. 4, No. 2, December 2007 94

The procedure SetDefaultPRI_<Nj> in Fig. 20 is used to implement Set De-
fault action. DefValue_<Ni> is called from the procedure SetDefaultPRI_<Nj>.
It returns a default value in the variable t_default. Since only those attributes
in a tuple u, having non null values, are set to the default values, the first IF
statement in Fig. 20 checks if there is at least one such attribute. <Upda-
teCondition> is a sequence of the expressions connected by AND, one for
each attribute in X, specified as follows:

u.<Attribute_From _X> IS NOT NULL.

PROCEDURE SetDefaultPRI_<Nj> (v IN <Ni>%ROWTYPE)
IS
 u <Ni>%ROWTYPE;
 e <Ni>%ROWTYPE;
 t_default <Ni>%ROWTYPE;
BEGIN
 DefValue_<Ni>(t_default);
 SELECT * INTO u FROM <Ni> WHERE (<SelectionCriteria>);
 IF (<UpdateCondition>) THEN <Initialization_e>
 ELSIF u.<Attribute_From_X> IS NOT NULL THEN <Initialization
_e_Attribute_From_X>
 ELSIF u.<Attribute_From_X> IS NOT NULL THEN <Initialization
_e_Attribute_From_X>
 .
 . /* For each attribute in X, a corresponding ELSIF clause is gener-
ated. */
 .
 END IF;
 UPDATE <Ni>
 SET <Attribute_Value> WHERE (<SelectionCriteria>);
 SELECT * INTO u FROM <Ni> WHERE (<SelectionCriteria>);
 IF NOT ExistPRI_<Ni> (u) THEN
 RAISE_APPLICATION_ERROR
 (-20000, 'Tuple cannot be deleted from the specified relation ');
 END IF;
END;

Fig. 20. The parameterized pattern of the Set Default action

If all attributes in X have non null values, the block of statements <Initializa-
tion_e> is executed. It is specified as a sequence of statements, one for each
attribute in X, as follows:

e.<Attribute_From_X> := t_default.<Attribute_From_X>.

In this way, the variable e is initialized to the default value. If there is at
least one attribute having a null value, <UpdateCondition> will not be satis-
fied. In this case, each attribute in X having a non null value is initialized to the
default value by the statement <Initialization_e_Attribute_From_X>, specified
as follows:

e.<Attribute_From_X> := t_default.<Attribute_From_X>.

A Generator of SQL Schema Specifications

ComSIS Vol. 4, No. 2, December 2007 95

The parameter <Attribute_Value> in the UPDATE command is replaced by

<Attribute_From_X> = e.<Attribute_From_X>.

<SelectionCriteria> is a sequence of expressions connected by AND, one
for each attribute from <Attribute_From_PK>, specified as follows:

<Attribute_From _PK> = v.<Attribute_From _PK>.

The procedure DefValue_<Ni> is used to create a tuple with all the default
values of the relation scheme <Ni>. Its parameterized pattern is presented in
Fig. 21.The bolded code in Fig. 21 is repeatedly generated, once for each
attribute in X.

PROCEDURE DefValue_<Ni> (t_default OUT <Ni>%ROWTYPE)
IS
BEGIN
 SELECT user_tab_columns.data_default INTO t_default. <Attribute_From_X>
 FROM user_tab_columns WHERE user_tab_columns.table_name = '<Ni>'
 AND user_tab_columns.column_name = '<Attribute_From_X>';
END;
Fig. 21. The parameterized pattern of the DefValue_<Ni> procedure

The procedure CascadeDelPRI_<Nj> is used to implement the Cascade
action. Its parameterized pattern is presented in Fig. 22. <SelectionCriteria>
is a sequence of expressions connected by AND, one for each attribute in
<Attribute_From_PK>, specified as:

<Attribute_From_PK> = u.<Attribute_From_PK>.

PROCEDURE CascadeDelPRI_<Nj>(u IN <Ni>%ROWTYPE)
IS
BEGIN
 DELETE FROM <Ni> WHERE (<SelectionCriteria>);
END;

Fig. 22. The parameterized pattern of the Cascade action

In these examples, we have presented one of the cases met in the real life.
We have deliberately selected here the partial referential integrity constraint,
since its implementation is the most complex one.

5. Conclusion

The paper describes SQL Generator that is a component of IIS*Case.
IIS*Case is a complex software tool that supports automatic generation of
3NF db schemas and software applications. In the framework of IIS*Case,
SQL Generator provides users with such an intelligent support that they can

Slavica Aleksić, Ivan Luković, Pavle Mogin and Miro Govedarica

ComSIS Vol. 4, No. 2, December 2007 96

generate implementation specifications of db schemas even without knowing
the SQL syntax and procedural DBMS mechanisms for the implementation of
constraints.

An advantage of SQL Generator over other similar products is that users
have a wider selection of possible actions to preserve db consistency. Be-
sides the generation of common db constraints, like key, unique, not null, and
native referential integrity, SQL Generator also enables the implementation of
the default, partial and full referential integrity constraints, and the selection of
an appropriate action from the set {No Action, Cascade, Set Default, Set
Null}. Also, SQL Generator provides the implementation of the inverse refer-
ential integrity constraints. SQL Generator validates selections of input pa-
rameter values, analyzes designer's solutions, and issues warnings if it de-
tects any inconsistency.

Further research and development are focused on extending the function-
ality of SQL Generator. We plan to:
• implement the generation of the extended referential integrity [14],
• provide the compatibility checking of data types,
• add modules for the design and implementation of physical data structures

for particular DBMSs,
• implement in IIS*Case visual editors for specifying user defined functions

and tuple (check) constraints [13], and
• enable generating SQL scripts for a wider selection of DBMSs.

Acknowledgment. The research is supported by Ministry of Science of
Republic of Serbia, under grant No.TR-6218A.

6. References
1. Aleksić S., An SQL Generator of Database Schema Implementation Speci-

fication in a CASE Toll IIS*Case, M.Sc. (Mr.) Dissertation, University of
Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia, 2006;

2. ARTech. DeKlaritTM (The Model-Driven Tool for Microsoft Visual Studio 2005),
Chicago, U.S.A. Available at: http://www.deklarit.com [June, 2007];

3. Berti S., Paterno F., Santoro C., Natural Development of Ubiquitous Inter-
faces, Communications of the ACM (CACM), Association for Computing
Machinery, USA, ISSN: 0001-0782, Vol. 47, No. 9, 2004, pp. 63-64;

4. Burnett M., Cook C., Rothermel G., End-User Software Engineering,
Communications of the ACM (CACM), Association for Computing Machin-
ery, USA, ISSN: 0001-0782, Vol. 47, No. 9, 2004, pp. 53-58;

5. Deursen van A., Klint P.Visser J., Domain-Specific Languages: An Anno-
tated Bibliography, ACM SIGPLAN Notices, Association for Computing
Machinery, USA, Vol. 35, No. 6, 2000, pp. 26-36;

6. Govedarica M., Design the Set of Implementational Database Schema
Constraints, M.Sc. (Mr.) Dissertation, University of Novi Sad, Faculty of
Technical Sciences, Novi Sad, Serbia, 1998;

7. Govedarica M., Luković I., Mogin P., Generating XML Based Specifica-
tions of Information Systems, Computer Science and Information Systems

A Generator of SQL Schema Specifications

ComSIS Vol. 4, No. 2, December 2007 97

(ComSIS), Belgrade, Serbia, ISSN: 1820-0214, Vol. 1, No. 1, 2004, pp.
117-140.

8. ISO/IEC 9075-{1, 2, 11}:2003 (ANSI SQL:2003), American National Stan-
dards Institute, USA;

9. Luković I, Mogin P, Pavićević J, Ristic S, An Approach to Developing Com-
plex Database Schemas Using Form Types, Software: Practice and Experi-
ence, John Wiley & Sons Inc, Hoboken, USA, ISSN: 0038-0644, Published
Online, May 29, 2007, DOI: 10.1002/spe.820;

10. Mernik M., Heering J., Sloane M. A., When and How to Develop Domain-
Specific Languages, ACM Computing Surveys (CSUR), Association for
Computing Machinery, USA, ISSN: 0360-0300, Vol. 37, No. 4, 2005, pp.
316–344;

11. Microsoft SQL Server 2000, User Manuals;
12. Microsoft SQL Server 2005, User Manuals;
13. Mogin P, Luković I, Govedarica M, Database Design Principles, 2nd Edi-

tion, University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Ser-
bia, 2004, ISBN: 86-80249-81-5;

14. Mogin P, Luković I, Govedarica M, Extended Referential Integrity, Novi
Sad Journal of Mathematics, Novi Sad, Serbia, ISSN: 1450-5444, Vol. 30,
No. 3, 2000, pp. 111-122;

15. Oracle DBMS 9i, User Manuals;
16. Oracle DBMS 10g, User Manuals;
17. Oracle Designer 9i, On-line Documentation;
18. Pavićević J, Development of A CASE Tool for Automated Design and Inte-

gration of Database Schemas, M.Sc. (Mr.) Dissertation, University of Mon-
tenegro, Faculty of Science, Podgorica, Montenegro, 2005;

19. Pavićević J, Luković I, Mogin P, Govedarica M, Information System Design
and Prototyping Using Form Types, INSTICC I International Conference
on Software and Data Technologies, Setubal, Portugal, September 11-14,
2006, Proceedings, Vol. 2, pp. 157-160;

20. Reppening A., Ioannidou A., Agent Based End-User Development, Com-
munications of the ACM (CACM), Association for Computing Machinery,
USA, ISSN: 0001-0782, Vol. 47, No. 9, 2004, pp. 43-46;

21. Sutcliffe A., Mehandjiev N., End-User Development, Communications of
the ACM (CACM), Association for Computing Machinery, USA, ISSN:
0001-0782, Vol. 47, No. 9, 2004, pp. 31-32;

22. Sybase PowerDesigner 10, On-line Documentation;

Slavica Aleksić received her M.Sc. (5 year, former Diploma) degree from
Faculty of Technical Sciences in Novi Sad. She completed her Mr (2 year)
degree at the University of Novi Sad, Faculty of Technical Sciences. Cur-
rently, she works as a teaching assistant at the Faculty of Technical Sciences
at the University of Novi Sad, where she assists in teaching several Computer
Science and Informatics courses. Her research interests are related to Infor-
mation Systems, Database Systems and Software Engineering.

Slavica Aleksić, Ivan Luković, Pavle Mogin and Miro Govedarica

ComSIS Vol. 4, No. 2, December 2007 98

Ivan Luković received his M.Sc. (5 year, former Diploma) degree in Informat-
ics from the Faculty of Military and Technical Sciences in Zagreb in 1990. He
completed his Mr (2 year) degree at the University of Belgrade, Faculty of
Electrical Engineering in 1993, and his Ph.D. at the University of Novi Sad,
Faculty of Technical Sciences in 1996. Currently, he works as a Full Profes-
sor at the Faculty of Technical Sciences at the University of Novi Sad, where
he lectures in several Computer Science and Informatics courses. His re-
search interests are related to Database Systems and Software Engineering.
He is the author or coauthor of over 50 papers and 4 books in the area.

Pavle Mogin received his B.Eng.(Honours) degree from the University of
Belgrade, Faculty of Electrical Engineering in 1964. He completed his Ph.D.
at the University of Nis in 1974. Currently, he holds the position of a Senior
Lecturer at the University of Wellington, Faculty of Science, where he lectures
Computer Science courses. His research interests are in the area of Data-
base Systems. He is the author or co-author of six books and over 90 papers
in the area.

Miro Govedarica received his M.Sc. (5 year, former Diploma) degree in Ge-
odesy from the Faculty of Civil Engineering in Sarajevo in 1987. He com-
pleted his Mr (2 year) degree at the University of Novi Sad, Faculty of Techni-
cal Sciences in 1998, and his Ph.D. at the University of Novi Sad, Faculty of
Technical Sciences in 2001. Currently, he works as an Associate Professor at
the Faculty of Technical Sciences, where he lectures in Computer Science
and Informatics courses. His research interests are related to Information
System Design, Geo-Information Systems and Object Oriented Software En-
gineering. He is the author or coauthor of over 50 papers and one book in the
area.

