
UDC 004.43

Functional Approach to the Adaptation
of Languages instead of Software Systems*

Ján Kollár1, Jaroslav Porubän1, Peter Václavík1, Jana Bandáková1, and
Michal Forgáč1

1 Department of Computers and Informatics, Technical University, Letná 9, 04200
Košice, Slovakia

{Jan.Kollar, Jaroslav.Poruban, Peter Vaclavik, Jana.Bandakova,
Michal.Forgac}@tuke.sk

Abstract. From the viewpoint of adaptability, we classify software
systems as being nonreflexive, introspective and adaptive. Introducing a
simple example of LL(1) languages for expressions, we present its
nonreflexive and adaptive implementation using Haskell functional
language. Multiple metalevel concepts are an essential demand for a
systematic language approach, to build up adaptable software systems
dynamically, i.e. to evolve them. A feedback reflection loop from data to
code through metalevel data is the basic implementation requirement
and the proposition for semi-automatic evolution of software systems. In
this sense, practical experiment introduced in this paper is related to the
base level of language, but it illustrates the ability for extensions
primarily in horizontal but also in vertical direction of an adaptive system.

1. Introduction

There is an increasing demand for systems that can be easily configured
for a specific environment or they even adjust themselves dynamically to a
changing environment at runtime. Adaptive behaviour is the proposition for
the runtime adjustment, or evolution, provided that it is performed
automatically.

Adaptability [8] is mostly related to the area of software engineering –
object oriented programming, aspect-oriented programming, intentional
programming, template programming, etc., where it is exploited for changing
the semantics of programs.

On the other hand, the properties of systems are expressed using various
languages, such as programming languages, specification languages, or
modelling languages, in that solutions of problems are constructively
formulated, no matter of a language abstraction level. At the bottom level of a

* This work was supported by VEGA project No. 1/4073/07 ”Aspect-oriented Evolution

of Complex Software Systems”

Ján Kollár, Jaroslav Porubän, Peter Václavík, Jana Bandáková, and Michal Forgáč

ComSIS Vol. 4, No. 2, December 2007

118

system, the machine code written in a machine language is executed. At the
top level, human thoughts arise and are formulated using a natural language.

Our current research concentrates on how a language (not a program) can
vary its semantics, reflecting not just compile time but also runtime events.
According to our opinion, static and dynamic adaptation of the language to
new software aspects and runtime events should exclude current expensive
methods of compiler construction. The language should be minimal, strongly
associated with the properties of a software system and should be adaptive.

This is a step on a way to self-adaptive software – software that
incorporates monitoring and evaluation functions, and can rapidly (at runtime)
respond to some sorts of need for change [9].

In a simplified manner, the ascending goal of our research is described
below.

Suppose mExec is a hardwired (non-adaptable) computer architecture,
which executes the target code trgCode obtained from the source code
srcCode using the language processor langProc.

If the semantics of trgCode is not equivalent to the semantics of trgCode’,
for two different target codes ([| trgCode |] ≡ [| trgCode’ |]), then these target
codes yield different behaviour when executed, accordingly (1).

[| mExec trgCode |] ≡ [| mExec trgCode’ |] (1)

Clearly, langProc implements a language L. The basic principle of

language processing is such that semantics of a source code is the same as
the semantics of the target code produced by langProc from this source code.
This is expressed by equivalence (2).

[| srcCode |] ≡ [| trgCode |] (2)

The semantic equivalence (2) follows directly from the equation (3), which

defines the target code in terms of the application of a language processor to
the source code.

trgCode = langProc srcCode (3)

Then, instead of a manual development of a software system, represented

by the step (4), changing the source program,

 mExec (langProc srcCode) ⇒ mExec (langProc srcCode’) (4)

Functional Approach to the Adaptationof Languages instead of Software Systems

ComSIS Vol. 4, No. 2, December 2007

119

we would like to change the language processor, preserving the original
source program, replacing the manual development step (4) by a semi-
automatic evolution step (5)

mExec (langProc srcCode) ⇒ mExec (langProc’ srcCode) (5)

such that the target behaviour is the same, i.e. the equivalence (1) holds.

[| mExec (langProc srcCode’) |] ≡ [| mExec (langProc’ srcCode) |] (6)

The benefit is clear. Then we would be able to develop the systems without
changing the source code. The trouble is that we must still add some
additional program or specification to change the language (implemented by
language processor), so the evolution is not fully automatic, but rather semi-
automatic. On the other hand, our hypothesis, which we would like to prove
and subsequently exploit, is that manual code increment which adapts the
language is far smaller, and the style of adaptation is far more systematic, as
when source programs are manually modified. It may be also noticed, that (6)
expresses the equivalence of runtime behavior, so we are interested not just
in some slow process of adaptation, but even in a very fast adaptation of
languages in runtime.

Thinking about the task above, we have recognized the concepts of
metaprogramming and reflection are fundamental. Metaprogramming is about
writing programs that represent and manipulate other programs or
themselves, i.e. metaprograms are programs about programs [2]. Reflection
is an entity’s integral ability to represent, operate on, and otherwise deal with
itself in the same way that it represents, operates on, and deal with its primary
subject matter [4]. The main idea of applying reflection as a general principle
for flexible systems in software engineering is to split a system into two parts:
metalevel and a base level. A metalevel provides information about selected
system and makes the software self-aware. A base level includes the
application logic.

In this paper, we present the principle of an adaptive context-free language
focusing on the most complex phase – the syntax-directed translation from
lexical symbols to postfix code. For the purpose of simplicity and clarity, we
decided to use Haskell without monads.

In Section 2 we introduce our classification of software systems from the
viewpoint of the degree of reflexive behaviour, and we analyze three selected
cases. In Section 3 we present LL(1) language for expressions and its
nonreflexive implementation. The main ideas for adaptive implementation of
the system are presented in Section 4. The conception of the multilevel
adaptive language system is discussed briefly in Section 5.

Ján Kollár, Jaroslav Porubän, Peter Václavík, Jana Bandáková, and Michal Forgáč

ComSIS Vol. 4, No. 2, December 2007

120

2. Systems Behaviour Classification

In this section we classify software systems from the viewpoint of their degree
of adaptability.

2.1. Nonreflexive Execution

Machine code – the constant set 0C of instructions at base level 0 does not
vary during execution, and then the execution changes data 0Dk (a set of data
records on the stack or in the heap) to a new data set 0D(k+1). An execution
step is the transformation of configuration (7).

0C ⎯→⎯× 0Dk ⇒ 0C ⎯→⎯× 0D(k+1) (7)

In (7), the relation (⎯→⎯×) denotes that multiple instructions from 0C can

access multiple data records 0D.
The execution is nonreflexive, if there is no feedback loop from data to

code, and no possibility is given to code to observe or even to change itself.

2.2. Introspective Execution

In an introspective execution, code 0C constructs and changes data 0Dk, as in
a nonreflexive execution. In addition to this, each subset of the set 0Dk refers
to (which we designate by ⎯→⎯−) exactly one element of static data 1S, and
this data refers (⎯→⎯+) to a subset of code 0C accordingly (8). Static data
set 1S at level 1 is metalevel static data to the level 0.

 1C ⎯→⎯× 1S 1C ⎯→⎯× 1S

 + - ⇒ + -

 0C ⎯→⎯× 0Dk 0C ⎯→⎯× 0D(k+1)

(8)

Since metalevel data (set of records) 1S is static, metacode 1C may produce

it just once, and then the execution of 1C is finished. Clearly, such metacode
cannot be runtime process, and execution of 0C is nonadaptive. However, it is
introspective, because of the existence of a feedback loop from the code 0C to
code 0C via the data set 0D and some metadata element from 1S. For
example, introspective (but not adaptive) behaviour can be obtained using
Java’s metaclasses that exploit static metadata 1S.

Functional Approach to the Adaptationof Languages instead of Software Systems

ComSIS Vol. 4, No. 2, December 2007

121

Introspection enables monitoring but not the behavioural change, so this
property is of less significance for us. Moreover, each adaptive system, which
execution is described below is automatically introspective.

2.3. Adaptive Execution

Adaptive execution step is defined in (9). In this case, metalevel data 1Dm can
change in runtime to data 1D(m+1), by execution of metalevel code 1C. This
code itself is nonreflexive, since there is no feedback loop via metadata at
metametalevel 2. On the other hand, a new 1D(m+1) may yield a new 0C(k+1),
continuing its execution at level 0.

 1C ⎯→⎯× 1D(m) 1C ⎯→⎯× 1D(m+1)

 + - ⇒ + -

 0C(k) ⎯→⎯× 0D(k) 0C(k+1) ⎯→⎯× 0D(k+1)

(9)

In this way, code at level 0 may be not just introspective, but also adaptive,

and this fact is essential for an adaptive execution. For example, adaptive
behaviour can be obtained using Smalltalk’s metaobjects that exploit dynamic
metadata 1D(m).

3. Nonreflexive Language Implementation

In this section, we introduce the implementation of simple LL(1) language for
expressions in a nonreflexive manner.

Grammar of the language is written in extended BNF (EBNF), see (10).

E → A { ("+" | "-") A }
A → B [("*" | "/") A]
B → const | "(" E ")"

(10)

where [ϕ] = (ϕ | ε), ε is empty symbol, ϕ is a syntactic expression, and {ϕ} =

ε | ϕ | ϕ ϕ | ... is the transitive closure.
Lexical analyzer and translator to postfix code are common passes to both

compiler and interpreter of the language.
Lexical analyzer translates lexical units from string to symbol form, for

example ”+” to AddL, ”-” to SubL, integer constants const to ValL v, etc. The
correspondence of string and symbol form for all lexical units is visible by
comparison of (10) and (11).

The translator translate translates symbol form of lexical units to postfix
code using syntax directed translation, following the rules (11).

Ján Kollár, Jaroslav Porubän, Peter Václavík, Jana Bandáková, and Michal Forgáč

ComSIS Vol. 4, No. 2, December 2007

122

 E[| A { AddL Ak } |] = A[| A |] { A[| Ak |] Add }
 E[| A { SubL Ak } |] = A[| A |] { A[| Ak |] Sub }
 A[| B [MulL A] |] = B[| B |] [A[| A |] Mul]
 A[| B [DivL A] |] = B[| B |] [A[| A |] Div]
 B[| ValL v |] = Push v
 B[| LparL E RparL |] = E[| E |]

(11)

The translation starts with E[| E |] , since E is starting symbol.
Compiler consists of lexical analyser, translator, machine code generator

and loader. The execution is performed by emulated target machine.
Code generation and loading are composed into single pass. The

transformation of postfix code to machine code by C is defined in (12).

 C[| Add |] = 1 C[| Sub |] = 2 C[| Mul |] = 3
 C[| Div |] = 4 C[| Push x |] = 5 x (12)

where x is integer value, pushed on the stack by instruction Push (code 5).

Machine code is generated and loaded to memory by function genload. In
this way, genload performs code generation as well as loading actions that
are invoked by the application (13)

genload pcode (13)

where pcode is postfix code produced by translator translate. The value

of the application (13) is machine code.
Exit instruction is added (i.e. woven) to machine code in load time to

enable to stop the execution. In this way, the semantics of original LL(1)
language is statically (although not significantly) changed.

Machine architecture comprises program counter pc, the number of
stacked values sp (used instead of stack pointer), the accumulator a, the
memory mem, and the stack stack. An execution step is defined by the
transformation of machine configuration (14).

(pc, sp, a, mem, stack) ⇒ (pc’, sp’, a’, mem’, stack’) (14)

Machine code is executed (emulated) by exec (0,0,0,mcode,[]),

where mcode is target code loaded in memory mem.

translate :: [LexUnit] -> [Instruction]
translate ls = (snd . pE) (ls,[])

Functional Approach to the Adaptationof Languages instead of Software Systems

ComSIS Vol. 4, No. 2, December 2007

123

pE :: (LexUnits,Code) -> (LexUnits,Code)
pE ([],cs) = ([],cs)
pE (ls,cs) = cls (pA (ls,cs)) []
 where cls ([], cs) no = ([], cs++no)
 cls ((l:ls), cs) no
 | l == AddL = cls (pA (ls,cs++no)) [Add]
 | l == SubL = cls (pA (ls,cs++no)) [Sub]
 | otherwise = ((l:ls),cs++no)

pA :: (LexUnits,Code) -> (LexUnits,Code)
pA ([],cs) = ([],cs)
pA (ls,cs) = alt (pB (ls,cs)) []
 where alt ([], cs) os = ([], cs++os)
 alt ((l:ls), cs) os
 | l == MulL = alt (pA (ls,cs)) (os++[Mul])
 | l == DivL = alt (pA (ls,cs)) (os++[Div])
 | otherwise = ((l:ls),cs++os)

pB :: (LexUnits,Code) -> (LexUnits,Code)
 pB ([],cs) = ([],cs)
pB (((ValL x):ls),cs) = (ls,cs++[Push x])
pB ((l:ls),cs) | l == LparL = skipR (pE (ls,cs))
 where skipR ((l:ls'),cs') = (ls',cs')

Fig. 1. Nonreflexive translator to postfix code

Interpreter consists of lexical analyser, translator, and function eval, which

evaluates postfix code pcode directly, according to (15).

eval pcode = v (15)

in which pcode is postfix code produced by the translator and v is the result

of interpretation.
Although compiler and machine emulator have great potential for adaptive

implementation, we will focus on adaptive language using interpreter, for the
limited scope of this paper. A nonreflexive version of interpreter
interpreter is defined by composition, as follows:

interpreter = eval . translate . lexical (16)

Ján Kollár, Jaroslav Porubän, Peter Václavík, Jana Bandáková, and Michal Forgáč

ComSIS Vol. 4, No. 2, December 2007

124

Table 1. The task of adaptation

Variant On condition Requirement
0 none none
1 res < 10 {+, -} → R
2 res ∈ 〈10, 20) {*, /} → L
3 res ≥ 20 {+, -} ↔ {*, /}

Since in the next section we will concentrate to the adaptation of function

translate, which will be generalized, we introduce its nonreflexive version in
Fig. 1. In this version, functions pE, pA, and pB implement the translation
schemes E, A, and B, see (11).

4. Adaptive Language Implementation

First, let us introduce the task of adaptation informally.

Depending on the result of interpretation, the language defined
by (10) and (11) should be changed, and the next interpretation
follows different semantics, i.e. potentially different result of the
same source expression.

We have selected this task taking into account that it affects the most

complex phase – the translation of context-free language to postfix language.
More specifically, let res be a result of interpretation. If res < 10, then we

require operations (+) and (-) be right-associative. If res ∈ 〈10, 20) then we
require (*) and (/) be left-associative. And finally, if res ≥ 20, then mutual
interchange of priority of {+, -} and {*, /} is required.

All mentioned requirements are summarized in Table 1, which contains
also zero variant, corresponding to original priority and associativity of
operations defined by (10), as follows: operations (+) and (-) are left-
associative, and they are of lower priority than operations (*) and (/), that are
right-associative.

According to our specification, if a non-zero variant is selected, the
language will never be adapted to its zero variant.

First, we generalize the translator, using the following methodology:
Comparing the translation schemes of rules for E and A, we define more
general implementation for two rules in the form of function gS, introduced in
Fig. 2.

The adaptability is reached by parameter (s1,t,lo1,o1,lo2,o2,s2) of
gS, by function rules, and by function ap.

Functional Approach to the Adaptationof Languages instead of Software Systems

ComSIS Vol. 4, No. 2, December 2007

125

Looking at (10) and (11), the meaning of parameter
(s1,t,lo1,o1,lo2,o2,s2) items is as follows:
s1 is the first nonterminal, which represents the first occurrence of A in E

rule and B in A rule,
t . . . closure { } or alternative [] switch,
lo1 . . . input coding for the first operator, which represents AddL and

MulL,
o1 . . . output coding for the first operator, which represents Add and Mul,
lo2 . . . input coding for the second operator, which represents SubL and

DivL,
o2 . . . output coding for the second operator, which represents Sub and

Div,
s1 . . . the second nonterminal, the second occurrence of A in E rule, and B

in A rule.

Function rules represents translation rules in a graph form, i.e. as a data

and it is sensitive to the variant. The translation rules are then applied
indirectly – using function ap. Variants that affect the translation rules,
performing translator adaptation, are shown in Fig. 3.

Finally, we define a simple metacode, including also adaptive interpreter
interpreter, see Fig. 4. Using auxiliary function allVariants, we can
verify correctness of adaptive interpretation for all variants, for example:

> allVariants "10-3-1"
= [6,8,6,6]
> allVariants "20-3-1"
= [16,18,16,16]
> allVariants "30-3-1"
= [26,28,26,26]

Function adaptInt performs the change of the language semantics

according to the selected variant k, dependent on previous result of
evaluation.

Function adaptInt takes a source expression and produces the triple: the
first item is the value of the source expression, the second item is selected
variant number depending on this value. The third item – new value is
obtained by interpretation of the same source expression translated to
potentially different postfix code by adapted translator and subsequently
evaluated.

For example, for input expression (10 - 3 - 1) (of value 6), variant 1 is
selected and expression will be re-evaluated as being in the form (10 - (3 -
1)), producing value 8.

This is so, because variant 1 selects pair (v3,v2) from variants, see Fig.
3, and adapts scheme ε in (11) to the scheme

E[| A [AddL E] |] = A[| A |] [E[| E |] Add]

Ján Kollár, Jaroslav Porubän, Peter Václavík, Jana Bandáková, and Michal Forgáč

ComSIS Vol. 4, No. 2, December 2007

126

E[| A [SubL E] |] = A[| A |] [E[| E |] Sub]

For input expression (14 - 3 - 1) (of value 10), variant 2 is selected and the

expression will be re-evaluated as ((14 - 3) - 1), producing the same value 10.
Although variant 2 adapts scheme A to the scheme

A[| B { MulL Bk} |] = B[| B |] { B[| Bk |] Mul }

 A[| B { DivL Bk} |] = B[| B |] { B[| Bk |] Div }

this semantical change does not affect the expression, in which just

subtraction is applied.
The evaluation in both cases described above is as follows:

> adaptInt "10-3-1"
= (6,1,8)
> adaptInt "14-3-1"
= (10,2,10)

But notice, adaptInt "64/8/2" would evaluate first time to 16, but for

the second time to 4.
Our metacode can be extended for solving more powerful tasks, and

different metadata variants may result to semantically different adaptation
effects. It can be also noticed, that adaptive language implementation is
stronger than an introspective one. For example, an introspective task is such
as counting the number of addition operations used in an expression.

5. Discussion and Related Works

The work presented in this paper comes out from our past research in the
application of our process functional paradigm [6,7] to the aspect-oriented
languages [5,10,12], until we have recognized that statically defined
semantics of the language of pointcut designators weakly supports the
adaptability, which we follow. The detailed analysis of this fact is over the
scope of this paper, but having performed this we have decided to return back
to Lieberherr’s [8] concept of adaptive systems, and even to their essential
principles, such as metaprogramming and reflection. Some ideas about
application of aspect-oriented programming to software evolutionary changes
can be found in [1].

In this paper, we have used a purely functional approach using Haskell
[11], but without monads [13], to simplify the notation as much as possible.
Close relation of our adaptive language implementation and adaptive
execution (9) is still visible: we abstract multiple translators by single translate

Functional Approach to the Adaptationof Languages instead of Software Systems

ComSIS Vol. 4, No. 2, December 2007

127

k function, but this is equivalent to the association of a new version of
translator via a new metadata.

A two-dimensional separation of concerns for compiler construction [14]
tends us to think about multi-dimensional domain specific language evolved in
multiple metalevels.

translate :: Int -> [LexUnit] -> [Instruction]

 translate k ls = (snd . pE) (ls,[])
 where
 rules = [("E", gS v1), ("A", gS v2), ("B", pB)]
 where (v1,v2) = variants !! k

 ap nt = snd (head [(n,f) | (n,f) <- rules , n==nt])

 pE = ap "E"

 gS :: (String,Char, LexUnit,Instruction,LexUnit,

Instruction,String) -> (LexUnits,Code) -> (LexUnits,Code)
 gS (s1,t,lo1,o1,lo2,o2,s2) ([],cs) = ([],cs)
 gS (s1,t,lo1,o1,lo2,o2,s2) (ls,cs)
 | t == 'c' = cls ((ap s1) (ls,cs)) []
 | t == 'a' = alt ((ap s1) (ls,cs)) []
 where
 cls ([], cs) no = ([], cs++no)
 cls ((l:ls), cs) no
 | l == lo1 = cls ((ap s2) (ls,cs++no)) [o1]
 | l == lo2 = cls ((ap s2) (ls,cs++no)) [o2]
 | otherwise = ((l:ls),cs++no)
 alt ([], cs) os = ([], cs++os)
 alt ((l:ls), cs) os
 | l == lo1 = alt ((ap s2) (ls,cs)) (os++[o1])
 | l == lo2 = alt ((ap s2) (ls,cs)) (os++[o2])
 | otherwise = ((l:ls),cs++os)

 pB :: (LexUnits,Code) -> (LexUnits,Code)
 pB ([],cs) = ([],cs)
 pB (((ValL x):ls),cs) = (ls,cs++[Push x])
 pB ((l:ls),cs)
 | l == LparL = skipR ((ap "E") (ls,cs))
 where
 skipR ((l:ls'),cs') = (ls',cs')

Fig. 2. Adaptive translator to postfix code

variants = [(v1,v2), (v3,v2), (v1,v4), (v5,v6)]
 where v1 = ("A",’c’,AddL,Add,SubL,Sub,"A")

Ján Kollár, Jaroslav Porubän, Peter Václavík, Jana Bandáková, and Michal Forgáč

ComSIS Vol. 4, No. 2, December 2007

128

 v2 = ("B",’a’,MulL,Mul,DivL,Div,"A")
 v3 = ("A",’a’,AddL,Add,SubL,Sub,"E")
 v4 = ("B",’c’,MulL,Mul,DivL,Div,"B")
 v5 = ("A",’a’,MulL,Mul,DivL,Div,"E")
 v6 = ("B",’c’,AddL,Add,SubL,Sub,"B")

Fig. 3. Definition of variants

selVariant v | v < 10 = 1
 | v >= 10 && v < 20 = 2
 | v >= 20 = 3

interpreter k = eval . translate k . lexical

adaptInt s = (res, variant, interpreter variant s)
 where
 res = interpreter 0 s
 variant = (selVariant res)

allVariants s = [interpreter 0 s,
 interpreter 1 s,
 interpreter 2 s,
 interpreter 3 s]

Fig. 4. Metalevel code

This approach has sense, if each higher metalevel generalizes lower

metalevel very concisely, and the computational time does not increase
significantly.

In contrast to language evolution by inferring a language from samples of
programs [3], our approach is based on inferring a metalanguage from
samples of metaprograms.

6. Conclusion

We have presented the classification of software systems considering the
degree of adaptibility. We recognize non-reflexive, introspective and adaptive
systems. The most powerful case of behaviour – adaptive behaviour is
analyzed and implemented using a simple LL(1) language. Non-reflexive
interperter of this language, written in Haskell functional language, is
transformed, and its adaptive version is obtained. In this way we provide a
language able to react to the run-time event.

Functional Approach to the Adaptationof Languages instead of Software Systems

ComSIS Vol. 4, No. 2, December 2007

129

Presented adaptive LL(1) language can be extended in many directions,
exploiting feedback loops from any phase to any phase of compiler, via
metadata. Using an object-oriented language, adaptive behaviour (9) would
be directly implemented, instead of current abstraction of an expression e to
(λk.e), where k is a parameter designating a version. Presented
generalization of two translation rules is just ad-hoc solution, and it is
necessary to extend it to all constructs of EBNF or BNF. Instead of
nonreflexive interpreter

interpreter = eval . translate . lexical

using abstraction and generalization, we have developed adaptive

interpreter, as follows.

interpreter k = eval . translate k . lexical

The main contribution of this work, from the viewpoint of our future

research, is as follows.
Provided that a level or metalevel is adaptive, it contains feedback loops

from data to code via metalevel or metametalevel, respectively. Even if any
level or metalevel is adaptive, it still must be manually initiated (programmed,
specified, modelled). By the way, this is an essential principle of control
systems. The task of adaptability is to reduce this manual work, or to shift it to
the higher metalevels. There is no need for a universal language, just for a
multi-metalevel domain specific language, which is able to express current
and future properties of a system accurately.

We may conclude, that the most significant, except the generalization of
our ad-hoc use of extended BNF form and denotational semantics, is the
extension to any metalevel l for lC, lD and combining of lCP, lDP at the same
level, considering different programming, specification, and modeling
paradigms P.

This however is impossible to do exploiting purely functional approach,
which we have used in this paper to illustrate how a simple language can be
adaptive. Instead of that, at least two other approaches come into account,
using monadic functional or metaobjects languages.

7. References

1. Bebjak, M., Vranić, V., Dolog, P.: Evolution of Web Applications with Aspect-
Oriented Design Patterns. Proc. of the 2nd International Workshop on Adaptation
and Evolution in Web Systems Engineering (AEWSE'07), Como, Italy, July 2007.
CEUR Workshop Proceedings, ISSN 1613-0073. http://CEUR-WS.org/Vol-
267/paper7.pdf.

2. Czarnecki, K., Eisenecker, U.E.: Generative Programming: Methods, Tools, and
Applications. Addison Wesley (2000), 832 pp.

Ján Kollár, Jaroslav Porubän, Peter Václavík, Jana Bandáková, and Michal Forgáč

ComSIS Vol. 4, No. 2, December 2007

130

3. Črepinšek, M., Mernik, M.: Inferring Context-Free Grammars for Domain-Specific
Languages, Conf. on Language Descriptions, Tools and Applications, LDTA 2005,
April 3, 2005, Edinburgh, Scotland, UK, pp. 64–81.

4. Ebraert, P., Tourwe, T.: A Reflective Approach to Dynamic Software Evolution. In
the proceedings of the Workshop on Reflection, AOP and Meta–Data for Software
Evolution (RAM–SE’04), June 2004, pp. 37–43.

5. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
Overview of AspectJ. ECOOP’01, 2001, LNCS, vol. 2072, pp. 327–355.

6. Kollár, J.: Object Modelling using Process Functional Paradigm. Proc. ISM’2000,
Rožnov pod Radhoštěm, Czech Republic, May 2–4, 2000, pp. 203–208.

7. Kollár, J.: Unified Approach to Environments in a Process Functional Programming
Language. Computing and Informatics, 22, 5, 2003, pp. 439–456.

8. Lieberherr, K.: Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns (1996), Northeastern University May 23, 1995, 33pp.

9. Laddaga, R., Robertson, P., Shrobe, H.: Self-Adaptive Software: Internalized
Feedback. Chapter 26 in Software Evolution and Feedback: Theory and Practice,
Wiley, 2006, 612 pp. ISBN 0470871806.

10. Masuhara, H., Kiczales, G.: Modeling crosscutting in aspect–oriented
mechanisms. In ECOOP 2003 – Object–Oriented Programming European
Conference,Springer–Verlag, 2003, pp. 2–28.

11. Peyton Jones, S.L.,Hughes, J. [editors]: Report on the Programming Language
Haskell 98 - A Non-strict, Purely Functional Language. February 1999, 163 pp.

12. Steimann, F.: The paradoxical success of aspect-oriented programming. OOPSLA
2006, 2006, pp. 481–497.

13. Wadler, P.: The essence of functional programming, In 19th Annual Symposium
on Principles of Programming Languages, Santa Fe, New Mexico, January
1992,pp. 1–14.

14. Wu, W., Roychoudhury, S., Bryant, B.R., Gray, J.G., Mernik, M.: A Two-
Dimensional Separation of Concerns for Compiler Construction. Proceedings of
the 2005 ACM symposium on Applied computing, 2005, pp. 1365–1369.

Ján Kollár is Associate Professor of Informatics at Department of Computers
and Informatics, Technical university of Košice, Slovakia. He received his
M.Sc. summa cum laude in 1978 and his Ph.D. in Computer Science in 1991.
In 1978-1981 he was with the Institute of Electrical Machines in Košice. In
1982-1991 he was with Institute of Computer Science at the P.J. Šafárik
University in Košice. Since 1992 he is with the Department of Computer and
Informatics at the Technical University of Košice. In 1985 he spent 3 months
in the Joint Institute of Nuclear Research in Dubna, USSR. In 1990 he spent 2
months at the Department of Computer Science at Reading University, UK.
He was involved in research projects dealing with real-time systems, the
design of microprogramming languages, image processing and remote
sensing, dataflow systems, implementation of programming languages, and
high performance computing. He is the author of process functional
programming paradigm. Currently his research area covers formal languages
and automata, programming paradigms, implementation of programming
languages, functional programming, and adaptive software and language
evolution.

Functional Approach to the Adaptationof Languages instead of Software Systems

ComSIS Vol. 4, No. 2, December 2007

131

Jaroslav Porubän is Assistant Professor of Informatics at Department of
Computers and Informatics, Technical university of Košice, Slovakia. He
received his MSc. in 2000 and his Ph.D. in Computer Science, in 2004. Since
2003 he is with the Department of Computers and Informatics at Technical
University of Košice. He was involved in the research of profiling based on
process functional language. The subjects of his research are formal
languages and automata, implementation of programming languages,
programming and modeling paradigms, functional and parallel programming,
aspect-oriented languages, generic programming and modeling, and adaptive
software and language evolution.

Peter Václavík is Assistant Professor of Informatics at Department of
Computers and Informatics, Technical university of Košice, Slovakia. He
received his MSc. in 2000 and his Ph.D. in Computer Science, in 2004. Since
2003 he is with the Department of Computers and Informatics at Technical
University of Košice. He was implementing object oriented version of PFL
language. The subjects of his research are programming paradigms, abstract
types, functional programming, aspect-oriented languages, aspect
programming, and adaptive software and language evolution.

Jana Bandáková is doctoral student at Department of Computers and
Informatics, TU of Košice, Slovakia. She received her MSc. in Informatics at
Technical University of Košice, Slovakia, in 2005. The subjects of her
research are modeling paradigms and the development of adaptive models in
software evolution.

Michal Forgáč is doctoral student at Department of Computers and
Informatics, TU of Košice, Slovakia. He received his MSc. in Informatics at
Technical University of Košice, Slovakia, in 2006. The subject of his research
is metaprogramming, programming paradigms, and systems evolution by run-
time adaptation.

Ján Kollár, Jaroslav Porubän, Peter Václavík, Jana Bandáková, and Michal Forgáč

ComSIS Vol. 4, No. 2, December 2007

132

