
UDC 004.428

A simple implementation of grammar libraries

Julien Cervelle, Rémi Forax and Gilles Roussel

Université Paris-Est
Laboratoire d'informatique de l'Institut Gaspard-Monge UMR CNRS 8049

5 bd Descartes, 77454 Marne la Vallée Cedex 2, France

Abstract. This paper presents an extension of the Tatoo compiler compiler
that supports separate compilation and dynamic linking of formal gram-
mars. It allows the developer to define reusable libraries of grammars
such as those of arithmetic expressions or of classical control operators.
The aim of this feature is to simplify the development of domain specific
languages especially for non specialists in grammar writing.

1. Introduction

This paper presents an extension of the Tatoo compiler compiler [1] that pro-
vides the developers of formal grammars with separate compilation. It allows to
use predefined libraries of general purpose grammar, possibly with its semantic
support. Surprisingly this feature is not available in popular compiler compilers
such as Bison [2], ANTLR [3] or JavaCC [4].

We consider that such a mechanism would simplify the elaboration of formal
grammars. This is especially necessary for non-specialists of grammar writ-
ing who want, for instance, to develop small domain specific languages (DSL)
without being bothered by the cumbersome design details of long-time and of-
tentimes already written grammars. Analogous module mechanisms are avail-
able in LISA [5] or Rats! [6]. However, they work at source level and need
re-compilation of all the parts of the grammar.

By separate compilation, we mean that the developer should be able to split
the specification of the grammar into several sub-parts and to compile each in-
dependently into parsing tables. Afterwards, they can link these grammar frag-
ments together dynamically with minimum overhead. With such a mechanism
it is then possible to create pre-compiled libraries, such as arithmetic expres-
sions or classical control structures, and to reuse them in different contexts at
no extra cost. Modules separate compilation provides independent reporting
of table construction errors, simplifying the tuning of grammars. There can be
no LR conflicts neither coming from precompiled libraries nor due to the linking

Julien Cervelle, Rémi Forax and Gilles Roussel

phases, since the global LR table is never constructed. Moreover, Tatoo archi-
tecture allows semantics to be embedded along with pre-compiled grammars,
and possibly several different semantics for various purposes (building abstract
syntax trees, writing intermediate code or java bytecode, etc.).

The base principle of the separate compilation provided by Tatoo is to con-
struct special parser tables for incomplete grammars and to be able, at runtime,
to call another parser when necessary. The grammar is incomplete in special
places, called branch points, that are place holders for other grammar start sym-
bols. The dynamic linking only requires specifying the precise grammar to be
plugged in the branch point. At runtime, the basic idea is to switch from one
parser (grammar) to another in branch point when a parse error is encountered.
Note that with this approach there is no backtracking, the branching is done
only when an error occurs. The current running parser is always of utmost im-
portance. When the running parser is unable to recognize the input sequence,
either a new parser is called or the error is considered as the end-of-input for
the current parser. Due to this specific behavior, the language accepted by
the parser may be slightly different from the one recognized without separate
compilation (see Section 3..6) for some uncommon grammar cutting.

The rest of this paper is organized as follows. Section 2 presents an short
overview of Tatoo. Section 3 provides details about the separate compilation
and dynamic linking in Tatoo. Section 4 presents a complete example illustrating
these features. Section 5 presents related works and a conclusion.

2. Tatoo overview

Given a set of regular expressions, a formal grammar and several semantic
hints, Tatoo, generates Java implementations for a lexer, a parser (SLR, LR(1)
or LALR(1)) and several implementation glues allowing to run a complete ana-
lyzer that creates trees or computes simpler values. Thanks to a clean sepa-
ration, the lexer and the parser may be used independently. Moreover, these
implementations are independent of a particular semantic evaluation and may
be reused, in different contexts, without modification.

A library is provided for runtime support. It contains generic classes for lexer
and parser implementation, glue code between lexer and parser, a basic AST
support and some helper classes that ease debugging. Generated Java code
uses parametrized types and enumeration facilities to specialize this runtime
support code. All memory allocations are performed at creation time.

One main feature of the generated lexer and parser resides in their ability to
work in presence of non-blocking inputs such as network connections. Indeed,
the Tatoo runtime supports push lexing and parsing. More precisely, contrarily
to most existing tools, Tatoo lexers do not directly retrieve ``characters'' from
the data input stream but are fed by an input observer. The lexer retains its

66 ComSIS Vol. 4, No. 2, December 2007

A simple implementation of grammar libraries

lexing state and resumes lexing when new data is provided by the observer.
When a token is unambiguously recognized the lexer pushes it to the parser
in order to perform the analysis. A classical pull implementation based on this
push implementation is also provided.

Another innovative feature of Tatoo is its support of language versions. This
is provided by two distinct mechanisms. First, productions can be tagged with
a version and the Tatoo engine produces a shared parser table tagged with
these versions. Then, given a version provided at runtime, the parser selects
dynamically the correct actions to perform. Second, the glue code linking the
lexer and the parser supports dynamic activation of lexer regular expressions
according to the parser context: the lexer only tries to recognize the token that
are in the expected lookaheads of the current state of the parser. This feature
permits, in particular, the activation of keywords according to the version only
when they are expected [1]. For instance, one could name a local variable in a
Java method public.

3. Grammar library implementation

In this section the details of the mechanisms that provide the separate compila-
tion and the dynamic linking are presented.

3.1. Specification

In order to provide separate compilation, the developer must be able to specify
incomplete grammars. This feature is supported by three of Tatoo's mecha-
nisms in the grammar specification.

First, to specify an incomplete grammar, the developer omits some parts
of the grammar specifying branch points that are special non-terminals. For
each of these branch points, at runtime, another grammar (possibly also incom-
plete) start symbol is associated. In order to differentiate intentional splitting of
the grammar from unused non-terminals (developer's errors that are statically
checked) the non-terminals corresponding to branch points are explicitly des-
ignated. This is done through the special keyword branches in the grammar
specification.

Second, to enable different input points in the grammar, it is possible in Tatoo
to specify several start symbols [1]. In the context of the construction of libraries,
this mechanism permits, for instance, the factorization of similar parts of different
grammars into a single one, allowing the semantics associated with it to be
shared. Multiple start symbols may be specified in Tatoo using the starts
keyword.

Finally, the notion of version available in Tatoo [1] allows the developer to
make its library grammars evolve without breaking the backward compatibility

ComSIS Vol. 4, No. 2, December 2007 67

Julien Cervelle, Rémi Forax and Gilles Roussel

for the users of preceding versions.

3.2. Compilation

The compilation process of incomplete grammars consists of two steps. First,
non-terminals corresponding to branch points are considered from the compila-
tion point of view, exactly as classical terminals of the grammar (even if from a
grammar theory point of view, the branch points behave more like non-terminals)
and the construction of SLR, LR(1) or LALR(1) tables are produced by the Tatoo
engine. Then, the base idea is to consider that parser branching or exiting will
be performed when an error occurs. The semantic of this behavior is to consider
that the running parser is of utmost importance since Tatoo branches to a sub-
parser only when an error occurs. These errors may correspond to a branch
point or to the end-of-input of a sub-parser or to real parsing errors. Thus, for all
of the states where there is a non-error action associated to a lookahead corre-
sponding to a branch point or the end-of-input terminal, Tatoo statically replaces
the error action with an access to the branching table.

The branching table associates each state with the action to perform if an
error occurs. There are four kinds of actions in the branching table: a classical
reduction, an enter, an exit or an error.

The branching table is computed from the regular LR action table using the
following algorithm:

For each state s in the LR table:

If s is an accepting state:

add an exit action in the branching table for s

For each shift in s via a branch point t:

add an enter t action in the branching table for s

remove from s the shift t action in the LR table

For each reduction of a production p in s with lookahead l:

If l is a branch point or the end-of-input terminal:

add a reduction of p action in the branching table for s

If no action has been added for s in the branching table

add an error action in the branching table for s

The behavior of the actions in the branching table is:

• the enter t action notifies that the parser associated with t should be started;

68 ComSIS Vol. 4, No. 2, December 2007

A simple implementation of grammar libraries

• the exit action notifies that the current parser must exit and that calling
parser must be resumed. It raises an error if the latter does not exists (i.e.
the current parser is at top level).

The translation of actions of the regular table into actions the branching table
is summarized below:

Lookahead Action Branch action
end-of-input accept exit
end-of-input reduce reduce
branch point shift enter
branch point reduce reduce

During the construction of the branching table some conflicts may occur
since several actions can be associated to the end-of-input and/or multiple branch
points in a given state. Among classical shift-reduce and reduce-reduce con-
flicts, new conflicts involving enters and/or exit could occur. For instance, if there
is a state where two branch points are possible. Indeed, since, in our approach,
the actions associated to end-of-input and the branch points all go into the same
table, it is sometimes impossible to choose which action to perform on errors:
enter, reduce or exit. These conflicts are detected statically when the branch-
ing table is constructed for the incomplete grammar. They may be resolved
in Tatoo using priorities associated by the developer with the end-of-input, the
branch points and the productions.

3.3. Dynamic linking

Now that we have provided separate compilation of grammar tables, the tables
of different grammars have to be linked together to obtain a global parser. The
user has to specify the association between the branch points and the sub-
grammars. The association provides the start symbol and the version to be
used by the sub-parser. This declarative specification is used to generate a
Java implementation that registers proper listeners for enter and exit actions. It
also creates an instance of each lexer and parser that will be necessary during
the parsing process so that no new memory is needed during the parsing, except
possibly parser stack extension.

3.4. Runtime

At runtime, the top level lexer and parser are started like classical Tatoo parsers.
If a token is recognized by the lexer, since Tatoo runtime only activates rules
corresponding to the terminals leading to non-error actions, the parser never
fails and the classical table is used to retrieve the action, shift, reduce or accept

ComSIS Vol. 4, No. 2, December 2007 69

Julien Cervelle, Rémi Forax and Gilles Roussel

that needs to be performed. When a lexer error occurs the branching table of
the current grammar is queried.

If a reduce action is encountered, it is performed, a new state is reached in
the branching table and a new action has to be perform.

If an enter action is found, the registered listener looks at the lexer and
parsers instances to be activated, pushes a new stack frame to allow recur-
sive calls to the same grammar and call the new parsing process. Moreover,
the input characters previously read by the lexer before the error occurred, must
be “pushed back” .

If it is an exit action, the registered listener closes the parser and the lexer,
returns to the enclosing parser and lexer and restarts them in a state reached
after the execution of the shift of the branching point.

Otherwise, a parsing error is thrown and the error recovery policy is acti-
vated.

The Figure 1 displays a diagram of the connections between lexers, parsers
and other mechanisms.

Fig. 1. Transfer between lexers and parsers at runtime

However, in special cases, the enter and the exit actions may result in a
runtime error. The enter action may result in an error if no listener has been
registered by the dynamic linking phase. These kinds of errors can be warned by

70 ComSIS Vol. 4, No. 2, December 2007

A simple implementation of grammar libraries

the linking phase, checking that every branch point of a grammar is associated
to a start symbol of ``another'' grammar, but are not considered errors in case
a developper does not want to use all the branch points of the grammar library.
The exit action may also result in an error if the parser is the top-most in the
stack.

3.5. Dealing with the semantics

Contrary to most parser generators [3, 4, 7, 8, 2] Tatoo's grammar specification
does not embed any foreign languages (like C, Java etc.) to express the seman-
tics [1]. Tatoo's specification requires a name for each production and a type
for each terminal and non-terminal. Based on this information Tatoo generates
a Java interface that allows the developers to implement the semantics. Thus,
the semantics of grammar libraries is easily reusable.

A developer can choose to provide a single class for the whole parser by im-
plementing all of the semantic interfaces or to reuse library classes implement-
ing the interface of each grammar semantic part. The sharing of the semantic
stack allows the semantics to work altogether: when the embedded parser ex-
its, the result of its evaluation is pushed on the common semantic stack. The
enclosing parser accesses the value popping it from the stack.

3.6. Separate compilation versus source level approach

Given a grammar decomposed into several parts, the set of cooperating parsers
produced using Tatoo's separate compilation mechanism do not recognize ex-
actly the same language as the parser produced if the different grammar parts
are combined into a unique source file. Indeed, in our approach the table con-
struction is purely local and there is no information propagation between the
different grammar parts. In particular, transitive closure of states in the LR table
construction does not (and could not) propagate through non-terminals corre-
sponding to branch points.

For instance, given the following grammar:

A = B 'y'
B = B 'y' | 'y'

The language recognized by this grammar is yy+. Supposing that the gram-
mar is decomposed into two parts: one for A = B 'y' and one for B = B 'y'
| 'y' where B is a branch point. The set of cooperating parsers produced
by Tatoo's separate compilation do not recognize any input sequence. Indeed,
given the input sequence yy the sub-parser associated with the first produc-
tion leads to an error on the branch point B since the ``internal'' terminal 'B',
which is the only one expected, is never found in the input sequence. Using

ComSIS Vol. 4, No. 2, December 2007 71

Julien Cervelle, Rémi Forax and Gilles Roussel

the branching table, the parser activates the sub-parser corresponding to the
second production. This new parser recognizes y+ until the end-of-input is
reached. Then, the parser associated to the first production is restarted with a
shift on the ``internal'' terminal 'B'. Since the input sequence no longer contains
y anymore, an error is produced and the classical error recovery mechanism is
called.

This kind of problem occurs when there is a race for the same terminal be-
tween the enclosing parser on reset and the internal parser before the end-of-
input.

Furthermore at lexer level: different regular expressions may recognize a
same input sequence. It is even more complex since one regular expression
may only recognize a prefix of input sequence recognized by another. How-
ever, this problem is also present in source level approaches. Indeed, lexer
specifications usually rely on regular expression priorities based on textual or-
der. Merging these specifications also raises the problem of a global order on
the regular expressions which is comparable to ours.

Since one of the aims of Tatoo was to allow efficient ``synchronous'' parsing,
backtracking has not been considered for solving this problem. We consider that
this kind of breaking down of the grammar should not be very common in prac-
tice since grammar parts should correspond to loosely coupled self-contained
modules.

3.7. Library approach versus inheritance

For the sake of simplicity we have chosen to use our library mechanism to ex-
tend incomplete grammars in special places. However, a comparable mecha-
nism could be used to implement an inheritance mechanism for complete gram-
mars.

The inheritance approach has the advantage of freeing the developer from
the specification of branch points. Any non-terminal of the grammar may be
extended with special library, simplifying the reusability of grammars.

However, it has drawbacks. To permit the extension in any non-terminal,
the grammar has to be extended by Tatoo. A new production must be created
for each non-terminal deriving in a new branch point. This enlarges the tables
produced by Tatoo and may lead to conflicts. Indeed, for each empty production,
there is potentially an enter-enter conflict.

For instance, if the grammar is the following:

S = A B;
A = 'a' | ;
B = 'b';

It is extended as follows by Tatoo:

72 ComSIS Vol. 4, No. 2, December 2007

A simple implementation of grammar libraries

S = A B;
A = 'a' |

| branchA;
B = 'b'

| branchB;

Then, a conflict appears in the branching table between actions enterbranchA
and enter branchB. The conflict may be solved using priorities on non-terminals.

This approach to support inheritance is not very efficient. Indeed, most of
the information added in the tables is not used and the conflicts usually never
appear.

4. Example

In this section, we present a complete example demonstrating how Tatoo's sep-
arate compilation feature may be used to develop “grammar libraries” and how it
helps people who are not accustomed to writing grammars to incorporate them
into simpler grammars.

Supposing that one wants to design a simple DSL for an application, such
as simple routines to automate tasks in an application. Usually, the syntax for
the routine carries the form of a well-known language but with special entry
points and special end points and constructions. For instance, in a spreadsheet
program, the programming language consists of mathematical expressions and
the entry point is an “=” symbol, and the end points are the special naming of
cells (like A3:A4, A$3, etc.) and function call..

4.1. Defining the library

Then, to implement such a spreadsheet program, one could use an already writ-
ten and compiled grammar library for all mathematical expressions and control
structures.

The following grammar is an example of incomplete grammar written in Tatoo's
EBNF format that defines this library:

priorities:
plus_minus= 1 left
star_slash= 2 left

tokens:
lpar= '\('
rpar= '\)'
plus= '\+' [plus_minus]
minus= '-' [plus_minus]
star= '*' [star_slash]
slash= '\/' [star_slash]

blanks:
space= "(|\t|(\r?\n))+"

ComSIS Vol. 4, No. 2, December 2007 73

Julien Cervelle, Rémi Forax and Gilles Roussel

branches:
idBranchPoint

starts:
expr

productions:
expr = expr 'plus' expr [plus_minus]

| expr 'minus' expr [plus_minus]
| expr 'star' expr [star_slash]
| expr 'slash' expr [star_slash]
| 'lpar' expr 'rpar'
| idBranchPoint
;

In this specification one should notice in the branches section, the use of
the branch point idBranchPoint. This allows the developer to choose their
own atomic expressions: the spreadsheet endpoints.

This grammar is then taken as an input of the Tatoo compiler. It generates
the LR table together with the branching tables related to this grammar. Thanks
to priorities, there is no conflict in these tables.

4.2. Using the library

If the ``arithmetic expressions'' library is available, the user only needs to write
the grammar specific to the spreadsheet application. This specification has to
contain a start symbol start for the global parser and a special start symbol
endpoint to define the syntax for the cell description and functions.

Using the Tatoo ebnf syntax1, the spreadsheet grammar may be specified
as follows:

tokens:
assign= '='
comma= ','
colon= ':'
lpar= '\('
rpar= '\)'
dollar= '\$'
number= '[0-9]+'
identifier= '[a-zA-Z]+'

blanks:
space= "(|\t|(\r?\n))+"

branches:
exprBranchPoint

starts:
start
endPoint

productions:
start = 'assign' exprBranchPoint

1The notation exprBranchPoint/'comma'* means zero or more exprBranchPoint sepa-
rated by comma.

74 ComSIS Vol. 4, No. 2, December 2007

A simple implementation of grammar libraries

;
endPoint = 'dollar' 'identifier' 'dollar'? 'number' range?

| 'identifier' identifierOrFunction
;

identifierOrFunction = 'lpar' exprBranchPoint/'comma'* 'rpar'
| 'dollar'? 'number' range?
;

range = 'colon' 'dollar'? 'identifier' 'dollar'? 'number'
;

This specification contains one branch point exprBranchPoint which is
the place holder for the arithmetic expressions. The arithmetic expression library
calls back this grammar to recognize the end points (identifier or function) of the
spreadsheet application. Thus, this specification contains two parts related by
the arithmetic expressions library.

Note that to work properly, neither identifiers nor functions should appear as
a token in the arithmetic expressions library. Should this be the case, an input
sequence such as A3:B4 would not be recognized properly (see section 3..6).
Indeed, in this case A3 would be recognized as a function identifier by the library
and the error would occur on the ':'. For sake of efficiency, we do not want to
backtrack on errors and ':' is not a correct branch point so the branching fails.
However, as libraries are usually provided by grammar-aware individuals, they
are typically well-written and DSL writers should not be aware of this difficulty.

4.3. Dynamic linking

The last part of the specification has to do with wiring up the grammars to-
gether. This is done with a specific Tatoo language. The specification details
the files that contain the different grammar parts2 and the associations between
the branch points and the grammar start symbols together with their version.

For instance for the previous example this file looks like3:

grammars:
expr= "grammars/expr/expr.tlib"
spreadsheet= "grammars/spreadsheet/spreadsheet.tlib"

links:
spreadsheet.exprBranchPoint = expr.start
expr.idBranchPoint = spreadsheet.endPoint

This file is translated into a Java code. This implementation provides a global
analyzer that creates one lexer and one parser for each grammar. All the lexers
share the same input buffer. To support recursive calls of grammars, like the

2Compiled parsers are packed-up into a specific Jar file with extension .tlib that contains
their tables together with necessary meta-information.

3Since our grammar examples do not contain version, no version information appears in this file.

ComSIS Vol. 4, No. 2, December 2007 75

Julien Cervelle, Rémi Forax and Gilles Roussel

spreadsheet example, a each parser uses its own stack frame. The stack for
the semantics is shared by all the parsers.

Each parser is configured using a parser listener. Each listener contains an
association between a branch point and a pair lexer/parser to be started on a
given start symbol.

5. Related works and conclusion

As far as we know there is no parser generator that supports the separate com-
pilation of grammars.

Several tools such as ANTLR2 [3], Rats! [6] or LISA and its extensions [5, 8]
provide built-in features that simplify software engineering and modular devel-
opment. However, these tools require the construction of a global specification
before the generation of tables. They can be viewed as pre-processors in the
compiler compiler chain.

The ELL Parser Library [9] is a tool that supports the dynamic extension of
parsers. It allows the developer to extend the grammar at runtime and uses
a backtracking mechanism to solve the ambiguities in the LL table extended
dynamically. It proposes a mechanism to suspend the parser at runtime which
is comparable to Tatoo's one.

Tatoo's approach is not in contradiction with the previous approaches. How-
ever, to preserve online parsing with low memory consumption, we chose not
to introduction backtracking in Tatoo's implementation. Moreover, Tatoo's mod-
ularity works at a lower level. It avoids the construction of a global grammar
before the generation of a parser and it sees the parser as a set of small co-
operating parsers. A very simple semantics has been adopted to follow or to
exit branch points in the grammar. The current running parser is always of the
utmost importance and branching points, or leaving of the parser are only con-
sidered when the lexer detects an error. Priorities may be used to solve potential
conflicts.

Further work under consideration involves checking if other mechanisms that
support modularity such as aspect programming can be implemented using sep-
arate compilation. We could also use a Tatoo library mechanism to implement
dynamic extensions of the grammar since Tatoo already supports the creation
of tables at runtime.

Moreover, it is still not clear whether or not this splitting approach could ex-
tend to the class of global grammars accepted as input for Tatoo. Further inves-
tigation needs to be undertaken in this direction.

Acknowledgments

Thank you to Marjan Mernik and Boštjan Slivnik for their fruitful discussion.

76 ComSIS Vol. 4, No. 2, December 2007

A simple implementation of grammar libraries

6. References

1. Cervelle, J., Forax, R., Roussel, G.: Tatoo: An innovative Parser Genera-
tor. In: Proc. of the 4th Int. Conf. PPPJ'06. ACM International Conference
Proceedings, Mannheim, Germany (August 2006) 13--20

2. Aaby, A.: Compiler construction using flex and bison.
http://cs.wwc.edu/˜aabyan/464/Book/ (1996)

3. Parr, T.J., Quong, R.W.: ANTLR: A predicated-LL(k) parser generator. Soft-
ware Practice and Experience 25(7) (1995) 789--810

4. Kodaganallur, V.: Incorporating language processing into java applications:
A JavaCC tutorial. IEEE Software 21(4) (August 2004) 70--77

5. Mernik, M., Korbar, N., Zumer, V.: LISA: A tool for automtic language im-
plementation. SIGPLAN Notices 30(4) (1995) 71--79

6. Grimm, R.: Better extensibility through modular syntax. In: Proc. of PLDI'06.
(2006) 38--51

7. Gagnon, E.M., Hendren, L.J.: SableCC, an object-oriented compiler frame-
work. In: Technology of Object-Oriented Languages and Systems, IEEE
Computer Society (1998) 140--154

8. Rebernak, D., Mernik, M., Henriques, P.R., Pereira, M.J.V.: AspectLISA: An
aspect-oriented compiler construction system based on attribute grammars.
Electr. Notes Theor. Comput. Sci. 164(2) (2006) 37--53

9. Plesner Hansen, C.: An Efficient, Dynamically Extensible ELL Parser Li-
brary. PhD thesis, University of Aarhus, Denmark (May 2004)

ComSIS Vol. 4, No. 2, December 2007 77

