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Abstract. A prototype compiler of the ST language (Structured Text), its 
operation and internal structure is presented. The compiler is a principal 
part of CPDev engineering environment for programming industrial 
controllers according to IEC 61131-3 standard. The CPDev is under 
development at Rzeszów University of Technology. The compiler 
generates an universal executable code as final result. The code can be 
interpreted on different platforms by target-specific virtual machines. 
Sample platforms include AVR, ARM, MCS-51, PC. 

1. Introduction 

The main goal of the IEC 61131-3 standard introduced in 1998 was to 
increase quality of programmable controllers software [5]. By defining special 
programming languages and procedures it frees designers from using general 
purpose languages like C, focusing instead on implementation of control 
algorithms. 

This paper describes a prototype environment for programming industrial 
controllers according to the IEC 61131-3 standard. The environment, called 
CPDev (Control Program Developer), is built around the Microsoft .NET 
Framework [8] using C# language. Its main component is the compiler which 
transforms programs written in ST, one of five IEC 61131-3 languages [5], to 
an universal executable code. ST is a high level language, similarly to Pascal, 
Ada and C. Among the other IEC languages, ST seems the most flexible, so it 
was chosen as the base for CPDev. Specification of the executable code has 
been prepared in such a way, that the resulting code can be executed on 
different target platforms, so small microcontrollers or larger microprocessors, 
via target-specific virtual machines. Therefore the code is called universal. 
The machines operate as interpreters of this code. Generally speaking, the 
approach resembles the concept of Java virtual machines designed for 
implementation on different platforms [6]. The CPDev basic machine is written 
in industry standard C for easy adaptation for various C compilers. 

                                                      
1 This research has been supported by MNiSzW under the grant R02 058 03 



Dariusz Rzońca, Jan Sadolewski, and Bartosz Trybus 

ComSIS Vol. 4, No. 2, December 2007 134 

2. IEC 61131-3 standard and ST language 

The IEC 61131-3 standard defines five programming languages - LD, IL, 
FBD, ST and SFC. Instruction List IL and Structured Text ST are text 
languages, Ladder Diagram LD, Functional Block Diagram FBD and 
Sequential Function Chart SFC are graphical. LD and IL are fairly simple, so 
appropriate mainly for small applications. FBD, ST and SFC are 
recommended for medium- and large scale projects. John's and Tiegelkamp’s 
book [12] is a good source to learn IEC programming. According to [9], 
familiarity with the languages by engineering staff looks as follows: LD 90%, 
FBD 60%, IL 35%, ST 30%, SFC 15%. Computer and control engineers with 
experience in structural programming usually prefer ST. 

Common components of the five languages are names (identifiers), data 
types, constants and variables. Twenty elementary data types of IEC 61131-
3, together with memory sizes and ranges in the CPDev environment, are 
shown in Tab. 1. In practice BOOL, INT, REAL and TIME are the most 
common. Examples of corresponding constants are FALSE, 13, -4.1415 and 
T#1m3s. The IEC standard defines three access levels to variables, namely 
LOCAL, GLOBAL and ACCESS. LOCAL variables are available in the program 
or function block. GLOBALs can be used in the whole project, but programs or 
blocks must declare them as EXTERNAL. ACCESS variables exchange data 
between different systems. 

Table 1. Elementary data types of IEC 61131-3, their size and range in the CPDev 
environment 

Data type Memory size and range Data type Memory size 
SINT 1B (-128 .. 127) TIME 4B 
INT 2B (-32768 .. 32767) DATE 4B 
DINT 4B (-231 .. 231 – 1) TIME_OF_DAY 4B 
LINT 8B (-263 .. 263 – 1) DATE_AND_TIME 8B 
USINT 1B (0 .. 255) STRING Variable length 
UINT 2B (0 .. 65536) BOOL 1B (0, 1) 
UDINT 4B (0 .. 232 – 1) BYTE 1B 
ULINT 8B (0 .. 264 – 1) WORD 2B 
REAL 4B IEEE-754 format DWORD 4B 
LREAL 8B IEEE-754 format LWORD 8B 

Functions, function blocks and programs are components of the IEC 
projects. Function blocks, designed for multiple reuse in different parts of the 
program, are essential. Typical block involves input and output variables, and 
employs values from previous executions. The IEC standard defines a small 
set of standard blocks, such as flip-flops, edge detectors, timers and 
counters. Four of them are shown in Fig. 1. 

Of the five IEC languages, ST is particularly suitable for implementation of 
nonstandard or complex algorithms. Most development systems recommend 
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ST as a default language for defining user function blocks. Therefore it has 
been chosen as a base language for the CPDev environment. 
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Fig. 1. IEC 61131-3 standard blocks: SR flip-flop, rising edge detector R_TRIG, timer 
TON, counter CTU 

Initial part of an ST program involves declarations of variables and block 
instances written between VAR and END_VAR keywords. The declarations are 
followed by sequence of program instructions. The instructions contain 
expressions which involve operators such as: bracket, function call, negation, 
arithmetical operators, comparison, boolean operators (in descending 
priority). Similarly as in Pascal, the symbol := denotes assignment. An 
example for starting or stopping an engine has the following form: 
engine := (start OR engine) AND NOT stop AND NOT alarm; 

Four types of control instructions are available in ST: 

− conditional branches: IF, CASE, 
− loops: FOR, WHILE, REPEAT, 
− brake or stop: RETURN, EXIT, END, 
− function block call. 

Example of the last one may look as follows. After declaring Timer1: TON 
as an instance of the TON block (Fig. 1), one can call it by 

Timer1(IN:=engine1, PT:=t#2.5s); 

Output Q of the timer can be assigned to a variable in the following way 

engine2:=Timer1.Q; 

Alternatively, both input and output parameters may be included in a single 
call, i.e. 
Timer1(IN:=engine1, PT:=t#2.5s, Q=>engine2); 
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3. The CPDev environment 

Engineering environments are integrated tools for development, debugging, 
deployment and maintenance of control software. Structure of the CPDev 
environment is shown in Fig. 2. It involves separate logical and physical 
layers what simplifies programming and compiling for different hardware 
platforms. 
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Fig. 2. Structure of the CPDev development system 

ST compiler is an essential part of the logical layer. It translates ST 
programs into the universal executable code interpreted later by a virtual 
machine on the target platform. The compiler employs ST language rules, 
function block libraries and a set of primitive instructions implemented in the 
virtual machine. Single ST instruction is translated into one or several 
primitive instructions. Logical layer is also responsible for debugging 
information, deployment, simulation and list of errors. 

Hardware resource configuration at the physical layer involves 
specifications of memory, input/output interfaces and communications. The 
specifications describe memory types and areas, inputs and outputs, 
addresses and types of communication channels, failure indicators, etc. 
Hardware allocation map (Fig. 2) is a table, which assigns symbolic names 
from the ST program to physical addresses. By using it, the compiled code 
can be assembled for a particular platform to create final, universal 
executable code. Hardware platforms differ only in hardware allocation maps 
while compiled code is identical (before assigning addresses). 
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Fig. 3. User interface of the CPDev system 

Three basic windows of the CPDev user interface are shown in Fig. 3 [11]. 
They involve: 

− trees of project structure, hardware configuration and program resources - 
left part, interchangeable, 

− program in ST language - center, 
− message list - bottom. 

The windows can be moved across the screen or minimized, frames 
adjusted and the contents scrolled. Window of the StartStop project (Fig. 3) 
contains the program PRG1 which consists of CTD, CTU, RS, SR function 
blocks and the main task DEF_TASK. The main program involves global 
variables START, STOP to OUT3 with addresses %MX0000, %MX0001 up to 
%MX000F, respectively (directly represented variables). According to IEC 
61131-3, the %MX prefix indicates a variable stored in memory (M) and 
occupying a single bit (X). The first instruction of the program activates output 
OUT0, similarly as control of the engine in Sec. 2. Next, if OUT0 is on, the 
outputs OUT1, OUT2 and OUT3 are activated every 2s. The PRG1 program is 
executed every 200ms. 

Hardware configuration tree, which would replace the project structure (left 
window) represents hardware of the controller (inputs/outputs, communication 
modules etc.), or a group of controllers if a distributed system is designed. 
Program resource tree contains lists of global and system variables, linked 
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libraries and list of user-defined variable types (arrays, structures, etc.). 
TASK_CYCLE and TIME_COUNT are system variables. 

In practice a typical ST program is a sequence of function block calls, 
where outputs from the previous block become inputs to the next one. Two 
libraries are available for the user in the CPDev system, i.e.: 

− IEC 61131-3 standard blocks (Sec. 2 and Fig. 1), 
− general purpose blocks (flip-flops, signal processing, on/off control, PID, 

set point generator, positioner, drive control, sequencer and some others). 

Table 2. Programs of TON, SR and R_TRIG standard function blocks 

Function block: TON Function blocks: SR, R_TRIG 

FUNCTION_BLOCK TON  
VAR 
    stime: TIME; 
END_VAR 
VAR_INPUT 
    IN: BOOL;  
    PT: TIME; 
END_VAR 
VAR_OUTPUT 
    Q:  BOOL;  
    ET: TIME; 
END_VAR 

FUNCTION_BLOCK SR 
 VAR_INPUT 
  S1: BOOL; 
  R: BOOL; 
 END_VAR 
 VAR_OUTPUT 
  Q1: BOOL; 
 END_VAR 
Q1 := S1 OR (NOT R AND 
        Q1); 
END_FUNCTION_BLOCK  

IF NOT IN THEN  
  Q := FALSE; 
  ET := t#0ms; 
  stime := CUR_TIME(); 
ELSE 
  IF NOT Q THEN  
   ET := CUR_TIME() 
        - stime; 
   IF ET >= PT THEN 
    Q := TRUE; 
    ET := PT; 
   END_IF 
  END_IF 
END_IF 
END_FUNCTION_BLOCK 

FUNCTION_BLOCK R_TRIG 
 VAR_INPUT 
  CLK: BOOL; 
 END_VAR 
 VAR_OUTPUT 
  Q: BOOL; 
 END_VAR 
 VAR 
  CLKp: BOOL := FALSE; 
 END_VAR  
 
Q := CLK AND NOT CLKp; 
CLKp := CLK; 
END_FUNCTION_BLOCK  

Additional blocks can be programmed by the user and stored in additional 
libraries. To create a new block, one should begin with FUNCTION_BLOCK 
keyword in the upper window (Fig. 3). Blocks from all linked libraries can be 
accessed. Simple programs of three standard blocks are presented in Tab. 2. 
The flip-flop SR and edge detector R_TRIG are self-explanatory (CLKp 
denotes previous value of CLK). Operation of TON has been illustrated in 
Fig. 1. The input PT denotes preset time, while the output ET is elapsed time 
beginning from activation of the input IN. ET is evaluated as the difference 
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between current value of the system time counter (value returned by 
CUR_TIME() function) and the value stime read when rising edge at IN has 
appeared. 

The CPDev environment uses the XML format for libraries, programs, 
configurations etc. as proposed in [13]. 

4. ST compiler components 

The ST compiler contains three basic components, i.e. scanner, parser and 
code generator (Fig. 4). 
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Fig. 4. ST compiler components 

Main task of the compiler is to convert character stream into an executable 
format. This is done in three steps. First, lexical analyzer (scanner) analyzes 
a stream of characters in the input ST language source file and decomposes 
it into tokens. Category of the tokens is also determined according to Tab. 3. 
The tokens are stored in a list passed to the parser (Fig. 4). 

Table 3. Token types recognized by the compiler 

Type name Token example Type name Token example 
identifier PRG1 integer constant 50 
keyword FUNCTION operator + 
typed constant DINT#1722211 delimiter , 
comment (*assign outputs*) directive (*$READ*) 
real constant 18.32 white space   
string constant 'Temperature: ' invalid character \ 

 
In the second step, the parser recognizes the tokens and checks validity of 

token constructions. It ignores comments and white spaces. The parser 
utilizes built-in elementary data types, operators, and a set of primitive 
instructions of virtual machine. Examples of the instructions are shown in 
Tab. 4. Derived data types [5,11], functions and function blocks stored in 
additional libraries are also parsed (if needed). The parser translates the 
token list into an identifier collection and creates an intermediate mnemonic 
code called VMASM (Virtual Machine Assembler). This code uses a special 
text format for storing primitive instructions and their operands. Finally, the 
code generator produces a portable executable code for the virtual machine. 
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Modules of the mnemonic code can be merged together and converted into 
the executable format. 

Table 4. Primitive instructions of the virtual machine 

Function Meaning Operator Function Meaning 
EXPT Power ** OR Logical or 
NEG Negation - (unary) XOR Logical xor 
SUB Subtraction - (arithm.) NOT Binary negation 
MUL Multiplication * SHL Shift left 
DIV Division / SHR Shift right 
ADD Addition + (arithm.) ROL/ROR Rotate left/right 
CONCAT String concatenation + (text) JMP Unconditional jump 
GT Greater > JZ 
GE Greater or equal >= JNZ Conditional jumps 
LE Less or equal <= JR Relative jump 
LT Less < JRN 
EQ Equal = JRZ 

Conditional relative 
jumps 

NE Not equal <> RETURN Return from 
a function 

AND Logical and & MCD Constant 
initialization 

The essential components of the compiler are designed as classes in the 
C# language [1,3]. The parser is built according to top-down scheme with 
syntax-directed translation [4]. Each unit of the ST language is encapsulated 
into an object of corresponding class (Fig. 5). The classes inherit from an 
abstract STIdentificator class. During compilation, identifiers are 
collected into lists. The lists employ predicates for finding appropriate 
identifiers and eliminate the need for hash tables (normally used while 
developing compilers). There is a list of global identifiers and local lists which 
store identifiers of functions, function blocks, programs, etc. Identifiers in a list 
are checked for uniqueness. When identical names are found compilation is 
stopped and error reported. If local identifier hides a global one, the compiler 
produces an information. 

The parser generates text sequence of primitive instructions. Each 
instruction is represented by a mnemonic followed by operand names. Code 
generator replaces mnemonics and variable names with appropriate number 
identifiers (indexes). While processing an instruction, the generator extracts 
some information from libraries, e.g. operand size, type and passing method. 
The number identifier can be interpreted as a pointer to variable or as 
immediate value. Instructions for the virtual machine resulting from 
compilation are represented by instances of VMInstruction class. The 
operand list is also stored as a member of this class. By using lists of 
operands typical problems with fixed-size operand tables are avoided. 
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Fig. 5. Object representation of ST language units 

5. Compilation stages 

A project in CPDev, stored in the XML format, can contain global variables, 
functions, function blocks, programs, task and libraries. The following 
example, illustrated by Figs. 6, 7, shows the process of compiling a project for 
a function block TON (see Tab. 2). First, project items are merged into a single 
source file (Fig. 6, center). This source code, with definition of TON, will be 
processed to result in the universal executable code for the virtual machine. 

Project

Project items:

- global 

variables

- functions

- function 

blocks

- programs 
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- libraries

join

Source ST file
FUNCTION_BLOCK TON 
VAR
    stime: TIME;
END_VAR
VAR_INPUT
    IN: BOOL; PT: TIME;
END_VAR
VAR_OUTPUT
    Q:  BOOL; ET: TIME;
END_VAR
IF NOT IN THEN 
    Q := FALSE;
    ET := t#0ms;
    stime := CUR_TIME(); ELSE
    IF NOT Q THEN 
        ET := CUR_TIME()
                - stime;
        IF ET >= PT THEN
            Q := TRUE;
            ET := PT;
        END_IF
    END_IF
END_IF
END_FUNCTION_BLOCK

compilation

Mnemonic code
(VMASM)

001 NOT      ?IF?B00A6, IN
002 JZ       ?IF?B00A6, :IF?B00A7
003 MCD      Q, #/01, #/00
004 MCD      ET, #/04, #/00000000
005 CUR_TIME STIME
006 JMP      :IF?E00AB
007 :IF?B00A7
008 NOT      ?IF?B00AC, Q
009 JZ       ?IF?B00AC, :IF?E00AB
010 CUR_TIME ?FCL00AF
011 SUB      ET, ?FCL00AF, STIME
012 GE       ?IF?B00B1, ET, PT
013 JZ       ?IF?B00B1, :IF?E00AB
014 MEMCP    Q, ?L_TRUE, #/0100
015 MEMCP    ET, PT, #/0400
016 :IF?E00AB
017 RETURN 

STEP 1 STEP 2

 

Fig. 6. Compilation process - steps 1 and 2 

In the first step the scanner splits input character stream into tokens. Then, 
the token list is passed to the parser, which removes white spaces and 
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comments. The parser also checks for invalid or unknown tokens and 
eventually reports an error, giving the file name and position of the bad token. 
If there are no syntax errors, the compilation begins. In the example of Fig. 6, 
the token FUNCTION_BLOCK is recognized as a keyword. The next token 
(TON) is treated as a new identifier and stored in the global identifier list as an 
object of STFunctionBlock type (Fig. 5). The declaration clauses beginning 
with VAR are interpreted by the parser according to its syntactic diagram 
(Fig. 8) [10]. At this stage the compiler also defines memory areas for input 
parameters, outputs variables, and local variables. 

Library configuration file
(LCF)

<function name="GE" vmcode="110B" 
return="BOOL">
 <args>
  <arg no="0" type="TIME"/>
  <arg no="1" type="TIME"/>
 </args>
 <comment>Check if first argument is 
greater or equal than second argument</
comment>
</function>

consolidation

Universal executable code

address: function operand
address:  next operands 

002A: 05 10  0E 00 
002E: 04 00
0030: 1C 02  0E 00 
0034: 4E 00
0036: 1C 15 09 00 
003A:  01 00 
003C: 1C 15  0A 00
0040:  00 19 
0042: 1C 17  00 00  
0046: 1C 00  84 00
004A: 05 10  14 00
004E:  09 00
0050: 1C 02  14 00
0054:  84 00    ...

Virtual machine memory 
model

.CODE
05 10 0E 00 04 00 ...
.END
.DATA
00 00 1F 01 00 00 ...
.END

dump

Output files

- data segment

- code segment

- information 
for simulation

- compilation 
report

STEP 3

Mnemonic code
(VMASM)

001 NOT      ?IF?B00A6, IN
002 JZ       ?IF?B00A6, :IF?B00A7
003 MCD      Q, #/01, #/00
004 MCD      ET, #/04, #/00000000
005 CUR_TIME STIME
006 JMP      :IF?E00AB
007 :IF?B00A7
008 NOT      ?IF?B00AC, Q
009 JZ       ?IF?B00AC, :IF?E00AB
010 CUR_TIME ?FCL00AF
011 SUB      ET, ?FCL00AF, STIME
012 GE       ?IF?B00B1, ET, PT
                ...

 

Fig. 7. Compilation process - step 3 and object dump 

Compilation of the function block code section begins when next token 
does not match any of the declaration clauses. In the example the keyword 
IF indicates a conditional instruction. Therefore the text up to the keyword 
THEN is assumed to be a boolean expression. The result of evaluation of this 
expression is stored in an auxiliary local variable ?IF?B00A6, so with the 
name preceded by quotation mark ?. This mark is used for every element of 
the code which has not been explicitly given any name. The expression 
between IF and THEN is converted into the lines 001-002 of the mnemonic 
code (right box in Fig. 6). Line 001 contains primitive instruction NOT that 
stores result in ?IF?B00A6 variable. Line 002 contains conditional jump JZ 
dependent on ?IF?B00A6 to the label :IF?B00A7. If NOT returns FALSE 
(zero in ?IF?B00A6), the lines 003–004 initialize the output Q with FALSE and 
ET with T#0ms. Line 005 calls the system function CUR_TIME (current system 
time) and stores returned value in stime. Unconditional jump JMP in the line 
006 completes the evaluation for FALSE (from NOT). The lines 008–010 
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contain similar code executed when NOT returns TRUE. Subtraction SUB in 
the line 011 involves the variable ?FCL00AF which now keeps the current 
time, and the initial stime. The label :IF?B00A7 in the line 007 and 
:?IF?E00AB in 016 follow from ELSE and END_IF, respectively. RETURN at 
the end causes virtual machine to finish execution of the function block. 

VAR

CONSTANT

RETAIN

identifier

,

Type ident.

STRING

:

:=

; END_VAR

const

( const )

[ const ]  

Fig. 8. Syntactic diagram for the VAR declaration clause 

In the third step the final executable code is created. The compiler links the 
compiled code with all required modules (Fig. 7). The mnemonic code is 
translated into binary executable by replacing: 

− mnemonic function names with number identifiers (opcodes), 
− variable names with data area indexes, 
− label names with code addresses (absolute or relative). 

The last step involves Library Configuration File (LCF; Fig. 7, lower left). 
This is an XML file with additional information required during compilation 
such as mnemonics of the primitive functions and opcodes, argument order 
and types. It can also contain some target-specific information, like big- or 
little-endian byte order. Resulting universal executable code is shown in the 
upper right box in Fig. 7. As seen, 1009 (hex) is the opcode of the first 
instruction GT. The others follow accordingly. 

6. Virtual machine 

Software deployment process can be represented as in Fig. 9. The universal 
executable code is transferred to a target controller where it is executed by 
the virtual machine. 
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Fig. 9. Software deployment process for different hardware platforms 
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Fig. 10. Phases of the virtual machine cycle 

As indicated before, the machine is specific for a particular microprocessor 
and operates as an interpreter. Code and data are stored in two different 
memory areas (similarly as in Harvard architecture processors). The virtual 
machine is an automaton operating according to Fig. 10. Following IEC 
61131-3 standard, a task consists of programs executed successively. 
Universal code of the compiled program contains identifiers of primitive 
instructions and their operands (Fig. 7). While executing a program, the 
machine fetches successive instruction, decodes it, fetches the operands, 
and finally executes the instruction. The machine monitors time cycles of the 
tasks and alarms if timeout appears. It also triggers input/output procedures 
responsible for external variables (Fig. 10). 
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Fig. 11. Virtual machine’s internal structure 

The virtual machine code consists of universal and platform dependent 
modules (Fig. 11). The machine maintains program counter with the index to 
currently executed instruction and with base address to memory area with 
variables. Together with stack emulation, this allows for multiple and 
concurrent calls of functions and function blocks (which employ internal 
variables). The machines provide relatively short execution times due to 
similarity of primitive instructions (Tab. 4 earlier) to assemblers of typical 
microprocessors, as well as indexing techniques used for interpretation [10]. 
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Fig. 12. Memory segments  of the virtual machine  

The virtual machine instructions and their operands are stored in the code 
segment of memory (Fig.12). It is read–only memory, so none of primitive 
instructions can modify the contents. The data segment contains variables 
and constant values, function blocks and programs. This segment can be 
accessed directly or indirectly by special registers. Internal memory contains 
stacks, registers and the interpreter code. The internal memory cannot be 
accessed by primitive instructions. Virtual machine is able to execute multiple 
instances of programs. 

Modular structure of the virtual machine simplifies implementation in 
different hardware platforms. Usually only the platform-dependent modules 
have to be rewritten or modified. Code of the universal modules remains 
unchanged (the source code must be compiled for the target CPU anyway). 
The platform-dependent modules (Fig. 11) interface the machine to particular 
hardware, executing VM requests to low-level procedures. For example the 
Time&clock employs timer interrupt to compute task cycle and set timeout 
flag. If real-time clock chip is available, it can trigger events that occur at 
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regular, long intervals (e.g., every Sunday midnight). I/O functions provide 
interface to analog and binary inputs and outputs, and to communication 
fieldbus or network. The multitasking module is optional, since it employs 
multitasking mechanisms provided by host operating system. In such 
arrangement, task instances use private copies of global variables to avoid 
conflicts (so-called process image mechanism). 

The virtual machine has been written in the industry standard C language, 
so it can be directly adapted to different microprocessors. If limited hardware 
resources are available, an XML configuration file specifies simplified version 
of the machine. For example, one can limit the number of elementary data 
types or define a subset of primitive instructions to be used. Till now, the 
machines for AVR, MCS-51 and PC platforms have been developed. Another 
one for ARM-core based microprocessors is being considered. 

a) 

  

b)  

RS-485

USB

PC

CPDev
SCADA

inputs outputs 

SM5 SM4 

SMC

 

Fig. 13. a) SMC controller, b) simple SMC-based system 

First applications of the CPDev has already been tested in cooperation with 
LUMEL Zielona Góra company. The SMC programmable controller (Fig. 13a) 
and appropriate firmware including special version of the virtual machine have 
been developed. The controller employs AVR ATmega 128 CPU [2]. SMC 
operates as a central unit of mini-distributed system in control, measurement 
and monitoring applications. Usually it is equipped with SM1 – SM5 
input/output modules (Fig. 13b), but other devices can be connected to RS-
485 interface using industry standard MODBUS RTU protocol [7]. 

7. Summary 

A compiler of IEC 61131-3 Structured Text language, basic component of the 
CPDev development system, has been presented in the paper. ST programs 
are translated into specially designed universal executable code. Target-
specific virtual machine can execute such code on a controller CPU. 
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Although more advanced environments are available from commercial 
manufacturers, e.g. Step7 from Siemens, Control Builder from ABB, Concept 
from Schneider, they can handle only manufacturers’ hardware. The CPDev 
is oriented towards small-and-medium scale manufacturers and supports, or 
will support, a range of popular platforms, such as AVR, MCS-51, ARM or PC. 
It is being created having in mind both generality and openness, which means 
that it can be adjusted to specific needs. 
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