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Abstract. With the development of multimedia display devices, dynamic
image sequence resizing, which can adapt image sequences to be dis-
played on devices with different resolutions, is becoming more important.
However, existing approaches do not resize results from the viewpoint
of the user. In this paper, we present a new resizing framework, which
uses the feature descriptor technique and the image interpolation tech-
nique, that aims to improve the resizing quality of the important content
perceived by user. To accomplish this, we use a coarse-to-fine detection
approach to determine the important content of image sequences, and
construct a partition interpolation model to improve the definitions of im-
portant content. By adopting a region energy protection approach we can
obtain high quality image displays. Compared to representative algorithms
in image resizing, our method can achieve satisfactory performance not
only in terms of image visualization but also in terms of quantitative mea-
sures.

Keywords: image resizing, human visual perception, image Interpolation,
feature descriptor, dynamic image sequence.

1. Introduction

Image sequences resizing has gained significant importance because of rapid
increases in the diversity and versatility of display devices. Because of the lim-
ited screen sizes of different devices, the same image sequence is frequently
required to be displayed in different sizes [16]. Therefore, it is common to resize
the dynamic image sequences to fit each target display device. Standard resiz-
ing approaches include scaling and cropping. The former relies on a uniform
ratio to resize the images, which results in obvious distortion [18]. The latter
can only remove pixels from the image boundary and therefore inevitably dis-
cards information [17]. To overcome the above shortcomings, the seam carving
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method [2] has been proposed to resize image sequences through removing or
duplicating seams [8]. Through analyzing those approaches, we find that they
have only focused on inherent characteristics of image sequences and lack
enough attention to resizing results from the viewpoint of the user. In this pa-
per, we propose a novel perception-driven resizing algorithm (PDR). Two main
issues need to be addressed to enhance the quality of the important content
perceived by user. The first is the need to determine the important content from
the users’ viewpoint. The second is the need to improve the definitions of the
important content during resizing. Therefore, we introduce an image process-
ing technique based on human visual perception to address the first issue and
an image interpolation technique to address the second issue. This allows us
to obtain high quality resizing results displayed on devices with different resolu-
tions.

Fig.1 shows an example of our proposed algorithm. Given the input image
sequence (a), attention regions (b) are acquired before the corresponding inter-
polated images (c) are obtained. Next, we compute the energy of pixels in (c)
as shown in (d), and the seams (including low energy pixels) are removed, as
shown by the red lines in (e). Finally, resizing results are shown in (f).

Fig. 1. An example of perception-driven resizing displaying the (a) input, (b)
attention region, (c) interpolated image, (d) pixel energy display, (e) removed
seams, and (f) output

Our main contributions can be summarized as follows: (1) Our paper com-
plements the resizing task by providing a different perspective for dynamic im-
age sequences; we propose a novel and comprehensive framework that con-
siders the human attention problem and its framework to contain three parts,
which are attention region establishment, partition interpolation model construc-
tion, and seam carving operation. (2) To capture attention regions, we propose
a coarse-to-fine detection approach based on human visual perception. The
foundation of the approach combines the frame difference with the latest feature
descriptor technique. (3) We propose a partition interpolation model to improve
the definitions of attention regions. Specifically, we use the latest image interpo-
lation technique to enhance the quality of specified regions. (4) We propose a
region energy protection approach using seam carving. Moreover, we redefine
the energy formula of each pixel for two purposes. One is to protect the pixels
in attention regions and the other is to accelerate seam carving operation.
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The rest of this paper is structured as follows: Section 2 discusses related
work. Section 3 illustrates the outline of PDR. Section 4 shows the implemen-
tation details of PDR. Section 5 presents experimental work. Finally, Section 6
concludes the paper.

2. Related Work

We complete the resizing task of dynamic image sequences by combining three
technologies: the human visual perception technique, the feature descriptor
technique, and the image interpolation technique. This section will briefly re-
view the above technologies.

The human visual perception technique uses research results from many
subjects [13] (e.g., computer neuroscience, visual neuroscience, cognitive sci-
ence, and visual physiology) to accomplish visual tasks according to the princi-
ples of image perception and information processing used in the human visual
system [9]. Humans perceive images through eye retina, which contains two dif-
ferent types of photoreceptors: rods and cones. Rods scatter light in the surface
of the retina to determine an overall image, and they respond quickly to weak
light. Cones are mainly located in the middle part of the retina [4]. The density of
cones is much higher than other visual sensors in the visual central area, and
the central area has almost no rods [11]. The visual central area is the most
visually sensitive area; perception ability for optical input signals decreases fur-
ther from the central area of the retina [3]. This is the source of inspiration for
PDR.

People hope that computers can identify the objective world and make wise
decisions. However, computers do not possess enough memory to distinguish
between different complex objects. That is because people have not found an
effective way to convert from real objects into a digital form. As a result of 21st

century advances in the theory of discrete scale space, local invariant feature
techniques have been developed to solve practical problems in the computer
vision [15]. Subsequently, the scale-invariant feature transform (SIFT) was de-
veloped to effectively describe object features [7]. Recently, the method using
compact and real-time descriptors (CARD) has been proposed to establish a
quick visual correspondence between two images [1] and the computation time
per descriptor is approximately 16 times faster than SIFT. In an attempt to de-
termine the attention region of dynamic image sequences, we adopt CARD to
acquire local descriptors caused by temporal variation of the consecutive im-
ages.

To maintain image quality in the process of resizing, we use the image inter-
polation technique [6][10]. The traditional interpolation technique is the nearest
interpolation [14] and can quickly obtain high-resolution images [12]. The latest
interpolation technique, an artifact-free image upscaling method called ICBI,
which was proposed by Giachetti et al. in 2011 [5], can capture image details
more clearly. The detailed implementation of ICBI contains two steps. The first
step computes the interpolated pixel values based on the gradient direction of
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the neighboring pixels. The second step iteratively modifies the obtained pixel
values based on energy computation, which is the highlight of ICBI. Many ex-
periments have shown that ICBI obtains good performance in objective and
subjective tests. In this paper, we apply ICBI to produce clear resizing results
for the attention regions of dynamic image sequences.

3. Overview

Let DI[1,m] = {DI{t}}mt=1 be a dynamic image sequence DI defined on the 3D
space O. The space O is divided into attention regions Oar and general regions
Ogr,

O = Oar ∪Ogr,Oar ∩Ogr = ϕ. (1)

The DI is decomposed using DIO{t} = (DIOar

{t} , DI
Ogr

{t} ). In this paper, our goal
is to resize DIO{t} from Hinitial ×Winitial to Hnew ×Wnew. Here our stress is en-
larging resizing, i.e., satisfying Hnew>Hinitial and Wnew>Winitial. To achieve
this amount of resizing, we propose a PDR algorithm with an architecture that
is illustrated in Figure 2. PDR is roughly divided into the three steps: atten-
tion region establishment, partition interpolation model construction, and seam
carving operation.
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Fig. 2. Architecture of the proposed algorithm

First, we propose the coarse-to-fine detection approach to compute DIOar

{t} ,

so that the corresponding DI
Ogr

{t} can be obtained. Specifically, the coarse at-
tention region CDIOar

{t} is determined using a frame difference method and the
fine attention region DIOar

{t} is obtained using the feature descriptor technique,
whose calculating process includes pyramid establishment, keypoint descriptor
extraction, descriptor matching, and attention region determination.

Second, we construct a partition interpolation model to simulate the ef-
fects of human visual perception, resulting in interpolated image IDIO{t} with
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a scale ratio r, i.e., the size of the IDIO{t} is rHinitial×rWinitial. Note that this
model adopts different calculation approaches for different regions of the origi-
nal DIO{t}. For DIOar

{t} , we compute the initial value of interpolated pixel, denoted
as AP (2xa +1, 2ya+1), where xa∈Oar and ya∈Oar. The initial value is modified
using energy calculations that include the curvature continuity energy AMc, the
curvature enhancement energy AMe, and the isolevel curve smoothing energy
AMs. For DI

Ogr

{t} , we use four adjacent pixels to quickly compute interpolated
pixel value, denoted as GP (2xg + 1, 2yg + 1), where xg∈Ogr and yg∈Ogr.

Finally, we compute the overall energy for each pixel of IDIO{t}. Adopting
the proposed region protection method, we remove (Hnew − rHinitial) vertical
seams and (Wnew − rWinitial) horizontal seams containing low energy pixels,
and obtain the enlarged dynamic image sequence DIO{t} with Hnew×Wnew.

4. PDR Implementation

In this section, we will elaborate the details of the PDR in each step. The core
part of PDR is the second step, which is the partition interpolation model con-
struction. The first step is the foundation of partition interpolation model con-
struction and the last step is resizing using a constructed partition interpolation
model.

4.1. Attention region establishment

First, we demonstrate the calculation approach of CDIOar

{t} . Given that ∀(x, y),
(x, y) ∈ DIO{t}, if |DIO{t+1}(x, y)−DIO{t}(x, y)| ≥ Dif × c, then (x, y) ∈ CDIOar

{t} .
Here, Dif represents the difference value, as shown in Eq.2, and c is a prede-
fined value, for which we set the default value to 0.2.

Dif = max∀(x,y)∈DIO
{t}

|DIO{t+1}(x, y)−DIO{t}(x, y)|
−min∀(x,y)∈DIO

{t}
|DIO{t+1}(x, y)−DIO{t}(x, y)| .

(2)

Next, we elaborate the calculation approach of DIOar

{t} in detail. The first step
is to establish an image pyramid using Eq.3 as follows:

L(xm, ym, t, σ − 1) = L2↓(xm, ym, t, σ) , (3)

where L(xm, ym, t, σ) represents scale function, xm and ym represent the val-
ues of abscissa and ordinate of the pixel in CDIOar

{t} , σ represents the level of
the image pyramid, and 2 ↓ represents the down sampling factor. Using the
corner detectors technique, we find the keypoints of the CDIOar

{t} and the corre-
sponding keypoint set denoted as Kt = {kt(xk, yk)|(xk, yk) ∈ CDIOar

{t} }.
The second step is to extract descriptors for Kt. To maintain invariance to

rotation, translation, and scaling, we establish an orientation histogram AH(ht
k)
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of Kt. The magnitude and orientation of AH(ht
k) are shown as follows:

mAH(xi, yi) = ((CDIOar

{t} (xi + 1, yi)− CDIOar

{t} (xi − 1, yi))
2

+ (CDIOar

{t} (xi, yi + 1)− CDIOar

{t} (xi, yi − 1))2)
1
2 ,

(4)

ωAH(xi, yi) = arctg
CDIOar

{t} (xi + 1, yi)− CDIOar

{t} (xi − 1, yi)

CDIOar

{t} (xi, yi + 1)− CDIOar

{t} (xi, yi − 1)
. (5)

Next, we adopt the binning table to extract descriptors based on AH(ht
k) and

obtain the descriptor set Dt
k = {dtk} of Kt.

The third step is to find the matched descriptor. According to Eq.6, we com-
pute the matching descriptor dt+1

km for dtk and the corresponding matching de-
scriptor set Km.

dt+1
km = argmin dt+1

τ ∈Dt+1
k

∥∥dt+1
τ − dtk

∥∥
1
, (6)

where Dt+1
k = {dt+1

k } denotes the descriptor set of Kt+1 corresponding to
CDIOar

{t+1}. In order make the computation proceed faster, we adopt a short
binary code conversion technique that changes Eq.6 into Eq.7:

dt+1
km = argmin p∈Kt(

∑L

q=1
|ζt+1

p (q)− ζtk(q)|) , (7)

where ζtk = (1+ sgn(WT dtk))/2, ζtk ∈ {0, 1}L, in which W represents the weight
matrix, and L represents the length of changed binary code.

In the last step, we acquire four boundary values of DIOar

{t} , including the left
border ARL, right border ARR, top border ART , and bottom border ARB .

ARL = mink(xi,yi)∈Kt∪Km
xi − υL, ARR = maxk(xi,yi)∈Kt∪Km

xi + υR ,
ART = mink(xi,yi)∈Kt∪Km

yi − υT , ARB = maxk(xi,yi)∈Kt∪Km
yi + υB ,

(8)

where υL, υR, υT and υB denote predefined adjustment values, the default
values of which are all 8.

Fig.3 shows some examples of attention regions. We use red lines to mark
the coarse attention region, and yellow lines to mark the fine attention region
containing feature points denoted by blue dots. It can be seen that our detec-
tion approach can perform well in capturing regions of general interest, which
provides a good foundation for improving the quality of resizing results.

4.2. Partition interpolation model construction

The computation of interpolated pixels in the general region is simple, as shown
in Eq.9.

GP (2xg + 1, 2yg + 1) = 1
2 (GP (2xg, 2yg) +GP (2xg + 2, 2yg))

+ 1
2 (GP (2xg, 2yg + 2) +GP (2xg + 2, 2yg + 2)) .

(9)
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Fig. 3. Attention regions of different dynamic image sequences: (a) a walking
man, (b) a jumping woman, (c) a walking man with a dog, (d) space image
sequence 1, and (e) space image sequence 2

Inspired by the ICBI algorithm, the computation of interpolated pixels in the
attention region includes two steps. In the first step, we compute AP (2xa +
1, 2ya + 1) according to Eq.10, Eq.11 and Eq.12.

jm(2xa + 1, 2ya + 1) = AP (2xa, 2ya) +AP (2xa + 4, 2ya)+
AP (2xa + 2, 2ya − 2) +AP (2xa, 2ya + 4) +AP (2xa − 2, 2ya + 2)
+AP (2xa + 2, 2ya + 2)− 3AP (2xa, 2ya + 2)− 3AP (2xa + 2, 2ya) ,

(10)

jn(2xa + 1, 2ya + 1) = −3AP (2xa, 2ya) +AP (2xa + 4, 2ya + 2)
+AP (2xa + 2, 2ya + 4) +AP (2xa, 2ya − 2) +AP (2xa − 2, 2ya)
+AP (2xa + 2, 2ya) +AP (2xa, 2ya + 2)− 3AP (2xa + 2, 2ya + 2) ,

(11)

AP (2xa +1, 2ya +1) =


1
2 (AP (2xa, 2ya) +AP (2xa + 2, 2ya + 2)),
if jm(2xa + 1, 2ya + 1) < jn(2xa + 1, 2ya + 1),
1
2 (AP (2xa + 2, 2ya) +AP (2xa, 2ya + 2)), otherwise.

(12)
In the second step, we continually modify AP (2xa+1, 2ya+1) using iterative

energy computation to accurately predict the values of unknown pixels. The
formula of energy computation is

AM(2xa+1, 2ya+1) =mcAMc(2xa + 1, 2ya + 1)
+meAMe(2xa + 1, 2ya + 1) +msAMs(2xa + 1, 2ya + 1) ,

(13)

where mc,me and ms are modification coefficients that satisfy mc+me+ms = 1.
The first energy term AMc can be computed using Eq.14.

AMc(2xa + 1, 2ya + 1) = α1λ1 + α2λ2 + α3λ3 + α4λ4 ,
s.t. λ1,2 = |jm(2xa, 2ya)−jm(2xa+1, 2ya ± 1)|+ |jn(2xa, 2ya)−jn(2xa+1, 2ya ± 1)| ,

λ3,4 = |jm(2xa, 2ya)−jm(2xa−1, 2ya ± 1)|+ |jn(2xa, 2ya)−jn(2xa−1, 2ya ± 1)| ,
(14)

where αi(i = 1...4) is a weight coefficient. The second energy term AMe can
be computed using Eq.15.

AMe(2xa + 1, 2ya + 1) = |jn(2xa + 1, 2ya + 1)| − |jm(2xa + 1, 2ya + 1)| . (15)
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The third energy term AMs can be computed using Eq.16.

AMs(2xa + 1, 2ya + 1) = −T 2Z+2TUB−TZ2

T 2+U2 AP (2xa + 1, 2ya + 1) ,

s.t. T = jp(2xa + 1, 2ya + 1) = 1
2 (AP (2xa, 2ya)−AP (2xa + 2, 2ya + 2)) ,

U = jq(2xa + 1, 2ya + 1) = 1
2 (AP (2xa, 2ya + 2)−AP (2xa + 2, 2ya)) ,

B = jr(2xa + 1, 2ya + 1) = 1
2 (AP (2xa + 1, 2ya − 1) +AP (2xa + 1, 2ya + 3))

− 1
2 (AP (2xa − 1, 2ya + 1) +AP (2xa + 3, 2ya + 1)) ,

Z = jm(2xa + 1, 2ya + 1) .
(16)

4.3. Seam carving operation

Aiming to achieve regional energy protection, we introduce definitions for the
horizontal seam and the vertical seam to PDR, which are shown as follows:

The horizontal seam hy
DIt

of IDIO{t} is given by

hy
DIt

= {hy
µ}

rHinitial
µ=1 = {(µDIt , yDIt(µ))}

rHinitial
µ=1 , s.t.∀µ, |yDIt(µ)−yDIt(µ−1)| ≤ 1,

(17)
and the vertical seam vyDIt

of IDIO{t} is given by

vxDIt = {vxϕ}
rWinitial

ϕ=1 = {(xDIt(ϕ), ϕDIt)}
rWinitial

ϕ=1 , s.t.∀ϕ, |xDIt(ϕ)−xDIt(ϕ−1)| ≤ 1.
(18)

On this basis, we redefine the energy function (see Eq.19) to preserve the
pixels in the attention region.

eHoG(IDIO{t}) =


max(H(IDIO{t}(x, y))),

if(ARL ≤ x ≤ ARR)and(ARB ≤ y ≤ ART ) ,
| ∂
∂x IDIO

{t}|+| ∂
∂y IDIO

{t}|
max(H(IDIO

{t}(x,y)))
,

otherwise.

(19)

Where H(IDIO{t}(x, y)) denotes the oriented gradient histogram of the pixels in
IDIO{t}.

Fig.4 shows the examples of seam removal. We used red curves to denote
the removed seams from interpolated images and from this figure, it can be
seen that image content in the attention region can be protected on the premise
of ensuring a global visual effect.

5. Experimental results and discussion

In this section we compare our method with previous work that studied the
resizing of dynamic image sequences, and we demonstrate the effectiveness
of our method. In all our experiments, we used the MATLAB platform and a PC
with a 2.60 GHz Intel(R) Pentium(R) Dual-Core CPU processor with 1.96 GB of
main memory.
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Fig. 4. Seam removal: finding and removing the seams in the general region

First, we demonstrate the performance of our proposed partition interpo-
lation model. The dynamic image sequences used in Figures 5 and 6 are
publically available video sequences (obtained from http://www.wisdom.
weizmann.ac.il/vision/SpaceTimeActions.html). Fig.5(a) shows the
original frame in the sequence of the walking man, and Fig.5(b) and 5(c) show
resizing results from 180×144 to 345×287 using our method and scaling re-
spectively. Similarly, Fig.5(d) and 5(e) are the resizing results from 180×144 to
700×575. In the same manner, Fig.6 shows the resizing examples of jumping.
In these figures, we use a yellow-bordered region to mark attention regions.
The scaling method appears to introduce jagged effects, however, our method
generates clearer image details, which results in a better resizing quality for the
attention region.

Fig. 5. Attention region comparison of resizing results of a walking man. (a) the
original frame(180×144), (b) and (c) show results (345×287) using PDR and
scaling, (d) and (e) show results (700×575) using PDR and scaling

To measure the resizing quality of the attention region in the dynamic se-
quences, five evaluation indicators (average gradient (AG), edge intensity (EI),
information entropy (IE), spatial frequency (SF), and image definition(ID)) are
adopted and the quantitative results are shown in Table 1. This table shows
that the results using our method are higher than those of the scaling method,
proving that our method can effectively improve the resizing quality of attention
region.

We evaluate the performance of PDR by observing the resizing results. Fig.7
shows the comparison results of the sequence of a walking man with a dog us-
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Fig. 6. Attention region comparison of resizing results of a jumping woman. (a)
the original frame(180×144), (b) and (c) show results(200×287) using PDR and
scaling. (d) and (e) show results (440×575) using PDR and scaling

Table 1. Quality comparison of the attention region

Test sequence target size Method AG EI IE SF ID
A walking man 345× 287 Ours 10.80 100.64 7.27 33.10 10.51
A walking man 345× 287 Scaling 6.91 72.49 7.23 17.92 8.09
A walking man 700× 575 Ours 5.79 55.90 7.30 22.29 5.46
A walking man 700× 575 Scaling 3.99 43.71 7.29 12.40 4.55
A jumping woman 200× 287 Ours 8.57 79.28 7.25 29.77 8.20
A jumping woman 200× 287 Scaling 4.83 51.17 7.24 14.40 5.45
A jumping woman 440× 575 Ours 4.51 42.87 7.26 20.12 4.24
A jumping woman 440× 575 Scaling 2.82 31.03 7.24 10.43 3.20
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ing four methods, including scaling, the best cropping, seam carving, and our
method. Fig.7(b) shows that using scaling method, the walking man and his dog
all become vaguer than before. Fig.7(c) shows that using the best result from
the cropping method, the walking man is only partly displayed, resulting in the
original information becoming missing. Fig.7(d) shows that using seam carv-
ing, the prominent part of this image sequence becomes smaller than before,
indicating that the seam carving method is not suitable for image enlarging.
Fig.7(e) shows that our method clearly displays the prominent objects from the
original frames and ensures a global visual effect when the image sequence
resolutions are changed. Similarly, resizing results of the sequence of a man
with waist bent are shown in Fig.8.

Fig. 7. Comparison results of a walking man with a dog for the four resizing
methods when the resolution is resized from 180×144 to 200×288: (a) the
original frames, (b) scaling, (c) the best cropping, (d) seam carving, and (e) our
algorithm

Fig. 8. Comparison results of a man with waist bent for the four resizing meth-
ods when the resolution is resized from 180×144 to 220×277: (a) the original
frames, (b) scaling, (c) the best cropping, (d) seam carving, and (e) our algo-
rithm

Fig.9 shows the resizing comparison results of space image sequences.
In this figure it is quite clear that the proposed algorithm shows comparatively
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better performance in terms of visual quality. For example, the airship’s flight
action can be distinctly displayed in Fig.9(e).

Fig. 9. Comparison results of a space image sequence for the four resizing
methods when the resolution is resized from 592×256 to 884×392: (a) the
original frames, (b) scaling, (c) the best cropping, (d) seam carving, and (e) our
algorithm

In Fig.10, for measurements of the resizing quality of the above image se-
quences, we show the average gradient, edge intensity, and information entropy
comparison results. The original images of Fig.10(a), Fig.10(d) and Fig.10(g)
are shown in Fig.7(a). Similarly, the original images of Fig.10(b), Fig.10(e) and
Fig.10(h) are shown in Fig.8(a), and the original images of Fig.10(c), Fig.10(f)
and Fig.10(i) are shown in Fig.9(a). In Fig.10, the cyan curve stands for scal-
ing, the blue curve for the best cropping, the green curve for seam carving, and
the red curve for our method. It is obvious that the red curve is always above
the others, which shows that our algorithm can generally achieve the highest
AG, EI, and IE. This indicates that our algorithm obtains an encouraging perfor-
mance in image quantization measure.

Table 2 summarizes the average indicator values for the three image se-
quences corresponding to Fig.7, Fig.8 and Fig.9. This table shows that our algo-
rithm always obtains the highest average values. Because of the encouraging
performance in terms of image visualization and quantitative quality assess-
ment, our proposed algorithm is very competitive.

6. Conclusions

In this paper, we propose a perception-driven resizing method of dynamic im-
age sequences, which can acquire high quality resizing results in accordance
with human visual perception. Our method stresses the most important im-
age content perceived by human beings, i.e., attention regions, and improves
their resizing quality. The implementation process of our method involves three
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Fig. 10. Comparison of indicators using four resizing methods for a walking man
with a dog, a man with waist bent and space image respectively. Subplots (a)-
(c) are the average gradient comparison results, (d)-(f) are the edge intensity
comparison results, and (g)-(i) are information entropy comparison results

Table 2. Comparison of the average indicator values for the four image resizing
methods

Test sequence Method AG EI IE
A walking man with a dog Scaling 10.98 107.85 14.20
A walking man with a dog The best cropping 8.60 88.33 9.66
A walking man with a dog Seam carving 9.72 97.39 13.48
A walking man with a dog Ours 11.63 116.61 14.39
A man with waist bent Scaling 3.68 37.99 4.65
A man with waist bent The best cropping 3.07 32.22 3.39
A man with waist bent Seam carving 3.29 33.92 4.41
A man with waist bent Ours 4.05 42.17 4.89
Space image Sequence Scaling 1.32 14.29 6.19
Space image Sequence The best cropping 1.07 11.76 5.94
Space image Sequence Seam carving 1.06 11.42 5.82
Space image Sequence Ours 1.68 18.39 6.55
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steps: attention region establishment using a coarse-to-fine detection approach
based on a feature descriptor, the construction of a partition interpolation model
based on real-time artifact-free image upscaling, and a seam carving operation
using a region energy protection approach. Our experiments demonstrate that
our proposed method can obtain more satisfactory results than the representa-
tive algorithms previously used in image resizing. In the future, we will improve
the perception ability of our method by adding the salient detection technique
to our resizing framework.
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