





Volume 9, Number 2, 2012
Novi Sad

Computer Science and Information Systems

ISSN: 1820-0214

ComSIS Journal is sponsored by:

Ministry of Education and Science of Republic of Serbia - http://www.mpn.gov.rs/



Computer Science and
Information Systems

AIMS AND SCOPE

Computer Science and Information Systems (ComSIS) is an international refereed journal, pub-
lished in Serbia. The objective of ComSIS is to communicate important research and development
results in the areas of computer science, software engineering, and information systems.

We publish original papers of lasting value covering both theoretical foundations of computer
science and commercial, industrial, or educational aspects that provide new insights into design
and implementation of software and information systems. ComSIS also welcomes surveys papers
that contribute to the understanding of emerging and important fields of computer science.
Regular columns of the journal cover reviews of newly published books, presentations of selected
PhD and master theses, as well as information on forthcoming professional meetings. In addition
to wide-scope regular issues, ComSIS also includes special issues covering specific topics in all
areas of computer science and information systems.

ComSIS publishes invited and regular papers in English. Papers that pass a strict reviewing
procedure are accepted for publishing. ComSIS is published semiannually.

Indexing Information

ComsSIS is covered or selected for coverage in the following:

+ Science Citation Index (also known as SciSearch) and Journal Citation Reports / Science
Edition by Thomson Reuters, with 2011 two-year impact factor 0.625,

+ Computer Science Bibliography, University of Trier (DBLP),

+ EMBASE (Elsevier),

+ Scopus (Elsevier),

+ Summon (Serials Solutions),

+ EBSCO bibliographic databases,

+ |ET bibliographic database Inspec,

* FIZ Karlsruhe bibliographic database io-port,

* Index of Information Systems Journals (Deakin University, Australia),
+ Directory of Open Access Journals (DOAJ),

+ Google Scholar,

+ Journal Bibliometric Report of the Center for Evaluation in Education and Science (CEON/CEES)
in cooperation with the National Library of Serbia, for the Serbian Ministry of Education and
Science,

+ Serbian Citation Index (SCIndeks),

+ doiSerbia.

Information for Contributors

The Editors will be pleased to receive contributions from all parts of the world. An electronic
version (MS Word or LaTeX), or three hard-copies of the manuscript written in English, intended
for publication and prepared as described in "Manuscript Requirements” (which may be
downloaded from http://www.comsis.org), along with a cover letter containing the corresponding
author's details should be sent to official Journal e-mail.



Criteria for Acceptance

Criteria for acceptance will be appropriateness to the field of Journal, as described in the Aims
and Scope, taking into account the merit of the content and presentation. The number of pages
of submitted articles is limited to 30 (using the appropriate Word or LaTeX template).

Manuscripts will be refereed in the manner customary with scientific journals before being
accepted for publication.

Copyright and Use Agreement

All authors are requested to sign the "Transfer of Copyright" agreement before the paper may be
published. The copyright transfer covers the exclusive rights to reproduce and distribute the
paper, including reprints, photographic reproductions, microform, electronic form, or any other
reproductions of similar nature and translations. Authors are responsible for obtaining from the
copyright holder permission to reproduce the paper or any part of it, for which copyright exists.






Computer Science and Information Systems

Volume 9, Number 2, June 2012

CONTENTS

Editorial
Guest Editorial

Regular Papers

485

505

539

561

585

627

653

667

691

Building XML-Driven Application Generators with Compiler
Construction Tools

Antonio Sarasa-Cabezuelo, Bryan Temprado-Battad, Daniel
Rodriguez-Cerezo, José-Luis Sierra

Towards Understanding of Classes versus Data Types in
Conceptual Modeling and UML

Dragan Milicev

Specification of Data Schema Mappings using Weaving
Models

Nenad Anici¢, Sinia Neskovi¢, Milica Vuckovi¢, Radovan Cvetkovi¢

A Scale for Crawler Effectiveness on the Client-Side Hidden
Web

Victor M. Prieto, Manuel Alvarez, Rafael Lépez Garcia , Fidel Cacheda
Wavelet trees: a survey

Christos Makris

Impact of Personnel Factors on the Recovery of Delayed
Software Projects: A System Dynamics Approach

Mostafa Farshchi, Yusmadi Yah Jusoh, Masrah Azrifah Azmi Murad

A New Strategic Tool for Internal Audit of the Company
Based on Fuzzy Logic

Aleksandar Pesi¢, Duska PeSi¢, Andreja Tepavcevi¢

Experimental Investigation of the Quality and Productivity of
Software Factories based Development

Andrej Krajnc, Marjan Hericko, Crt Gerlec, Uro$ Goljat, Gregor
Polancic¢

Nearest Neighbor Voting in High Dimensional Data: Learning
from Past Occurrences

Nenad Tomasev, Dunja Mladeni¢



713

741

763

791

813

839

AKNOBAS: A Knowledge-based Segmentation Recommender
System based on Intelligent Data Mining Techniques
Alejandro Rodriguez-Gonzalez, Javier Torres-Nifio, Enrique Jimenez-
Domingo, Juan Miguel Gomez-Berbis, Giner Alor-Hernandez

Scope of MP1/0penMP/CUDA Parallelization of Harmonic
Coupled Finite Strip Method Applied on Large Displacement
Stability Analysis of Prismatic Shell Structures

Miroslav Hajdukovi¢, Dragan D. Milasinovi¢, Milo$ Nikoli¢, Predrag
Raki¢, Zarko Zivanov, Lazar Stricevi¢

Describing Papers and Reviewers’ Competences by
Taxonomy of Keywords

Yordan Kalmukov

Journal Evaluation based on Bibliometric Indicators and the
CERIF Data Model

Dragan lvanovi¢, Dusan Surla, Milo$ Rackovi¢

Ontology-Based Home Service Model

Moji Wei, Jianliang Xu, Hongyan Yun, Linlin Xu

Automatic Generation of E-Courses Based on Explicit
Representation of Instructional Design

Goran Savi¢, Milan Segedinac, Zora Konjovi¢

Special Section: Emerging Trends in Technology Enhanced
Learning

Invited Papers

871

893

Recommending Collaboratively Generated Knowledge
Weigin Chen, Richard Persen

A Model-based Approach for Assessment and Motivation
J. Michael Spector, ChanMin Kim

Regular Papers

917

943

961

Analysis of Processes of Cooperation and Knowledge Sharing
in a Community of Practice with a Diversity of Actors
Diane-Gabrielle Tremblay, Valéry Psyché

Web Service Support for Collaboration between
Demographers

Mirjana Devedzi¢, Vladan Devedzi¢, Sonja D. Radenkovi¢

Exploring the Use of Contextual Modules for Understanding
and Supporting Collaborative Learning Activities: An
Empirical Study

Lu Xiao



EDITORIAL

Since the announcement of the two-year impact factor of our journal in the
summer of last year, the number of submissions to ComSIS has increased
dramatically, placing a strain on our editorial staff. In order to continue the
publication of our journal in a timely and quality manner, we increased the
number of editorial rejections, as well as strengthened our criteria for
acceptance of articles for publication. If this trend continues, we may
additionally be forced to adopt the policy of accepting only a certain portion of
articles (undeserving of editorial rejection) into the reviewing process. We
apologize to all prospective authors for any inconvenience this may cause, but
the circumstances and our commitment to keeping and enhancing the quality
standard of our journal are influencing this shift in policy.

In addition, we are happy to announce that the two-year impact factor of our
journal has increased from 0.324 (2010) to 0.625 (2011).

On behalf of the Editorial Board and the ComSIS Consortium, we thank our
Guest Editor, Prof. Vladan Devedzi¢ (University of Belgrade, Serbia) for
organizing the special section on emerging trends in technology-enhanced
learning (TEL), featured in this issue of ComSIS. We would also like to
express our gratitude to the authors and the reviewers for their high-quality
contributions and effort invested into this issue of our journal.

This issue of Computer Science and Information Systems consists of fifteen
regular articles and five articles in the special section on TEL.

In the first regular article, “Building XML-Driven Application Generators with
Compiler Construction Tools,” Antonio Sarasa-Cabezuelo, Bryan Temprado-
Battad, Daniel Rodriguez Cerezo and José-Luis Sierra describe the use of
classic compiler-construction tools (i.e., parser generators), to build XML-
driven application generators. Their approach consists of a document
interface based on standard stream-oriented XML processing, used to build
the XML scanner, characterization of the syntax of the streams by generation-
specific context-free grammars, and augmentation of these grammars with
suitable semantic attributes and semantic actions.

The next paper by Dragan Milicev, “Towards Understanding of Classes
versus Data Types in Conceptual Modeling and UML,” provides an in-depth
study of the ambiguities and discrepancies when making the distinction
between two kinds of entity types — classes and data types — in traditional
conceptual modeling and UML. A novel semantic interpretation is proposed
for consolidation, based on the premise that populations of the two kinds of

ComSIS Vol. 9, No. 2, June 2012 i



entity types are defined in two ways: by intensional (for data types) and
extensional (for classes) definitions. The proposed interpretation also lends
itself to the description of several semantic consequences: value-based vs.
object-based semantics, associations vs. attributes, and identity vs.
identification.

“Specification of Data Schema Mappings using Weaving Models”, by Nenad
Anici¢, SiniSa NeSkovi¢, Milica Vu€kovi¢ and Radovan Cvetkovié, tackles the
problem of unsuitability of weaving models for the specification of
heterogeneous schema mappings in model driven engineering. The lack of
mapping rules, which allows specifications that are semantically meaningless,
wrong, and/or disallowed, is overcome by providing the explicit support for
semantic mapping rules, based on the introduction of weaving metamodels
augmented with constraints.

Victor M. Prieto, Manuel Alvarez, Rafael Lopez-Garcia and Fidel Cacheda, in
“A Scale for Crawler Effectiveness on the Client-Side Hidden Web,” present
an evaluation framework for assessing the success of crawlers in traversing
the client side of the “hidden Web.” The authors formulate a scale by grouping
basic scenarios in terms of several common features, and propose evaluation
methods of crawler effectiveness in terms of the scale’s levels. Through
extensive evaluation of open-source and commercial crawlers, the paper
highlights the ones that are most capable of handling the evaluation
scenarios.

In “Wavelet trees: a survey,” Christos Makris gives an overview of various
characteristics of the wavelet tree data structure, which is used for many
tasks, such as text compression, text indexing, and retrieval. The article
considers issues concerning the efficient maintenance of the structure, and its
handling in various applications.

The article “Impact of Personnel Factors on the Recovery of Delayed
Software Projects: A System Dynamics Approach,” by Mostafa Farshchi,
Yusmadi Yah Jusoh and Masrah Azrifah Azmi Murad, explores the possibility
for significant schedule improvement by adding new staff during delayed
realization of a software project, considering new manpower’s capabilities,
skills and experience. The study is conducted through formulation and
evaluation of a system dynamics model which simulates the project’s
progress when new members are added.

‘A New Strategic Tool for Internal Audit of the Company Based on Fuzzy
Logic,” by Aleksandar PeSi¢, Duska PeSi¢ and Andreja Tepavcevi¢, presents
strategic management tool for the assessment of internal organizational
factors. The tool addresses the limitations of traditional appraisal methods,
enabling more comprehensive evaluation of a company’s internal
environment. The authors propose an original method — fuzzy synthesis of
internal factors (FSIF) — which extends the approach of the classical internal

ii ComSIS Vol. 9, No. 2, June 2012



factor evaluation (IFE) matrix approach by incorporating fuzzy logic in order to
better describe real situation.

In the paper “Experimental Investigation of the Quality and Productivity of
Software Factories Based Development,” Andrej Krajnc et al. evaluate the
quality and productivity benefits of the software factories (SF) approach to
software development. The traditional and the SF approach were compared
using the Goal — Question — Metric (GQM) methodology, on participants
grouped into 32 teams, demonstrating the superiority of the SF method.

“Nearest Neighbor Voting in High Dimensional Data: Learning from Past
Occurrences,” by Nenad TomaSev and Dunja Mladenié, presents a new
approach for exploiting the hubness phenomenon, which is an aspect of the
“curse of dimensionality” inherent to nearest-neighbor (NN) methods, in k-NN
classification. The article proposes a novel algorithm, hubness information k-
nearest neighbor (HIKNN), which introduces the informativeness of a point’s
hubness into the k-NN voting framework.

In “AKNOBAS: A Knowledge-based Segmentation Recommender System
based on Intelligent Data Mining Techniques,” Alejandro Rodriguez-Gonzalez
et al. describe design and evaluation of the recommender system AKNOBAS,
which employs clustering algorithms for the tasks of marshalling information
and recommending content to users.

The paper “Scope of MPI/OpenMP/CUDA Parallelization of Harmonic
Coupled Finite Strip Method Applied on Large Displacement Stability Analysis
of Prismatic Shell Structures,” by M. Hajdukovi¢ et al., studies the
effectiveness of parallelization in large displacement stability analysis of
orthotropic prismatic shells. The computational overhead introduced by the
semi-analytical harmonic coupled finite strip method (HCFSM) used to solve
the large deflection and the post-buckling problems is tackled by application of
MPI, OpenMP and CUDA approaches to parallelization.

Yordan Kalmukov, in the article “Describing Papers and Reviewers’
Competences by Taxonomy of Keywords,” deals with the problem of
automatically assigning reviewers to articles by introducing a taxonomy of
keywords to describe the competencies of both the articles and reviewers.
The hierarchical nature of the taxonomy allows the expression of semantic
proximity in addition to exact matches. A modification of Dice coefficient is
proposed to achieve the given task.

“Journal Evaluation based on Bibliometric Indicators and the CERIF Data
Model,” by Dragan Ivanovi¢, Dusan Surla and Milo§ Rackovi¢, proposes an
application of extended CERIF data model for storing journal impact factors
and journal scientific fields, and based on this data presents a journal
evaluation approach. The method does not unambiguously evaluate a journal,

ComSIS Vol. 9, No. 1, June 2012 iii



but rather suggests possibly journal appropriate categories according to the
values of the employed metric, but final decision is made by a committee.

In the paper “Ontology-Based Home Service Model,” Moji Wei, Jianliang Xu,
Hongyan Yun and Linlin Xu study home service retrieval and invocation for a
smart home. An ontology-based service model is employed to retrieve and
invoke services according to user's needs automatically. Two domain
ontologies are constructed — function concept ontology and context concept
ontology — to annotate the semantics of the home service different facets.
Two scenarios involving different types of services are presented that
demonstrate the usage of the model.

Finally, in “Automatic Generation of E-Courses Based on Explicit
Representation of Instructional Design,” Goran Savi¢, Milan Segedinac and
Zora Konjovi¢ present a system for automatic generation of IMS LD compliant
e-courses from three components: machine readable explicit representation of
instructional design, ontology of learning goals, and IMS content packaging
compliant learning resources.

Editor-in-Chief
Mirjana Ivanovic

Managing Editor
Milo§ Radovanovi¢

iv ComSIS Vol. 9, No. 2, June 2012



GUEST EDITORIAL

Technology Enhanced Learning (TEL) has been around for quite some time
now, and is still thriving. It has the goal of "providing socio-technical
innovations (also improving efficiency and cost effectiveness) for learning
practices, regarding individuals and organizations, independent of time, place
and pace. The field of TEL therefore focuses on the support of any learning
activity through technology".'

Note also that the term TEL is often used synonymously with E-Learning even
though there are significant differences. The main difference between the two
expressions is that TEL focuses on the technological support of any
pedagogical approach that utilizes technology. However, this is rarely
presented as including print technology or the develog)ments around libraries,
books and journals in the centuries before computers.

Still, TEL has already spread out to include a vast number of other aspects.
Not long ago, the major issues in TEL were learning content, instructional
design, personalization, recommendation, adaptation and adaptivity,
interoperability, and natural language processing. Nowadays, all major TEL
conferences and journals include dozens of new and emerging topics,
including social processes associated with learning, learners' motivation,
learners' and teachers' trust and reputation, and many more.

Thus, when issuing the call for papers for this special section we have tried to
identify important new trends in the area of TEL and to represent such trends
with selected articles. We have consulted the topics suggested by top-level
TEL conferences, high-reputation TEL research journals, and several other
Internet resources. Submissions of extended versions of papers previously
published in conferences and workshops were also welcome, given that they
were substantially expanded and improved. To this end, the call has proposed
submissions including (but not limited to) the following topic areas:

e Personalization, learner modeling and adaptation

e Context-aware learning systems

e Social Semantic Web and learning

! Wikipedia, "Technology-Enhanced Learning". [Online]. Available:
http://en.wikipedia.org/wiki/Technology-Enhanced Learning (Last visited: May,
2012)

? Tbid.

ComSIS Vol. 9, No. 1, June 2012 v



Mobile technologies for learning

Network infrastructures and architectures for TEL
Ubiquitous learning

Data mining and information retrieval

Recommender systems for TEL

Learning analytics

Problem- and project-based learning / Inquiry based learning
Computer-supported collaborative learning
Collaborative knowledge building

Game-based and simulation-based learning
Story-telling and reflection-based learning
Instructional design and design approaches
Communities of learners and communities of practice
Teaching techniques and strategies for online learning
Learner motivation and engagement

Evaluation methods for TEL

Self-regulated and self-directed learning

Reflective learning

Social processes in teams and communities
Knowledge management and organizational learning
Sustainability and TEL business models and cases
Business-learning models

Trust and reputation in TEL

Applications of TEL in various domains

Practical experiences of TEL

Results of TEL research projects applied in practice
Workplace learning in small, medium and large companies
Aggregated learning at the workplace

Distance and online learning

Lifelong learning (cradle to grave)

Vocational training

Informal learning

Accessible learning for all

Psycho-pedagogic support for users

Educational guidance for tutors

Adapted learning flow, content and monitoring process

Out of all the submissions we have received, we have selected five high-
quality papers containing original research results on some of the above and
related topics. Out of these five, two are invited papers, and the other three
are regular papers.

The invited paper "Recommending Collaboratively Generated Knowledge", by

W. Chen and R. Persen, addresses two of the above listed topics:
recommender systems and collaborative knowledge building. It recognizes

Vi ComSIS Vol. 9, No. 2, June 2012



the fact that learners (and not only teachers, tutors, and other traditional
content authors) have become active producers of knowledge, not only
consumers — by actively conducting their learning processes, learners
generate a vast amount of content. This kind of content can be a valuable
learning resource in both studying and assessment processes. However, it
also gives rise to new challenges for indexing, sharing, retrieval and
recommendation of such learning content. The paper presents a newly
developed recommender system for such emerging learning content
generated through collaborative knowledge building processes and studies
the implications and added values of the recommendations.

Another invited paper is "A Model-based Approach for Assessment and
Motivation", by J.M. Spector and C.M. Kim. It pertains to representations as a
foundational aspect of learning and instruction. The paper briefly reviews the
research literature about cognition and processing internal mental models,
putting the emphasis is on the role that mental models play in critical
reasoning and problem solving. Then it presents a theoretically-grounded
rationale for taking internal mental representations into account when
designing and implementing support for learning. The emphasis here is on
interaction with meaningful problems. The authors have developed and
presented a conceptual framework for integrating models into learning
environments that includes technologies for formative assessment and
motivation.

D.G. Tremblay and V. Psyché, the authors of the paper "Analysis of
processes of cooperation and knowledge sharing in a community of practice
with a diversity of actors", focus on communities of practice as an important
sub-topic of organizational and workplace learning. Communities of practice
often stem from a voluntary initiative within an organization, whose members
share some knowledge or expertise they wish to improve. However, a
community of practice can take the form of a network that brings together
members with common interests coming from different organizations and
even several countries in which they perform different types of work. To this
end, the paper discusses the evolution of communities of practice supported
by the use of Web 2.0 tools that promote collaboration.

The paper "Web Service Support for Collaboration between Demographers",
by M. Devedzic and her co-authors, runs along a similar avenue, focusing on
collaboration among demographers working in different organizations. In fact,
the paper promotes the use of novel Web services in the daily work and
research of demographers and illustrates how such services can facilitate
learning and collaboration between a university research group in the field of
demography and professionals in the field of demographic statistics. Still,
since the technology used is generic, it can be easily instantiated for use by
other social science researchers. The Web services used in this collaboration
are developed as part of an EU research project.

ComSIS Vol. 9, No. 1, June 2012 Vii



Lu Xiao, the author of the paper entitled "Exploring the Use of Contextual
Modules for Understanding and Supporting Collaborative Learning Activities:
An Empirical Study", reports her experiences with three student groups that
have collaborated in a semester-long classroom project. The project included
both tasks that required students to complete in virtual group workspace and
activities that could be carried out in physical world environment. The author
has noticed different collaboration patterns among the groups with respect to
building and maintaining social relationships, submitting individual’s work to
the group, and scheduling group meetings. She has then used Bereiter's two
contextual modules, intentional learning and schoolwork modules, to interpret
the observed patterns. The interpretation suggests that the group leader’s
contextual module plays a significant role in all members’ group learning
experiences and outcomes. Based on this, the author discusses design
implications intended for encouraging learning-based (as opposed to work-
based) practices in virtual group environment.

Guest Editor
Vladan Devedzic
University of Belgrade, Serbia

http://devedzic.fon.rs/
devedzic@fon.rs

viii ComSIS Vol. 9, No. 2, June 2012



DOI: 10.2298/CSI1S110505002S8

Building XML-Driven Application Generators with
Compiler Construction Tools

Antonio Sarasa-Cabezuelo’, Bryan Temprado-Battad1, Daniel
Rodriguez-Cerezo', José-Luis Sierra’

" Computer Science School,
Complutense University of Madrid
Calle Profesor José Garcia Santesmases, s/n
28040 Madrid, Spain
{asarasa, bryan, drcerezo, jlsierra}@fdi.ucm.es

Abstract. This paper describes how to use conventional compiler
construction tools, and parser generators in particular, to build XML-
driven application generators. In our approach, the document interface
is provided by a standard stream-oriented XML processing framework
(e.g., SAX or StAX). This framework is used to program a generic,
customizable XML scanner that transforms documents into streams of
suitable tokens (opening and closing tags, character data, etc.). The
next step is to characterize the syntactic structure of these streams in
terms of generation-specific context-free grammars. By adding suitable
semantic attributes and semantic actions to these grammars,
developers obtain generation-oriented translation schemes: high-level
specifications of the generation tasks. These specifications are then
turned into working application generators by using standard parser
generation technology. We illustrate the approach with <e-Subway>, an
XML-driven generator of shortest-route search applications in subway
networks.

Keywords: Application Generators, Compiler Construction Tools, XML
Processing, Software Development Approach

1. Introduction

Application generators and generative approaches to software development
are keystone technologies in enhancing productivity and ensuring the quality
of final software artifacts [5][7][9]. In application generators, XML is frequently
chosen as a basic encoding format for input specifications [6]. Thus, having
cost-effective and efficient methods for processing XML documents is
mandatory in these scenarios. For this purpose, architects of application
generators have a wide range of XML-processing technologies available,
ranging from task-specific (e.g., XSLT) to general-purpose ones (e.g., SAX or
DOM). General-purpose XML processing frameworks (i.e., SAX, DOM, StAX,



Antonio Sarasa-Cabezuelo et al.

etc) [15] are particularly relevant for very specific or complex processing
tasks not easily accomplished with pre-existing task-specific technology.

However, general-purpose processing frameworks are largely data-centric:
they see XML documents as chunks of data. By contrast, the intrinsic nature
of descriptive markup and XML is fundamentally language-oriented: to design
an XML format for a particular type of document is equivalent to devising a
suitable domain-specific markup language. It immediately raises an obvious
question: if XML documents are structured with (formal) markup languages,
why not use conventional language-processing techniques to support the
processing of these documents?

The answer to this question depends on the complexity of the markup
language and the processing tasks. For simple XML documents (e.g., a
sequence of logs with a description and a timestamp) and simple processing
tasks (e.g., producing an HTML table with the logs), the effort of designing
and implementing the processing component as if it were a sort of compiler,
using methods and techniques specific to the compiler construction field, may
be excessive. However, for more complex documents (e.g., QTl documents
describing assessments in an e-Learning system [11]) and more complex
processing tasks (e.g., configuring assessment systems with the QTI
documents), this effort can pay off. Actually, the latter constitute the kind of
scenarios faced by developers of application generators.

An attractive feature of the language-oriented approach is that the design
and implementation of language processors (and, in particular, of translators)
is mature enough to support a wide range of tools able to produce reliable
and efficient implementations from high-level specifications. Of those tools,
the most widely known are parser generators (i.e., YACC-like tools) [1].
These tools accept translation schemes, i.e., context-free grammars
annotated with the semantic actions that actually perform the processing, as
input, and produce working translators as output. Thus, by using one of these
tools, it is possible to drastically reduce the development effort compared to a
handcrafted implementation.

This paper shows how it is possible to build sophisticated XML processing
environments by combining parser generators with general-purpose stream-
oriented XML processing frameworks. For this purpose, it develops a general
method that can be used with a great variety of parser generation
environments or underlying XML processing frameworks. The result is a
systematic approach to the language-oriented development of complex
syntax-directed XML processing components, which is especially well-suited
to the development of XML-driven application generators.

The rest of the paper is organized as follows: section 2 introduces
<e-Subway>, the system that will be used for illustrative purposes. Section 3
outlines the approach and illustrates it with <e-Subway>. Section 4 presents
some work related to ours. Finally, section 5 presents some conclusions and
lines of future work.

486 ComSIS Vol. 9, No. 2, June 2012



Building XML-Driven Application Generators with Compiler Construction Tools

2. Case study

The system <e-Subway> is an XML-based system for the construction of
shortest-route search applications in subway networks. This system was
already used as a case study in some of our previous experiences concerning
the generation of applications from structured documents [38][39].

<e-Subway> integrates:

(a)

<!ELEMENT Subway
(Network,UserInterface) >

<!ELEMENT Network (Structure, Dyn
<!ELEMENT Structure (Stations,Line
<!ELEMENT Stations (Station) +>
<!ELEMENT Station (#PCDATA) >
<!ATTLIST Station id ID #REQUIRED>

(b)

<Subway>
<Network>
<Structure>
<Stations>
<Station 1d="CONGOSTO">Congosto
</Station>

amics) >
s)>

<e-Subway>
framework

l

G

<Station i1d="VVALLECAS">Villa de Vallecas

</Station>

</Stations>

e <e-Subway>
</Network> document

<UserInterface>

</UserInterface>

e

</Subway> <e-SUbW3y>
generator

<e-Subway>
application

v

Figure 1. (a) Excerpt of the <e-Subway> DTD; (b) The <e-Subway> generation

process

— An XML-compliant markup language for structuring documents that
describe the different aspects of route searching applications (e.g.,
stations, lines, connections and other aspects of the subway network, as
well as selected aspects of the final application’s user interface). In Fig. 1a,
we outline a fragment of the DTD for this language.

— A domain-specific object-oriented framework. Applications in <e-Subway>

are instantiations of this framework.

ComSIS Vol. 9, No. 2, June 2012

487



Antonio Sarasa-Cabezuelo et al.

— A generator. This component processes documents that describe
<e-Subway> applications and produces the documented applications as
instantiations of the <e-Subway> framework (Fig. 1b) (i.e., it does not
actually generate code, but produces in-memory instances —objects— of the
<e-Subway> framework’s classes, and establishes appropriate links
between these instances).

Settingupthe ... .
Development :
Environment

¥

Writing the
Generation-Oriented
Translation Scheme

|

Providing the  |..... <
Generator-Specific :
Logic

|

Producing and

Testing the ®

Generator

Figure 2. Activities and sequencing of activities in the development approach

3. The development approach

Fig. 2 summarizes the approach to developing XML-driven application
generators with conventional parser generation tools, focusing on the main
activities and on the sequencing of these activities (the backwards transitions
allow an iterative/incremental production process). Notice that this workflow
largely mirrors that which is usually followed by any compiler developer.
Indeed, he/she must provide a suitable grammar for the source language,
add semantic actions to this grammar to yield a translation scheme, generate
the translator either by hand or by using a suitable generation tool, etc. This
parallelism makes the language-oriented nature of the proposal described in
this paper apparent. Nevertheless, it is important to notice that the goal is not

488 ComSIS Vol. 9, No. 2, June 2012



Building XML-Driven Application Generators with Compiler Construction Tools

to provide a full translator from scratch, but instead to put an additional
language processing layer on top of an existing stream-oriented XML
processing framework. In particular, the processor will operate on XML
information elements (e.g., represented in the form of SAX events) instead of
individual characters. As a result, it will lead to the organizing of the
application-specific logic attached to a general processing framework into two
well-differentiated tiers: one that operates as a syntax-directed translator, and
another that provides services to this translator. The following subsections
analyze each activity in this workflow.

3.1. Setting up the development environment

This activity integrates a parser generation tool with a general-purpose XML
processing framework. This activity will be performed only sporadically, since
the same development environment can be used in the development of many
different application generators.

(b)

<Stations> =  OStations
<Station> =  OStation
</Stations> = CStations
</Station> =  CStation

(@)
<Stations>
<Station id="s1">Black</Station>
<Station id="s2">Blue</Station>
<Station id="s3">Red</Station>
</Stations>

XML Scanner

[token: OStations] [token: OStation id: "sl1"] [token: #pcdata text: "Black"

[token: CStation] [token: OStation id: "s2"] [token: #pcdata text: "Blue"]
[token: CStation] [token: OStation id: "s3"] [token: #pcdata text: "Red"]
[token: CStation] [token: CStations]

Figure 3. (a) Example of tokenization; (b) Customization of an XML Scanner

As previously stated, a parser generation tool produces translators for
formal languages from high-level specifications. These translators are driven
by parsers that operate on streams of tokens provided by lexical analyzers.
Thus, the key idea behind integration is to see XML documents as streams of
tokens. Integration itself is focused on the logical structure: streams of tokens
are produced by remapping the data structures provided by the general-
purposes processing frameworks, instead of by directly operating on the

ComSIS Vol. 9, No. 2, June 2012 489



Antonio Sarasa-Cabezuelo et al.

actual XML files. The integration distinguishes four different lexical

categories, or kinds of tokens:

— Character data tokens, which correspond to fragments of textual content in
the processed documents.

— Opening and closing tags.

— The end of document.

In addition to its lexical category, each token can include additional lexical
information in the form of lexical attributes:

— Character data tokens have the actual textual content associated with
them.

— Opening tags have the element attributes specified in the tag, as well as
namespace information, associated with them.

Fig. 3a shows an example of tokenization.

Based on these considerations, integration provides a generic and
customizable XML Scanner by using the selected XML processing
framework. This component can be generic, since it is only needed to
indicate how to map opening and closing tags into lexical categories (e.g., by
using a table, as suggested in Fig. 3b). Also, this kind of integration can be
successfully carried out by using a stream-oriented framework such as SAX
or StAX. Indeed, the action of the XML Scanner can be conceived of as the
transformation of a stream of documental information items into a stream of
tokens, as expected by the generated translators.

Concerning the technical details, since generated translators are push
components (i.e., they take control, requesting tokens from the scanners
when required), integration is particularly straightforward with a pull XML
processing framework (e.g., StAX), since these frameworks provide each
next information item on demand. On the other hand, integration with a push
framework (e.g., SAX) requires inverting control (e.g., using a producer-
consumer multithreaded solution). In our previous papers [33] and [34], we
give examples of the two kinds of integration.

Finally, it is important to highlight the difference between the XML Scanner
proposed in this section and the scanner of a conventional language
processor. Indeed, the XML Scanner proposed in our approach is built on top
of a full-flagged stream-oriented XML processing framework, able to support
features that are common to any XML-based markup language (e.g., support
for different character sets and encodings, comment recognition, entity and
namespace management, etc.). On the other hand, the scanner of a
conventional language processor usually works on text files or stream of
characters. Therefore, although it could be possible to provide a conventional
scanner for tokenizing a particular type of XML documents, it would have to
deal with the aforementioned features to be fully XML-compliant. The
complexity of exiting XML parsers teaches us that it is not exactly an easy
task. It makes the difference between our proposal and the conventional
development of a language processor apparent: if we develop a language
processor for a particular type of XML documents following the standard
patterns explained in any university-level compiler construction course (see
for instance [1]), we will probably get a program able to process input text

490 ComSIS Vol. 9, No. 2, June 2012



Building XML-Driven Application Generators with Compiler Construction Tools

files with an XML syntax-like, but not a program able to deal with the features
common to all XML applications (e.g., the ability to split a huge XML
document in several files and to assemble these fragments using the XML
entity mechanism, to deal with different character sets, to deal with
namespaces, etc.).

3.2 Writing the Generation-Oriented Translation Scheme

This is the central activity of our development approach. Its purposes are to:

— Write a suitable generation-specific grammar that gives structure to the
stream of tokens provided by the XML Scanner.

— Annotate this grammar with code (semantic actions) to describe the
generation task. The result is the syntax-directed, generation-oriented
translation scheme produced by this activity.

It is important not to confuse the generation-specific grammar with the
document grammar (e.g., a DTD or an XML Schema) used to describe the
markup language. The generation-specific grammar of this activity addresses
a key aspect of the processing: to give a suitable structure to the stream of
tokens in order to facilitate application generation. Indeed, this aspect must
be addressed by any general-purpose XML processing solution. For instance,
it is implicit in the code that deals with the children of an element node in a
DOM-based processing application, in the callback methods and the state
variables of a SAX event handler, or in the set of mutually recursive
procedures of a StAX-based application. The main difference (and
advantage) of our approach is that this structuring aspect is explicitly
described at a very high abstraction level, as a context-free grammar, instead
of being hand-coded in a final implementation. The structure imposed on a
stream of tokens by a generation-specific grammar takes the form of a parse
tree. Fig. 4b shows an example. As this example makes apparent, the parse
tree is finer-grained than the usual document tree, where the element
contents lack any structure outside a uniform sequence of nodes (compare
Fig 4a with Fig 4c).

The conceptual processing model behind a generation-oriented translation
scheme is to perform a traversal of the parse tree, executing semantic
actions at significant points in this traversal. In addition, semantic actions can
store and consult information in the nodes of the parse tree (typically this
information is organized as an assignment of values to semantic attributes),
as well as in global variables.

The exact nature of the traversal is determined by the kind of translators
generated by the parser generation tool:

— Top-down translators, such as those generated by JavaCC and ANTLR,
traverse the parse tree in preorder (i.e., the translator visits each node
before visiting its children). The significant points are, for each node, when:
(i) the translator enters the node, (ii) the translator enters a child, (iii) the
translator has left a child, and (iv) the translator exits the node.

ComSIS Vol. 9, No. 2, June 2012 491



Antonio Sarasa-Cabezuelo et al.

— Bottom-up translators, such as those generated by YACC-like tools (e.g.,
CUP), traverse the parse tree in postorder (i.e., for each node, the
translator first visits the node's children and then the node itself). There is
a significant point each time the translator exits a node.

(a)

Stations

Station @id=sl Station @id=s2 StatiLn @id=s3

Black Blue Red

(b)

StsDesc — _OStations Sts _CStations
Sts — St StLst St | St

StLst — StLst St | A

St — _OStation #pcdata _CStation

_Ostations Sts _Cstations

i : . CStation
_oStation[id=sl] _Cstation _OStation[id=s3] . 1
#pcdata[text=Black] #pcdata[text=Red]
StLst
StLst

St

_OStation[id=s2] _CStation

#pcdata[text=Blue]

Figure 4. (a) Document tree for the document in Fig. 3a; (b) (Part of) a generation-
specific grammar; (c) Parse tree for the document in Fig. 3a according to this
grammar.

It is worthwhile to note that, while it is useful to have this model in mind
when writing generation-oriented translation schemes, it is only a conceptual

492 ComSIS Vol. 9, No. 2, June 2012



Building XML-Driven Application Generators with Compiler Construction Tools

model. In practice, the parse tree is never built, the traversal is implicitly
performed during parsing, and the semantic actions are executed in a
suitable order. Also, the semantic attributes are only available as parameters
of recursive procedures (e.g., in recursive descent translators generated by
JavaCC or ANTLR) or stored in the records of a semantic stack (e.g., in
YACC-generated bottom-up translators). This behavior is a fundamental
feature when dealing with huge documents (like those required by the
generation of data-intensive applications) or with documents made available
asynchronously in an XML stream (as required by on-line generators, which
incrementally generate applications as they process their descriptions). It also
constrains the kind of specifications that can be done. For instance, top-down
translators do not work with left-recursive grammars, which are useful for
characterizing left-associative  structures. Also, although bottom-up
translators are able to deal with left-recursion in a very efficient way, it is
substantially more difficult to deal with inherited information (i.e., information
that flows from parent to child or from sibling to sibling) than in top-down
translators [1].

StsDesc — _OStations Sts _CStations {
$$.stations = $2.stations
}
Sts — St StLst St {
ops.addFirstStation ($2.stations, $1.1id, $1.name) ;
ops.addLastStation ($2.stations, $3.1d, $3.name) ;
$S$.stations = $2.stations;
}
Sts — St {
$$.stations = ops.makeStList();
ops.addFirstStation ($$.stations, $1.id, $1.name) ;
ops.addLastStation ($$.stations, $1.1id, $1.name) ;
}
StLst — StLst St {
$$.stations = addStation($1l.stations, $2.id, $2.name) ;
}
StLst = A |
$$.stations = ops.makeStList();
}
St — _OStation #pcdata _CStation {
$$.id = $1.1id;
$$.name = $2.text;

Figure 5. Excerpt of a translation scheme for a fragment of the <e-Subway> markup
language

Knowing the traversal carried out by the translator makes it possible to
place the semantic actions in the syntax rules of the generation-specific
grammar. The specification formalism must also provide a way of referring to
the semantic attributes (e.g., placing them as parameters of the syntax
symbols, as in JavaCC, or using pseudovariables, as in YACC-like tools).
Fig. 5 depicts a fragment of the syntax-directed translation scheme for a

ComSIS Vol. 9, No. 2, June 2012 493



Antonio Sarasa-Cabezuelo et al.

bottom-up translation model of the <e-Subway> generator using a YACC-like
notation (in particular, it uses YACC-like pseudovariables: $$ to refer to the
semantic record of a rule’s head, $i to refer to the semantic record of the i-
esime body’s symbol). The translation scheme builds an in-memory
representation of the stations in a line, following the typical generation pattern
of populating a suitable semantic model [9].

Finally, it is interesting to remark that, for the sake of generalization, we
have kept our approach simple enough to fit in the different parser generation
tools available. For this reason, more advanced capabilities have been
explicitly omitted, although they might facilitate some advanced processing
tasks. For instance, one of these advanced capabilities could be the interplay
between syntax and semantics, supported by tools like ANTLR [30], and
which, for instance, would allow us to make parsing dependent on predicates
concerning certain semantic attributes. Still, some clever behavior can be
achieved without introducing these advanced features by setting the XML
Scanner to produce different tokens for different occurrences of the same
element type, depending of the values of some of their XML attributes.

3.3. Providing Generator-Specific Logic

The semantic actions in the translation scheme will typically use other, more
conventional machinery that must also be provided to produce a fully
functional application generator. This machinery constitutes the so-called
generator-specific logic.

SubwaySemClass SubwayApp

SubwayNetwork | 1
R———————— RouteSearcher SubwayGUI
?* ?* adapts uses ?

| Line | | Corridor =
<<interface>> SubwayMap
Graph
e OLIGHD .
| Station | | Link | NetworkAsAGraph

destination

Figure 6. Main components of the <e-Subway> framework

For instance, in <e-Subway>, this generator-specific logic is formed by the
<e-Subway> framework, which constitutes the aforementioned semantic
model in this scenario [9]. Thus, and as indicated in section 2, the resulting
generator does not generate actual code, but instantiates classes in the

494 ComSIS Vol. 9, No. 2, June 2012



Building XML-Driven Application Generators with Compiler Construction Tools

<e-Subway> framework and links the resulting objects in appropriate ways
(using the terminology introduced in [9], it populates the <e-Subway>
framework, as we indicate below). Fig. 6 depicts the main components of the
<e-Subway> framework.

In this way, the approach promotes a clear separation between the
language-oriented processing of the XML documents and the conventional
software that supports this processing. This separation can be further
emphasized by providing a suitable fagade for the generator-specific logic,
with operations that will be invoked from the translation scheme (it indeed
follows the embedment helper pattern described in [9]). The ops global
variable in Fig. 5 illustrates this practice (in the actual <e-Subway> generator,
the variable refers to an instance of such a fagade, which is represented by
SubwaySemClass in Fig. 6).

Parser Compiler
generator
4 Translation scheme
Generation-oriented implementation
translation scheme (source code)
provides Generator-specific
logic
Application . .
generator provides
developer L
uses
customizes
\ Translation scheme
XML Processing XML Scanner implementation
framework (binary)

L L

® >® >@

provides

Main program

Figure 7. The production process of XML-driven application generators in the
development approach

ComSIS Vol. 9, No. 2, June 2012 495



Antonio Sarasa-Cabezuelo et al.

3.4. Producing and Testing the Generator

Once the translation scheme and the application-specific logic are available,
it is possible to get the working generator automatically by using the parser
generation tool. The production process is detailed in Fig. 7. Indeed:

— The translation scheme is used as input to the parser generation tool in
order to obtain the implementation of a translator written in the target
language of the parser generation tool (e.g., Java for JavaCC or CUP).
Notice that this way, the parser generation tool becomes a kind of meta-
generator [6] in our proposal.

— In turn, this implementation can be turned onto a working binary
component by using a compiler for such a target language (e.g., a Java
compiler, assuming JavaCC or CUP was used).

— The customized XML Scanner must also be provided. Usually it can
involve writing the mapping table (see section 3.1) using a customization
file, or directly writing this table in the target programming language (e.g.,
Java).

— Finally, the developer must provide a small main program gluing all this
together. This program will properly connect all the components required to
constitute the generation pipeline. This pipeline will be made of: (i) a
standard XML processing framework able to turn XML documents into
information elements (e.g., represented by SAX events) suitable for the
XML Scanner, (ii) the customized XML Scanner used to turn these
elements into tokens accepted by the translator generated, and (iii) the
translator itself, which makes use of the generator-specific logic.

The resulting generator can be tested in order to resolve possible defects
and/or malfunctions. This activity therefore completes the development
process.

4. Related Work

In this section we compare our work to conventional XML processing
approaches (subsection 4.1), to other approaches to language-driven XML
processing (subsection 4.2), and to approaches to XML processing based on
attribute grammars (subsection 4.3)

4.1. Conventional XML processing approaches

As indicated in section 1, conventional approaches to XML processing range
from task-specific ones (e.g., XSLT [41] for document transformation or
XQuery [43] for expressing queries to XML structured documents) to general-
purpose frameworks (e.g., tree-oriented ones, like DOM [19], or stream-
oriented ones, like SAX [3][21], StAX [21] or XML-Pull [21]; see also [15] for a

496 ComSIS Vol. 9, No. 2, June 2012



Building XML-Driven Application Generators with Compiler Construction Tools

survey of this kind of general-purpose XML processing frameworks). While
both types of these traditional approaches (task-specific and general purpose
ones) share a data-centric orientation (i.e., these approaches see XML
documents as chunks of data instead of sentences in a formal language),
task-specific approaches tend to be of a higher level and of a more
declarative nature than general-purpose ones. Indeed, task-specific
approaches promote the use of domain-specific languages specifically
tailored to the task at hand (e.g., transformation specifications in XSLT,
FLWOR expressions in XQuery), while general-purpose processing
frameworks are usually expressed in a general-purpose programming
language (e.g., Java) and their use demands programming skills in this kind
of general-purpose programming languages. As a consequence, task-specific
approaches are usually more usable than general-purpose ones. However,
the applicability of task-specific approaches is reduced to concrete
processing tasks; for other tasks, either another task-specific approach or a
general-purpose one will need to be used.

The language-oriented approach presented in this paper tries to bring
together the best of the two aforementioned XML processing worlds (task-
specific and general-purpose ones). Indeed, it clearly splits the processing
task into two well-differentiated layers: (i) a linguistic layer, explicitly
governed by an underlying formal grammar, which deals with the syntax-
directed processing of the stream of basic components in an XML document,
and (ii) an additional specific logic layer, which is understood as a set of
additional services required by the linguistic layer. While the second layer
must be provided by using general-purpose programming languages, the first
layer can rely on domain-specific languages to describe syntax-directed
language processing tasks, like those provided by the parser generation tools
alluded to in this paper. As a consequence, the advantages of the approach
from the development and maintenance perspective become apparent. On
one hand, the linguistic layer can be expressed in domain-specific, high-level
and largely declarative ways, using translation schemes, which can contribute
to facilitating its conception, development and maintenance. On the other
hand, since the approach does not constrain the nature of the specific logic
layer, it is as general as any of the aforementioned general-purpose
approaches. However, as a disadvantage, developers must face an
increment in complexity due to the explicit organization of processing
applications in these two well-differentiated layers. Of course, and as
indicated in section 1, whether this complexity pays out or not will depend on
the nature of the XML-based markup language: the more complex the
language is, the more convenient the adoption of this proposal will be.
Indeed, the non-trivial complexity of the markup languages that can arise in
the domain of application generators makes this approach very convenient
for this domain.

Our proposal can also be compared to traditional approaches from the
point of view of efficiency, although, concerning the domain of application
generators, where the documents involved will usually be small, this factor is
less critical than ease of development and maintenance. Still, since our

ComSIS Vol. 9, No. 2, June 2012 497



Antonio Sarasa-Cabezuelo et al.

approach is intrinsically stream-oriented, it can usually give performances
comparable to pure stream-oriented approaches based, for instance, on SAX
or StAX. Indeed, another advantage to our approach, which is a direct
consequence of using syntax-directed translation specifications built on top of
underlying context-free grammars, arises: when we develop XML processing
applications we can think of trees, but the final applications will be executed
as stream-oriented ones. Therefore, the approach can achieve (and even
beat) the usability of tree-oriented processing solutions, as well as the
efficiency of stream-oriented ones.

Since it promotes a generative strategy to derive the actual
implementation of the linguistic layer from a high-level specification based on
the input language of a parser generation tool, our proposal has some points
in common with XML data binding proposals [20]. A typical data-binding
framework incorporates generators that are able to generate an application-
specific representation by processing the document grammar (i.e., DTD or
XML Schema) for the application’s document type. As with the other
conventional approaches mentioned, this representation is typically data-
centric, as it consists of a set of application-specific classes, which are
instantiated during parsing. Nevertheless, data-binding proposals are not
exempt from disadvantages. Indeed, these proposals are tightly coupled with
the document grammar, which is turned into application-specific classes
using a more or less rigid set of pre-established rules. Although the
proposals usually support binding specifications, which let developers
modulate the classes generated and the bindings for the documents, the
transformational capabilities of these specifications are usually limited to
simple mapping facilities for elements and attributes. While these capabilities
are sufficient for simple data-oriented XML applications, they fail when facing
complex and/or mixed-element content models arising in non-trivial XML-
based markup languages (such as those used in the domain of application
generators). Our proposal, in turn, makes it possible to base the processing
on generation-specific grammars, which are specific, not only to each
language, but also to the processing task at hand.

4.2, Language-driven processing of XML documents

The conception of applications that process XML (or, more generally
speaking, structured) documents as a sort of compiler or translator for a
computer language has a long tradition in the document engineering context,
such that it is highlighted, for instance, in [16]. Indeed, as it made apparent in
[15], the internals of general-purpose XML processing frameworks can be
explained from the point of view of conventional computer language
processing workflows. However, as discussed in section 1, the application-
specific processing of the documents usually operates on the data structures
representing the documents provided by these frameworks. As a
consequence, this application-specific processing is usually viewed as the

498 ComSIS Vol. 9, No. 2, June 2012



Building XML-Driven Application Generators with Compiler Construction Tools

processing of conventional data structures (e.g., traversing DOM trees,
responding to SAX events, ...) and the connection with language processing
methods, techniques and tools is definitively missed. In order to restage this
connection, some proposals (which are typically used for educational
purposes) suggest undertaking the development of XML-based applications
by building a parser for each particular XML-based markup language with the
help of a parse-generation tool (see, for instance, [29], pages 351-352). As
we indicated in section 3.1, this straightforward approach, however, supposes
that we ignore general features common to any XML processing application
(e.g., entity processing, comment recognition, namespace support, etc.). In
this paper, we have shown how it is possible to use conventional parse
generation tools in combination with standard XML processing frameworks to
achieve the benefits of both approaches: on one hand, using standard and
well-proven general-purpose XML processing frameworks to take advantage
of general-purpose features common to any XML application, and, on the
other hand, being able to organize application-specific processing in linguistic
terms, as promoted by parse-generation tools.

The idea of parser generators have inspired several proposals for the
construction of XML processing applications (e.g., ANTXR [40], which is built
on top of the ANTLR parser generator tool, and RelaxNGCC [27], an
extension of the RelaxNG [42] schema language for the specification of
translation schemes). While these proposals usually rely on specialized tools
supporting dedicated specification languages, in this paper we have shown
how it is possible (and reasonable) to use conventional and well-proven
parser generation tools without requiring dedicated languages for the
description of the translation schemes. As indicated above, this fact is
confirmed in our previous works [33][34], where we have shown how it is
possible to build sophisticated XML processing environments by combining
parser generators (JavaCC [14] and CUP [2]) with general-purpose stream-
oriented XML processing frameworks (SAX and StAX).

4.3. XML Processing and Attribute Grammars

Although the tendency in formal models for processing XML documents is to
emphasize tree automata and related formalisms [36], there are several
works on using attribute grammars, a well-known formalism for describing the
syntax and semantics of context-free languages [12][28], for the language-
oriented implementation of XML processing tasks. Many of these works are
typically focused on amalgamating attribute grammar concepts with the
EBNF syntax that usually underlies an XML DTD, and which is reflected in
unranked tree representations for the XML documents. The approach
adopted in [31] to cope with EBNF is to decouple semantic rules and
productions. Indeed, their semantic rules are associated in terms of parent-
child relationships, instead of being associated with productions. This
problem was addressed early by the work reported in [8] regarding a
transformation system for structured documents supporting different

ComSIS Vol. 9, No. 2, June 2012 499



Antonio Sarasa-Cabezuelo et al.

document models (e.g., SGML, LaTEX, etc.). In [24][25], this kind of
extended attribute grammar is used for querying structured documents, and it
constrains the type of semantic expressions allowed to regular expressions in
the alphabets of attribute occurrences. In the work described in [17][18],
which reports on an application in the domain of information retrieval,
documents are represented using abstract attribute grammars, where each
non-terminal corresponds to an element type. In this work, a set of pre-
established rules is used to derive such grammars from the DTDs, using a
similar approach to that described in [16] (see [18] for an explicit enumeration
of these rules). In [13], I-attributed grammars defined from EBNF syntaxes
are used to support the efficient processing of XML streams. Similarly, in the
works reported in [23][26] the unranked nature of the XML document trees is
managed by promoting binary encodings of these document trees. Finally, in
[32][35] we describe XLOP (XML Language-oriented Processing), an attribute
grammar—based front-end to the proposal described in this paper. Indeed, by
using encoding patterns similar to those described in [4] to implement
attribute grammars by using conventional compiler construction tools, XLOP
is able to turn the attribute grammar-based specifications of XML processing
tasks into translation schemes for the CUP parser generation tool.

Our work in XLOP makes the relationships between the proposal described
in this paper and attribute grammar-based approaches to XML processing
apparent. Indeed, since the designer who writes an attribute grammar does
not need to specify the evaluation order for the semantic equations, attribute
grammars are of a higher level than translation schemes, where designers
must make the execution order of the semantic actions explicit. However,
many times it can burden the applicability of the approach, since average
developers, who do not necessarily have deep knowledge of specialized
formal semantic specification techniques, usually find it hard to work with
non-standard computation models [9], like the dependency-driven one that
underlies attribute grammars. For this purpose, the plain use of parser
generation tools presented in this paper can provide an intermediate
approach that can be more easily accepted by developers of XML processing
applications. Also, sometimes parser generation tools can lead to more
efficient / more straightforward implementations than those directly generated
from attribute grammars. In addition, the use of patterns like the one
described in [4] can enable hybrid approaches: indeed, it is possible to start
with an attribute grammar-based specification, to encode it as a translation
scheme using the patterns given in [4], and then to evolve it into a more
efficient / more conventional implementation. These ideas have been
partially applied in [34] by including dependency-driven translation
capabilities in the application of the approach to the CUP + STaX marriage.
Finally, based on our experiences, we have realized that one of the key
aspects of the approach described in this paper is to perform the explicit
provision of (plain BNF) context-free grammars (e.g., the generation-specific
grammar) instead of relying on direct EBNF counterparts to the DTDs /
document schemas as in [13][24][25], on pre-established rules to convert
(EBNF-based) document grammars into BNF grammars as in [17][18], on the

500 ComSIS Vol. 9, No. 2, June 2012



Building XML-Driven Application Generators with Compiler Construction Tools

explicit decoupling of syntax and semantics as in [31], or on pre-established
encodings of the document trees as in [23][26].

5. Conclusions and future work

In this paper, we have proposed a metalinguistic conception of the
development of XML-driven application generators. According to this
approach, these generators are treated as a sort of language processor. This
treatment allows us to use compiler construction tools, and in particular
parser generators, as adequate tools to orchestrate the development. It
enables the automatic production of application generators from high-level
specifications based on generation-oriented translation schemes. In addition,
these application generators can be smoothly integrated with general-purpose
standard XML-processing frameworks by using a generic and customizable
XML Scanner. The approach facilitates the development and maintenance of
application generators driven by complex XML-based markup languages, as
well as by huge data-intensive XML documents and/or by documents that are
provided asynchronously in an XML data stream.

Currently we are working on more flexible configuration mechanisms for
the XML Scanner. We are also investigating mechanisms to improve the
efficiency of the final generators. We are also planning to test the approach
on the development of other application generators in the e-Learning domain,
such as was reported in [22][37], as well as in the domain of multi-agent
systems [10].

Acknowledgements. Thanks are due to project grants TIN2010-21288-C02-01 and
Santander-UCM GR 42/10, group reference 962022. Also, Daniel Rodriguez-Cerezo
was supported by the Spanish University Teacher Training Program
(EDU/3445/2011).

References

1. Aho A.V., Lam M.S., Sethi R., Ullman J.D.; Compilers: principles, techniques
and tools (2nd edition). Addison-Wesley. (2006)

2. Appel, AW.: Modern Compiler Implementation in Java. Cambridge University
Press. (1997)

3. Brownell, D. SAX2. O’Reilly. (2002)

4. Cerezo, D., Sarasa, A., Sierra, J.L. Implementing Attribute Grammars Using
Conventional Compiler Construction Tools. 3rd Workshop on Advances in
Programming Languages (WAPL'11), Szczezin, Poland. (2011)

5. Cleaveland, J.C.: Building Application Generators. IEEE Software, Vol. 5, No. 4,
25-33. (1988)

6. Cleaveland, J.C.: Program Generators with XML and Java. Prentice Hall. (2001)

7. Czarnecki, K.. Generative Programming: Methods, tools and Applications.
Addison-Wesley. (2000)

ComSIS Vol. 9, No. 2, June 2012 501



Antonio Sarasa-Cabezuelo et al.

8. Feng, A., Wakayama, T.: SIMON: A Grammar-based Transformation System
for Structured Documents. Electronic Publishing, Vol. 6, No. 4, 361-372. (1993)

9. Fowler, M.: Domain Specific Languages. Addison-Wesley. (2010)

10. Fuentes-Fernandez R., Gomez-Sanz J., Pavon J.: Requirements Elicitation and
Analysis of Multiagent Systems Using Activity Theory. IEEE Transactions on
Systems, Man, and Cybernetics, Part A, Vol. 39, No. 2, 282-298. (2009)

11. IMS. IMS Question and Test Interoperability 2.1. www.imsglobal.org/question/

12. Knuth, D.E: Semantics of Context-free Languages. Mathematical System Theory
Vol. 2, No. 2, 127-145. (1968)

13. Koch, C., Scherzinger, S.: Attribute Grammars for Scalable Query Processing on
XML Streams. The VLDB Journal, Vol. 16, No. 3, 317-342. (2007)

14. Kodaganallur, V.: Incorporating Language Processing into Java Applications: A
JavaCC Tutorial. IEEE Software, Vol. 21, No. 4, 70-77. (2004)

15. Lam, T.C., Ding, J.J., Liu, J.C.: XML Document Parsing: Operational and
Performance Characteristics. IEEE Computer, Vol. 41, No. 9, 30-37. (2008)

16. Leite-Ramalho, J.C.: Anotagao Estrutural de Documentos e sua Semantica --
Especificagdo da Sintaxe, Semantica e Estilo para Documentos. Ph.D. Thesis.
Braga, Portugal. (2000)

17. Lopes-Gangarski, A. L., Doucet, A., Rangel-Henriques, P.: Grammar-based
Interactive System to Retrieve Information from XML Documents. I|EE
Proceedings-Software, Vol. 153, No. 2, 51-60. (2006)

18. Lopes-Gancgarski, A., Rangel-Henriques, P.: Information Retrieval from
Structured Documents Represented by Attribute Grammars. International
Conference on Information Systems Modeling, Rep. Cheque. (2002)

19. Marini, J.: Document Object Model: Processing Structured Documents. McGraw-
Hill. (2002)

20. MclLaughlin, B. Java & XML Data Binding. O’Reilly. (2002)

21. MclLaughlin, B. Java & XML. O’Reilly. (2006)

22. Moreno-Ger P, Sierra J.L., Martinez-Ortiz 1., Fernandez-Manjon B.. A
Documental Approach to Adventure Game Development. Science of Computer
Programming, Vol. 67, No. 1, 3-31. (2007)

23. Nakano, K.: An Implementation Scheme for XML Transformation Languages
Through Derivation of Stream Processors. Second Asian Symposium of
Programming Languages and Systems (APLAS'04), Taipei, Taiwan. (2004).

24. Neven, F.: Attribute Grammars for Unranked Trees as a Query Language for
Structured Documents. Journal of Computer and System Sciences, Vol. 70, No.
2, 221-257. (2005)

25. Neven, F.: Extensions of Attribute Grammars for Structured Document Queries.
7" International Workshop on Database Programming Languages (DBLP'99),
Kinloch Rannoch, Scotland, UK. (1999)

26. Nishimura, S., Nakano, K.. XML Stream Transformer Generation through
Program Composition and Dependency Analysis. Science of Computer
Programming, Vol. 54, No. 2-3, 257-290. (2005)

27. Okajima,D.: RelaxNGCC -- Bridging the Gap Between Schemas and Programs.
XML.com, 8. (2002)

28. Paakki, J.: Attribute Grammar Paradigms - A High-Level Methodology in
Language Implementation. ACM Computer Surveys, Vol. 27, No. 2, 196-255.
(1995)

29. Parr, T.: Language Implementation Patterns. Pragmatic Bookshelf. (2010)

30. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf. (2007).

502 ComSIS Vol. 9, No. 2, June 2012



Building XML-Driven Application Generators with Compiler Construction Tools

31. Psaila, G., Crespi-Reghizzi, S.: Adding Semantics to XML. 2nd International
Workshop on Attribute Grammars and their Applications (WAGA'99),
Amsterdam, The Netherlands. (1999)

32. Sarasa, A., Martinez-Aviles, A., Sierra, J.L., Fernandez-Valmayor, A.. A
Generative Approach to the Construction of Application-Specific XML Processing
Components. 35th Euromicro Conference on Software Engineering and
Advanced Applications, Patras, Greece. (2009)

33. Sarasa, A., Navarro, |., Sierra, J.L, Fernandez-Valmayor, A.: Building a Syntax
Directed Processing Environment for XML Documents by Combining SAX and
JavaCC. 3rd Int. Workshop on XML Data Management Tools & Techniques.
DEXA’08. September 1-5, Turin, Italy. (2008)

34. Sarasa, A., Temprado, B., Martinez, A., Sierra, J.L., Fernandez-Valmayor, A.:
Building an Enhanced Syntax-Directed Processing Environment for XML
Documents by Combining StAX and CUP. Fourth Int. Workshop on Flexible
Database and Information Systems. DEXA’09. August 31 — September 4, Linz,
Austria. (2009)

35. Sarasa, A., Temprado-Battad, B., Sierra, J.L, Fernandez-Valmayor, A.: XML
Language-Oriented Processing with XLOP. 5th International Symposium on Web
and Mobile Information Services, Bradford, UK. (2009)

36. Schwentick, T.: Automata for XML - A Survey. Journal of Computer and System
Sciences, Vol. 73, No. 3, 289-315. (2007)

37. Sierra, J.L, Fernandez-Valmayor, A., Fernandez-Manjon, B.: From Documents to
Applications Using Markup Languages, |IEEE Software, Vol. 25, No. 2, 68-76.
(2008)

38. Sierra, J.L., Fernandez-Valmayor, A., Fernandez-Manjén, B., Navarro, A.:
ADDS--A Document-Oriented Approach for Application Development, Journal of
Universal Computer Science, Vol. 10, No. 9, 1302-1324. (2004)

39. Sierra, J.L., Fernandez-Valmayor, A., Fernandez-Manjon, B.: A Document-
Oriented Paradigm for the Construction of Content-Intensive Applications. The
Computer Journal, Vol. 49, No. 5, 562-584. (2006)

40. Stanchfield, S. ANTXR: Easy XML Parsing, based on The ANLR Parser
Generator. javadude.com/tools/antxr/index.html (current October 2011)

41. Tidwell, D.: XSLT, 2™ Edition. O'Reilly. (2008)

42. Vlist, E. Relax NG. O'Relly. (2003)

43. Wallmsley, P. XQuery, O’Reilly. (2007)

Antonio Sarasa-Cabezuelo is a full-time Lecturer in the Computer Science
School at Complutense University of Madrid, Spain (UCM). His research is
focused on the Ilanguage-oriented development of XML-processing
applications, and on the development of applications in the fields of digital
humanities and e-Learning. He was one of the developers of the Agrega
project on digital repositories (a pioneer project in this field in Spain). He is a
member of the research group ILSA (Implementation of Language-Driven
Software and Applications: http://ilsa.fdi.ucm.es). He has participated in
several research projects in the fields of software language engineering,
digital humanities and e-learning, and he has published over 50 research
papers in national and international conferences.

ComSIS Vol. 9, No. 2, June 2012 503



Antonio Sarasa-Cabezuelo et al.

Bryan Temprado-Battad is a PhD. Student in the Computer Science School
at UCM and a member of the ILSA Research Group. His research is focused
on language oriented development and on attribute grammars applications,
being one of the principal contributors to the development of the XLOP
System. The results of his works have been published in several research
papers in international journals and conferences.

Daniel Rodriguez-Cerezo is a PhD student in the Computer Science School
at UCM, and a member of ILSA. His research is focused on the use of
several e-Learning techniques (simulations, interactive prototyping tools,
recommendation systems for learning object repositories, etc.) to improve
teaching and learning of the Software Language Engineering discipline.
Besides, he is interested in the development and improvement of software
language engineering techniques.

José-Luis Sierra is an Associate Professor at the UCM's Computer Science
School, where he leads the ILSA Research Group. His research is focused on
the development and practical uses of computer language description tools
and on the language-oriented development of interactive and web
applications in the fields of digital humanities and e-Learning. Prof. Sierra has
leaded and participated in several research projects in the fields of digital
humanities, e-learning and software language engineering, the results of
which have been published in over 100 research papers in international
journals, conferences and book chapters. He serves regularly as reviewer /
PC Member for several international reputed journals and conferences.

Received: May 05, 2011; Accepted: March 21, 2012.

504 ComSIS Vol. 9, No. 2, June 2012



DOI: 10.2298/CSIS110716006M

Towards Understanding of
Classes versus Data Types in
Conceptual Modeling and UML

Dragan Milicev

University of Belgrade
Faculty of Electrical Engineering, Department of Computing
P.O. Box 35-54, 11120 Belgrade, Serbia
dmilicev@etf.rs

Abstract. Traditional conceptual modeling and UML take different
vague, ambiguous, and apparently incompatible approaches to making
a distinction between two different entity types — classes and data
types. In this paper, an in-depth theoretical study of these ambiguities
and discrepancies is given and a new semantic interpretation is
proposed for consolidation. The interpretation is founded on the
premise that populations of the two kinds of entity types are defined in
two substantially different ways: by intensional (for data types) and
extensional (for classes) definitions. The notion of a generative
relationship set is introduced to explain the role of specific relationship
types that are used to define populations of structured data types by
cross-combinations of populations of the related entity types. Finally,
some important semantic consequences are described through the
proposed interpretation: value-based vs. object-based semantics,
associations vs. attributes, and identity vs. identification. The given
interpretation is based on runtime semantics and allows for fully
unambiguous discrimination of the related concepts, yet it fits into
intuitive understanding and common practical usage of these concepts.

Keywords: conceptual modeling, Unified Modeling Language (UML),
formal semantics, class, data type, entity, relationship, object identity,
identification, association, attribute.

1. Introduction

Ever since their introduction with Entity-Relationship (ER) modeling [4], the
notion of entity type, along with its more recent and object-oriented successor
concept of class, have had a central role in conceptual modeling and
programming in general. In addition, classical conceptual modeling
recognizes the concept of data type as a special kind of entity type, and fairly
clearly and seemingly unambiguously describes the distinction between data
types and the other entity types [17, 6]. Unfortunately, as it will be shown in



Dragan Milicev

this paper, this distinction does not seem to be precise enough to allow clear
separation and proper use of the two kinds of entity types. The lack of
unambiguous criteria for discriminating between data types and the other
entity types inevitably causes uncertainty to modelers about which of the two
concepts should be used in each particular case, or about what the original
semantic intent was behind a particular use of one or the other in a model.

On the other hand, the Unified Modeling Language (UML) has adopted the
analogous separation of classes and data types in a yet more explicit way,
clearly emphasizing a few distinctive characteristics of classes versus data
types [16]. However, as it will be discussed in this paper, the definitions of the
distinction between classes and data types appear to be completely different
from those widely used in classical conceptual modeling. Such a situation
unnecessarily increases the confusion in understanding of these notions and
their use in practice. This is yet another of many existing parts of the UML'’s
definition that contributes to its main drawback — the lack of a complete
semantic formalization. Many concepts of UML, especially in its early
versions, have not had definitions precise enough to be interpreted
unambiguously. In other words, many parts of a syntactically correct UML
model can still be interpreted in different ways by different readers. This has
been recognized as the main obstacle for UML to become a machine-
interpretable, i.e., executable language. Instead, UML served predominantly
for recording ideas, sketches, and design decisions in early phases of
software analysis and design, without an ambition of encouraging
unambiguously interpretable models.

Recent model-driven development (MDD) trends in software engineering
[22, 23, 14] have dramatically increased the importance of formalizing the
semantics of UML, as the key prerequisite for its switch from a solely
descriptive to an unambiguously interpretable and executable language. As a
result, a major revision of UML has emerged in its version 2 [16], making a
significant step towards precise semantics of concepts. Much effort has been
made to clarify the meaning of the widely adopted concepts in the very UML
2 specification, as well as in other attempts before and around it [1, 3, 5, 7, 8,
9, 14, 15, 17, 18, 19, 24]. However, the distinction between classes and data
types has not yet been fully clarified and consolidated with the conception in
classical conceptual modeling.

In this paper, we describe apparent inconsistencies in and incompatibilities
between the definitions given in classical conceptual modeling and in UML,
address these issues, and propose consolidation, attempting to get closer to a
fully clear understanding of these classical and widely used notions. We also
show how the understanding of these notions affects the understanding of
associations versus attributes in UML. We believe that the improvements in
the common understanding of these notions can lead to better
communication between software designers and developers, proper and
certain use of these concepts in conceptual modeling, as well as their
coherent implementation in environments for building and running executable
models.

506 ComSIS Vol. 9, No. 2, June 2012



Towards Understanding of Classes versus Data Types in Conceptual Modeling and
UML

The rest of the paper is organized as follows. The next section gives basic
definitions and assumptions in the field as the foundations for the discussions
that follow. Section 3 brings an overview of the treatment of the concepts
relevant for the subject matter in classical conceptual modeling and in UML,
and reveals some ambiguities, discrepancies, or seeming contradictions.
Section 4 gives an informal analysis of the subject matter that leads to the
proposed solution in an intuitive way. Section 5 formalizes the proposed
interpretations through precise definitions. Section 6 summarizes some
semantic and practical consequences of the presented interpretations. The
paper ends with conclusions.

2. Basic Concepts and Assumptions

2.1. Entity Types

To avoid terminological confusion and ambiguity, we will use the terms class
and data type adopted from UML to refer to the two different kinds of
classifiers of relevance in this discussion, and the term entity type from
classical conceptual modeling and ER [4, 17] to refer to both (or any). In
other words, entity type will be used to refer to a generalization of the
concepts of class and data type, while the division of entity types into classes
and data types is assumed to be a partition, i.e., a covering and disjoint
specialization.’

As a starting definition, we can say that an entity type is a concept whose
instances at a given time are individual entities that exist in the domain at
that time. This is a reasonably precise and, with some variations, widely
adopted definition. For example, this is a variation of the definition from
classical conceptual modeling [17], with one intentional modification: the
definition in [17] requires that instances of every entity type be identifiable,
while we will revisit this aspect in this paper. Put another way, entity types
represent sets of individual entities. These sets are generally variable in time.
Variability of entity types over time is one of the fundamental assumptions in
conceptual modeling. Entities can begin or cease to exist, or they can be
reclassified to other entity types [17, 6, 14]. A more formal definition of entity
types as variable sets can be found in [6].

" We will not use the UML term classifier for such a generalizing concept, because
there are many other kinds of classifiers in UML, such as collaborations or use
cases, which are out of scope of this discussion.

ComSIS Vol. 9, No. 2, June 2012 507



Dragan Milicev

In order to make this definition slightly more practical and allow some more
precise semantic interpretations that will be given in the paper, we will refine
this definition and say that an entity type represents a set of entities that exist
in the system or in the domain in runtime. By referring to runtime, we imply
an inherent dichotomy between design time (or modeling time) and runtime
that exists in practice. The exact practical meaning of these two terms
certainly depends on a concrete framework or tooling in case, but
traditionally, they refer to the activities of data schema design or modeling
(for design time), and data manipulation or model execution (for runtime). It
should be noted that the distinction between the two is mostly ontological and
does not necessarily imply different physical times; in reality, these two may
refer to the same physical time, meaning that the two activities (of system
design and its execution) may take place simultaneously. For example, many
database management systems and other frameworks allow modifications of
the database schema or model during the exploitation of the system; others
may need to interrupt the exploitation of the system in order to recompile and
redeploy the schema/model, and to restart the execution environment, but
without affecting the existing entities that survived the interruption. Anyhow,
we consider the runtime as an absolute temporal scope of all entities that
may exist in a certain system, and outside which the entities cannot exist due
to the very nature of the considered system or the technology used. That
might be, for example, the lifetime of a certain installation of a database
system, or an execution of a program in the classical sense.

A constant entity type is an entity type whose set of instances is constant,
i.e., invariable (immutable) in runtime [17, 6].

2.2. Relationship Types

For similar reasons as for entity types, before we discuss and clarify the
semantics of attributes and associations in UML, we will use a generic term
relationship type taken from classical conceptual modeling and ER. A
relationship type is a concept whose instances at a given time are individual
relationships between entities that are considered to exist in the domain at
that time [17]. Again, we have omitted the requirement in the definition given
in [17] that individual instances of a relationship type be identifiable in order
to allow interpretations like the one given in [14, 15] and to align it with the
definition given in UML 2 [16], where instances of relationship types (i.e.,
associations in UML) cannot be identified. We do not see any significant
semantic or practical impact of this modification.

A relationship type of degree n=2 consists of an ordered set of n
participants, whereby a participant is an entity type that plays a role in the
relationship type [17]. We will write R(p+:E4, ..., pn:Es) to denote a relationship
type named R, with participant entity types Eq, ..., E,, playing roles pq, ..., p,
respectively. Note that E;, ..., E, do not have to be different entity types,
because the same entity type can play several roles in the same relationship

508 ComSIS Vol. 9, No. 2, June 2012



Towards Understanding of Classes versus Data Types in Conceptual Modeling and
UML

type. Roles must be, naturally, pairwise different. We may omit the role p;
played by participant p;:E; either because it is obvious or it is the same as the
name of Ej; then it is assumed that p; is the same as E;. For example,
Reads(reader.Person, Book) is the same as Reads(reader.Person,
book:Book).

A relationship of type R has a form of a set {<pi:e:>, ..., <pnie,>},
sometimes also referred to as a tuple, where ey, ..., e, are instances of their
corresponding entity types E;, ..., E,. In classical conceptual modeling, all
relationships of a certain relationship type that exist at a certain moment in
runtime form a set of distinct tuples [17]. A more recent interpretation [14, 15]
defines relationship types as concepts whose instances at a certain moment
in runtime form a bag of tuples (i.e., a multiset), in order to support advanced
notions of uniqueness of roles in UML 2. The discussions in this paper are
independent of the interpretation used.

A binary relationship type R(p::E4, p2:E,) defines two inverse mappings [5,
6, 14, 15]:

e p, that maps an instance e, of E; to a set (or bag in [14, 15]) of all those
and only those instances e of E; for which {<ps:e>, <p;:e;>} is in R at
any particular moment in runtime;

e p, that maps an instance e of E; to a set (or bag) of all those and only
those instances e, of E, for which {<pi:e;>, <p,:ie;>} is in R at any
particular moment in runtime.

It is easy to see that e is in ps(e2) if and only if e; is in px(e4). The dynamicity

of the sets of instances of entity and relationship types during runtime implies
that these mappings are generally also variable in time [5, 6].

A relationship type R(pi:Es, ..., pn:Ep) is constant with respect to a
particular participant p; if the instances of R in which an instance e; of E;
participates are the same during the temporal interval in which e; exists, for
each ¢, of E;. A relationship type is constant if it is constant with respect to all
its participants [17]. Obviously, when a binary relationship R(p1:E1, p2:E>) is
constant with respect to e.g. p4, it means that the mapping p.(e4) is constant
during the lifetime of e, for each e; of E;.

2.3. Populations and Actions

We will refer to the set of instances of an entity type E that exist at a certain
moment in runtime as the population of E.2 Similarly, the set or bag of
instances of a certain relationship type R that exist at a moment in runtime
will be referred to as the population of the relationship type.

2 Sometimes also called the extent of E. However, we will use the term extent for a
slightly different concept.

ComSIS Vol. 9, No. 2, June 2012 509



Dragan Milicev

Populations of entity and relationship types are assumed to be dynamically
changed during runtime by means of actions. Actions are atomic units of
behavior that affect populations of entity and relationship types. In this
context, we are focused on a generic set of elementary actions on entity and
relationship types, without going deeper into their formal semantics as they
are not directly relevant to the conclusions of this paper:

e Create a new instance of one or more given entity types, which adds a
new entity e to the system and to the populations of the given entity
types. (In general, an entity can be an instance of more related or
unrelated entity types.)

o Delete an existing entity e, which removes e from the populations of its
entity types and from the entire system. Deletion of an entity implicitly
removes all relationships in which that entity participates.

o Reclassify an existing entity e, by removing the entity from the
population of zero or more given entity types and adding it to the
population of zero or more entity types. Removing an entity from the
population of an entity type implicitly removes all relationships in which
that entity participates with a role of that entity type.

e Create a new instance of the given relationship type R, which adds a
new relationship {<pi:e1>, ..., < pn:e,>} to the population of R.

o Delete an existing relationship, which removes a given relationship
{<pi:e4>, ..., < pn:e,>} from the population of its relationship type.

While the system’s overall state is defined in terms of populations of its
entity and relationship types, the system’s behavior is defined in terms of
executed actions. More detailed and formal treatments of actions and their
semantics can be found in [6, 14].

Constant entity and relationship types have immutable populations. This
means that actions on constant entity or relationship types that would change
their populations are illegal.

2.4. Identification

An identifier of an entity e is an expression, written in some language, that
unambiguously denotes e [17].2 In this paper, most relevant are identifiers
built from binary relationship types that have particular properties, referred to
as reference relationship types, as defined in [17]. A more general approach
to building identifiers through so-called observation terms is presented in [10].

3 In general, identifiers may have temporal or other kinds of scopes, meaning that the
same identifier (being an expression) may denote different entities at different times
or in different scopes. We will not consider this case, as it is orthogonal to the
discussions in this paper.

510 ComSIS Vol. 9, No. 2, June 2012



Towards Understanding of Classes versus Data Types in Conceptual Modeling and
UML

We will here provide a semi-formal definition of observation terms, which is
sufficient for the discussions given in this paper; for a fully formal definition,
the reader is referred to [10].

Definition (Observation term). Observation term of E (denoted with «E)) is
an injective function = 7(E)—S,, where #(E) is the population of an entity type
E at any moment in runtime, and S, is a certain fixed set:

(Ve1, GQEﬂ(E))(T(e1)= T(ez) = e1=6‘2).4

Even less formally, #«(E) is a function that maps an entity ec#(E) to an
atomic or structured value (formally bound by a certain set S,) so that z(e)
uniquely identifies e. Observation terms are more general than simpler
identifiers normally used in practice, such as reference relationship types,
because 7#(E) may map an e to an arbitrarily deeply structured value whose
components may be obtained by more complex mappings than simple
relationships, like queries. Of course, reference relationship types (both
simple and compound) are special cases of observation terms. In [10],
Gogolla gives a detailed definition of how #(E) can be constructed, i.e., how
S, can be defined.

By its definition, #(e) represents an identifier of e, meaning that it implies
an inverse function f.: S; —>#(E) that maps a value from S, to an entity e, for
a subset of S, for which it is defined. It is important to note that #(E) is an
injection that does not have to be a surjection, meaning that there does not
have to be an ee#(E) for each element s of S, so that #(e)=s. This is trivially
true because the set #(E) can be dynamically changed in runtime, while S, is
fixed. Therefore, in general, f, is a partial function, defined for a subset of S..
The function f, is the identification function that can be used for identifying
entities in #(E).

For a comprehensive study of identification and formalization of
conceptual modeling in general, the reader is referred to [17, 10].

4 The formal semantics of equality is a very subtle and difficult topic; for example, see
a very interesting perspective and conclusions described in [13]. This is why we do
not go deeper into that matter. We may simply note that the operation “=" may
mean equality (up to isomorphism) or identity in different contexts. It seems that
our observations do not require a fully formal clarification of this issue and that the
interpretation of e1=e, where e1 and e; are (references to) entities, is that e; and e

represent the same entity (identity).

ComSIS Vol. 9, No. 2, June 2012 511



Dragan Milicev

3. Overview of the Matter

3.1. Classes vs. Data Types in Classical Conceptual Modeling

Classical conceptual modeling defines data type as a constant entity type
whose instances, called values, can be identified by literals, whereby literals
are strings (i.e., sequences) of some symbols (e.g., characters) [17, 6]. The
same value of a certain data type can often be identified by several different
literals; for example, both 1.0 and 0.1