
UDC 004.78 

Wireless Sensor Network Application 
Programming and Simulation System 

Žarko Živanov1, Predrag Rakić1 and Miroslav Hajduković1 

1 Faculty of Technical Sciences, Trg D. Obradovića 6, 
21000 Novi Sad, Serbia 

{zzarko,pec,hajduk}@uns.ns.ac.yu 

Abstract. We present, a wireless sensor network application 
programming and simulation system, suitable for wireless sensor 
network application development for both resource constrained and 
unconstrained hardware. Developed programs can be tested inside 
simulator, or (with source unchanged) executed directly on hardware. 
Main contribution of our project is uniform object oriented programming 
model with predefined basic concurrency abstractions. 
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1. Introduction 

Wireless sensor networks (WSNs for short) are networks consisting of large 
number of battery powered sensor devices (sensor nodes, or just nodes for 
short), interconnected by radio waves. The main task of such network is to 
collect physical data in the given environment and to send it to one or more 
collector (sink) nodes. Since it is often expensive or impossible to charge or 
replace node's battery, prolonging the node's lifetime is essential. 

Topology of the network is usually dynamic. Although in most cases nodes 
are not movable, lifetime of each node is different. And because of energy 
saving, RF range of each node is usually limited to nearest neighbors. This 
implies that communication with sink must be done by using point to point 
protocols. When a neighbor dies, node usually must find another route to 
send its data. There are many protocols addressing this issue [1], [2]. 

Each node consists of several parts: 
− microcontroller (CPU) with RAM and some kind of ROM memory (usually 

flash or EEPROM); 
− one or more sensors (accessed through analog-to-digital converters - 

ADC); 
− battery; 
− RF module; 
− optional actuators; 
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− optional additional flash memory. 
CPU can be 8, 16 or 32-bit, while available memory is usually a couple of 

tens kilobytes or hundreds of kilobytes. This imposes constrains on node's 
program size and complexity. Today's nodes vary from nodes with 8-bit micro 
controllers like MICA and MICA2 [3], to nodes with 32-bit 400 MHz micro 
controllers and megabytes of memory, like Intel Mote 2 [4]. 

Since hardware characteristics vary in wide range, characteristics of their 
operating systems vary, too. Operating systems of heavily constrained nodes 
are event-based or cooperative. More powerful nodes (usually with permanent  
power source) are preemptive. 

In this paper we present WAPAS (Wireless sensor network Application 
Programming And Simulation system) project suitable for wireless sensor 
network application development for both (power, memory, processor, etc.) 
constrained and unconstrained hardware. Depending on target hardware 
characteristics, appropriate concurrency model can be selected (Fig 1). 

 

Fig. 1. WAPAS project structure overview 

Main contribution, in this paper, is uniform object oriented programming 
model with predefined basic concurrency abstractions. This programming 
model can be used with both preemptive and cooperative concurrency 
models, i.e. it is suitable for both hardware constrained and unconstrained 
platforms. 

Our programming model offers opportunity to application programmers to 
develop code for both nodes and sinks using almost identical programing 
model and to test it together, in the same simulation environment. 

WAPAS simulator offers complete virtual environment for simulating WSN 
behavior. Node's hardware is simulated by simulation libraries (sensors, RF 
module, energy consumption). All functions are accessible from graphical 
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user interface, allowing simulation starting, stopping, modifying and 
monitoring. 

Chapter 2 of the paper presents related work. Chapter 3 introduces 
proposed programming model. Chapter 4 describes details of the 
programming model implementation. Chapter 5 contains simulator 
description. Conclusions are given in Chapter 6. 

2. Related Work 

2.1. Operating Systems 

In literature we recognized two distinctive categories of wireless sensor 
network operating systems. One category is intended for cheap sensor nodes 
[5] with finite state machine programing models and event based concurrency, 
like TinyOS [6] and Contiki [7]. The other is designed for high-end nodes (e.g. 
sinks), with preemptive operating systems and multi-threaded programming 
models, like Mantis [8]. 

Preemptive multitasking with blocking procedure calls is, what today's 
programmers consider, comfortable environment. Unfortunately, it can not be 
efficiently implemented on energy constrained hardware platforms, at least 
not natively. 

To fill in the gap, number of projects offer improved programing and 
concurrency models for low-end nodes operating systems as library 
extensions or virtual machines: 

− TinyThreads [9] is implemented as library on top of TinyOS, allowing 
intermixing event-driven and threaded programming. It contains library 
functions that provide blocking I/O operations. Every thread has its own 
stack. 

− Coroutines for TinyOS [10] offer a programming model which combines 
event-driven system with cooperative multitasking, enabling the 
programmer to structure his application as sequential code instead of as 
a state machine. 

− Protothreads [11] supports an extremely lightweight stackless type of 
thread, and provides conditional blocking on top of event-driven system 
without the overhead of per thread stacks. 

− Fibers for TinyOS [12] allows user to use blocking I/O calls using just 
one (system) stack with limitation that there can be only one user fiber. 
Implementation is similar to protothreads but instead of jumping back to 
main loop, a blocking call actually calls scheduler. This allows user to 
use local variables and block inside subroutines. 

− Mate [13] is a virtual machine environment for TinyOS. Among other 
things, Mate provides a way for threating split-phase operations as 
though they were strait-line pseudo-blocking operations. However, since 
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Mate is virtual machine these operations introduce cost of byte-code 
interpretation. 

These projects provide improved models to underline operating systems, 
but their concurrency model improvements are available only together with 
certain overhead and programming interface change.  

2.2. Simulators 

First sensor network simulators were made as an extension of already 
existing network simulators. These simulators mainly focus on protocols used 
in WSNs. Recently, several simulators are made specifically for WSNs. Some 
of them are general simulators, while others are simulators for a specific 
hardware platform or operating system. 

SensorSim [14] is an extension to ns-2 network simulator. This simulator 
provides models needed for WSN modeling: battery, CPU, sensors, RF 
module, etc. Power consumption of all components is also modeled. It also 
supports hybrid simulation: ability to interconnect real and simulated nodes. 

GTSNetS [15] is a simulator for large-scale sensor networks, capable of 
simulating hundreds of thousand nodes. This simulator is an extension of 
GTNetS network simulator. It provides several models for the different 
functional units composing a sensor node. It is mainly a communication 
protocol simulator. 

SENS [16] is a customizable WSN simulator, consisting of components for 
every aspect of the simulation. It is a platform independent simulator with a 
thin compatibility layer which allows portability between simulator and real 
sensor nodes. 

J-Sim [17] is a simulation environment for WSN developed in Java. It is 
mainly oriented towards communication protocol simulation. WSN modeling is 
based on inheritance of classes in the simulation framework. 

TOSSIM [18] is a simulator for TinyOS applications. The main goal of 
TOSSIM is to provide a simulator that bridges the gap between algorhytms 
and implementation. Most of the code written for TOSSIM can be directly 
compiled for TinyOS. 

TOSSF [19] is a scalable simulator for TinyOS applications. It allows 
heterogeneous collection of sensor nodes and allows dynamic network 
topology. TOSSF simulates execution of TinyOS applications at source level. 
This simulator is an adaptation of SWAN, a simulator for wireless ad-hoc 
networks. 

3. Programming model  

The traditional approach to deal with concurrency is to use preemptive 
multithreading. In preemptive systems, programmer has no control over the 
moment at which control switch occur. This imposes context switching and 
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shared variables protection overhead. This overhead can be significant in 
hardware constrained systems. Since preemptive concurrency model is 
convenient and comfortable for hardware unconstrained platforms and at the 
same time inappropriate for hardware constrained platforms both preemptive 
and non-preemptive concurrency models are used in WSN operating 
systems. We are developing uniform programming model suitable for both 
types of platforms: preemptive and non-preemptive. 

Our programming model is inspired by COLIBROS operating system [20], 
[21]. It is based on C++ language because object oriented view is much more 
natural and comfortable than procedural or state machine views are [22]. 
Concurrency is described (and implemented in preemptive systems) by 
inheritance and polymorphisms. 

We identified basic concurrency abstractions suitable for wireless sensor 
programming and integrated them in our programming model. These 
abstractions are: 

− threads; 
− shared variables. 
These concurrency abstractions, threads and shared variables, relate like 

speaking language subjects and objects. Thread, like subject, represents 
somebody conducting actions. Shared variable, like object, represents 
something actions are conducted on. Together they are used to model 
wireless sensor network application. 

3.1. Threads 

Thread represents context of execution. Separate tasks in application are 
implemented as threads. 

We concluded that any activity in WSN application that is needed once will 
be probably needed again. Activities that are really needed only once are 
some kind of initialization and their place is in thread object constructors. So, 
we offer no dynamic thread instantiation. Thread objects are statically 
instantiated. Thread can be started only once and when it is finished it's 
memory is not freed. For that reason, threads should never end. Instead, they 
should contain endless loop. In the loop, thread activity can be blocked 
(postponed): 

− waiting for some time to expire; 
− waiting for some condition to be fulfilled; 
− waiting for some event to happen. 
WAPAS application entry point is not main() function but instead system 

declared and user defined Initial::run() member function. 
Example of thread definition, instantiation and start is shown in Program 1. 

In this example one user thread class called Simple is defined. Member 
function run() contains thread instructions: endless loop the body of  which 
is executed every 500ms. First, current time is saved in local variable 
start_time. After that analog-to-digital (A/D) conversion is started 
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(adc.getData()) and when conversion result is returned in local variable 
data, it is sent through RF module (rf.send()). When cycle (A/D 
conversion and sending) is finished thread activity is stopped. Thread activity 
is resumed (cycle repeated) 500ms after beginning of previous cycle 
(delay_till()). Function delay_till() provides mechanism for 
scheduling periodic activities independent of activity duration. Objects adc 
and rf represent ADC and RF module devices, respectively. Operation 
adc.getData() acquires data from ADC. It is presented in Program 3. 
Operation rf.send() transmits data. It is not presented in this article. 

Thread object simple is statically instantiated. In initial thread, node's 
duty cycle is defined through working (working_period()) and sleeping 
(sleeping_period()) period. Duty cycle is set to 2% (10ms working period 
and 490ms sleeping period). After that, thread simple is scheduled 
(start()). 

Program 1: Simple Thread Example 

class Simple : public Thread { 
  public: 
    void run(void) { 
        unsigned data; 
        unsigned start_time; 
        int result; 
        for (;;) { 
            start_time = time_get(); 
            data = adc.getData(); 
            result = rf.send(data, ...); 
            ... 
            delay_till(start_time+500); 
        } 
    } 
}; 
 
Simple<DEFAULT_STACK_SIZE> simple; 
 
void Initial::run() { 
    working_period(10); 
    sleeping_period(490); 
    simple.start(); 
} 

3.2. Shared variables 

During application execution threads need to communicate (exchange data) 
with other threads as well as with environment (timers, sensors, 
communication devices, etc.). Depending on concurrency model used, 
communication (accessing shared memory locations) can lead to race 
conditions. Shared variables are developed with appropriate synchronization 
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protocols which provide safe communication, independent of concurrency 
model used. 

We recognize two types of shared variables:  
− exclusive; 
− atomic. 

Exclusive Variables 

Exclusive variables are used for communication between threads. They 
provide mechanisms for thread synchronization – mutual exclusion and 
conditional synchronization. 

Mutual exclusion is achieved through instancing Exclusive_block class 
objects and conditional synchronization is achieved using member attributes 
of type Condition. 

Exclusive variable definition example is shown in Program 2. In this 
example exclusive class Communicate is defined. This class guarantees 
safe communication between two threads, i.e. communication is atomic. One 
message can not be read more then once and new message can not 
overwrite old, unread one. Objects of this type are used for communication in 
producer-consumer situations. The Communicate class has two member 
functions send() and receive(), bodies of which are executed in exclusive 
blocks. Constructor and destructor of object of Exclusive_block type 
borders exclusive block.  

In member function send() first it is checked if object is EMPTY. If it's not, 
calling thread execution is suspended (empty.await()) until object is 
emptied. When object becomes empty, thread execution is resumed, new 
message is placed in object, object state is changed to FULL and thread (if 
any) waiting for state FULL is resumed (full.signal()). 

Member function receive() is symmetrical. So, first it is checked if object 
is FULL. If it's not, calling thread execution is suspended (full.await()) 
until message is placed in object. After that, object state is changed to EMPTY, 
thread (if any) waiting for state EMPTY is resumed (empty.signal()) and 
message is returned to calling thread. Message consistency is preserved 
because message (data) is returned before destruction of local variable 
set_up. 

Program 2: Exclusive variable Example 

class Communicate : public Exclusive { 
  enum States { FULL, EMPTY }; 
  unsigned data; 
  Condition full, empty; 
  States state; 
 public: 
  Comunicate() : state(EMPTY) {} 
  void send(unsigned d) { 
    Exclusive_block set_up(this); 
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    if(state != EMPTY)  
      empty.await(); 
    data = d; 
    state = FULL; 
    full.signal(); 
  } 
  unsigned receive() { 
    Exclusive_block set_up(this); 
    if(state != FULL)  
      full.await(); 
    state = EMPTY; 
    empty.signal(); 
    return data; 
  } 
}; 

Atomic Variables 

Atomic variables usually represent hardware components. They are used for 
communication between threads and devices to ensure communication 
atomicity. 

Atomic class definition example is shown in Program 3. In this example, 
Adc class represents ADC assigned ADC_INT_NUMBER interrupt vector 
number. This class has two member functions. One, getData() is blocking 
and designed for thread to ask ADC for new sample and expect for 
conversion completion. The other is interrupt handler invoked by ADC to notify 
system that conversion is completed. 

Bodies of these two member functions are atomic. Atomicity of getData() 
is protected by variable set_up of Atomic_block type. Atomic_block 
constructor disables interrupt handling and destructor returns it in previous 
state, thus protecting atomicity of region in which variable of this type lives. 
Atomicity of interrupt handler is protected by hardware mechanisms. 

In function getData() first it is checked if A/D conversion is already 
started by another thread (busy). If it is, calling thread execution is 
suspended (ready.expect()) until ADC is ready for new cycle. When ADC 
is ready, it is declared busy and is instructed to start conversion. After that, 
calling thread is unconditionally suspended (dataReady.expect()) to wait 
for conversion completion indicated by interrupt handler. After resuming, ADC 
is declared ready for new cycle, thread waiting for ADC (if any) is resumed 
(ready.notify()) and acquired sample is returned to calling function. 

Interrupt handler is called when sampling cycle is completed. Interrupt 
handler places the sample in attribute data and resumes activity of thread 
that initiated sampling cycle, i.e. thread that called getData(). 

Program 3: Atomic variable example 

class Adc : public Atomic <ADC_INT_NUMBER> { 
  Event ready, dataReady; 
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  bool busy; 
  unsigned data; 
 public: 
  Adc() : busy(false) {start_interrupt_handling();} 
  unsigned getData() { 
    Atomic_block set_up; 
    if(busy) ready.expect(); 
    busy = true; 
    ...; // instruct hardware to start sampling 
         // and place result in attribute “data” 
    dataReady.expect(); 
    busy = false; 
    ready.notify(); 
    return data; 
  } 
  void interrupt_handler(void) { 
    data = ...; // io access 
    dataReady.notify(); 
  } 
} 

4. Programming Model Implementation 

Programs written using previously described programming model can be 
efficiently compiled for both preemptive and non-preemptive system. For 
preemptive system we are developing system library. For event-based 
systems we are developing preprocessor. This preprocessor translates object 
oriented C++ source code to plain and efficient C code. 

On both platforms application code is compiled together with system 
libraries similar to exokernel application [23]. 

4.1. Preemptive System 

In preemptive system which is generally not resource constrained, whole 
program is compiled with C++ compiler and linked with appropriate system 
libraries (target hardware platform or simulation system). 

Threads and shared variables (exclusive and atomic) are statically defined 
global objects. Order of thread execution is determined by preemptive priority 
scheduler.  

Every thread has its own memory region containing descriptor followed by 
stack. Stack size is defined with Thread class template parameter. In 
simulation, block of memory with no access rights is placed between 
descriptor and stack. Access to this block can be used to detect stack 
overflow. 

Exclusive variables are protected against race conditions. Exclusive 
regions are used for mutual exclusion. Part of code in which threads access 
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exclusive variables (actually their attributes) is called critical section. 
Execution of these parts of code should be serialized (mutually exclusive). 
Mutual exclusion is achieved by enclosing critical sections in exclusive region 
blocks. 

Every exclusive variable contains ticket, that thread should obtain before 
accessing it. Thread that obtains ticket enters exclusive region. Other threads 
suspend their execution until the ticket is granted to them. 

Ticket is obtained in constructor of Exclusive_block type and released 
in its destructor. Thus, exclusive regions are represented by blocks of code in 
which local variable of Exclusive_block type exist. 

Conditional synchronization is achieved through member objects of 
Condition type. Object of this type contains list in which threads that wait 
fulfillment of that condition are linked. Thread can choose place for itself in list 
using operations: first(), next() and last() and link itself using 
await() operation. Condition fulfillment is indicated with signal() 
operation. This operation transfers first thread out of the list. 

Race condition protection in access to atomic variables is achieved through 
atomic regions. Atomic regions are implemented in constructor and destructor 
of Atomic_block class. In constructor interrupt handling is disabled and in 
destructor it is enabled. 

Thread can suspend its activity until arrival of event. The events are 
represented with objects of Event class. Object of this class contains list in 
which threads, expecting the event, are linked. Thread is always linked at the 
last position in the list (expect()). Event arrival is usually indicated in 
interrupt handler (notify()). 

4.2. Non-preemptive System 

WAPAS offers natural programing model for preemptive systems. In non 
preemptive system whole WAPAS program is transformed to fit in cooperative 
multitasking paradigm and hardware limitations.  

Thread bodies (body of member function run()) of all thread classes are 
combined in one body() function with certain changes (described later). The 
body() function is executed in infinite loop. Interrupt handlers can preempt 
body() function. 

In WAPAS application time is divided in working and sleeping periods (Fig 
2). One working period is called epoch. Epoch consists of many cycles. One 
cycle is one execution of body()function.  

Most of the time, node is in power-saving (sleeping) mode. When sleeping 
time expires, system becomes on-line (active) and executes body() function 
i.e. first cycle begins. After cycle is finished, system checks if active time 
expired, and if it isn't, next cycle is started. If active time expired, system goes 
to sleep mode unless some thread called operation_in_progress() 
system call. In that case, cycles are executed until 
operation_completed() system call. After completion of the cycle in 



Wireless Sensor Network Application Programming and Simulation System 

ComSIS Vol. 5, No. 1, June 2008 119 

which system call operation_completed() is executed, system goes to 
sleep mode. 

 

Fig. 2. Application time line in non-preemptive system: showing one working and one 
sleeping period. Working period begins when sleep time expires. It consists of cycles. 
Working period ends after (1) completion of cycle in which active time expired, if 
operation_in_progress() has not been called, or either (2) after completion of 
cycle in which operation_completed() system call is executed after active time 
expired. 
Note: The sleeping period is usually much longer than active one [24]. 

operation_in_progress() and operation_completed()system 
calls are designed for operations (e.g. communication) that span over multiple 
cycles but should not be suspended in one and resumed in next epoch. It is 
up to the programmer to use this mechanism carefully, taking care not to 
disturb node's duty cycle significantly. These system calls are ignored in 
preemptive system, since duty cycle of preemptive system is 100% (it is never 
in sleep mode). 

The first phase during code generation is preprocessing. Preprocessing is 
largely based on code earlier developed for kiosk application generator [25]. 
Preprocessor first translates application's source code into C code, with 
inherently less overhead (binary code compiled directly from object oriented 
source code introduces certain overhead). In order to optimize programs for 
such systems, some restrictions and semantic changes on program model are 
present if the target is non-preemptive: 

− Only one thread can wait on a single condition; 
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− Calls to Condition::await() and Event::notify() are 
implemented as conditions. If condition is not fulfilled, thread's code is 
not executed in the given cycle; 

− Condition::await() and Condition::signal() can only be used 
inside member functions of exclusive class; 

− Event::expect() and Event::notify() can only be used inside 
member functions of atomic class; 

− first(), next() and last() methods of Exclusive class are not 
allowed; 

− Only periodic threads are allowed (that is, only threads that run from 
beginning to end in each epoch). Thread that have long execution can 
monopolize CPU time; 

− Declaration of local variables is not allowed inside blocks contained in any 
of the functions (it is allowed only at the function body level). 

All thread classes, exclusive variable classes and atomic variable classes 
are registered. Also, all objects representing recognized classes are 
registered. Conditional jumps are inserted to enable continuation of execution 
of each thread's code in the cycle (if, for example, thread waits for signal() 
or notify(), it will not start from the beginning, but from inserted conditional 
jump that decides if thread's code should continue its execution). 
Modifications of the source code are: 

1. For each registered object (threads, shared variables), appropriate 
structure is created, holding all needed data, including local 
variables (if present); 

2. Accessing local variables is converted into accessing member of 
appropriate structure; 

3. For each atomic variable, its interrupt handler's code is extracted 
and placed in appropriate interrupt handler function; 

4. run() method of all threads are combined into body() function, in 
descending priority order. In front of each thread's code a 
conditional jump is inserted, that decides if thread's code should be 
executed in the given cycle. Thread's run() code is sliced into 
code segments divided by calls to await(), expect() and 
yield()(willingly give-up the CPU) methods. A switch statement 
is introduced for jumping into appropriate place in code; 

5. Calls to shared variable methods are replaced by complete code 
from that method; 

6. Calls to await() or expect() methods are replaced by 
appropriate conditional jump; 

7. Calls to signal() and notify() methods are replaced with 
code that sets attribute of appropriate structure. These attributes 
are checked inside inserted conditional jumps. 

After execution of last cycle in the current epoch, hardware is adjusted for 
next epoch. After that, node goes to sleep mode, until awakening. 
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5. Simulation Environment 

In order to simulate wireless sensor network, one must provide complete 
virtual environment to code executing in each node. This includes: 

− simulating sensor readings; 
− simulating actuator actions; 
− simulating message sending and receiving; 
− simulation-data collecting, presenting and analysis. 
For sensor readings simulation we need to model sensor behavior and to 

supply data values for each sensor. Most of the sensors are, from the node's 
code point of view, AD converters and are relatively easy to simulate. AD 
converter can be described with its data size, conversion time, and level of 
oscillations in accuracy (needed for modeling malfunctions). Depending on 
physical signal and required level of realism, physical signal propagation can 
be simulated (e.g. sound waves). 

Actuator actions can be modeled according to their influence on the 
environment. Each action must be separately programmed, depending on its 
nature. 

Message sending and receiving simulation includes RF module simulation 
and wave propagation simulation. Again, depending on required level of 
realism, wave propagation can be simply modeled as RF module sending 
range/strength, or it can include influence of obstacles. 

The sole purpose of WSN simulation is to provide insight information on 
WSN functionality. Thus, simulation environment must be able to collect 
relevant data and to display it on demand. 

Our simulation environment consists of two main parts: 
− simulation libraries; 
− simulation server. 
Simulation libraries are used in node's program code, replacing code used 

for hardware handling (sensors, actuators, RF module, battery, ...). Simulation 
server coordinates all actions needed for simulation, supplies physical data to 
virtual sensors, handles RF communication and collects simulation data. 

5.1. Simulation Libraries 

Simulation libraries are linked with node's program code in order to simulate 
node's hardware. Simulation includes: 

− RF module simulation; 
− AD converters simulation; 
− actuator simulation; 
− hardware timers simulation; 
− battery consumption simulation. 
RF module simulation is done via TCP/IP communication with simulation 

server. 
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AD converters and actuator simulation is also done via communication with 
simulation server, which provides all physical data. Internal timings of the AD 
converters are realized inside library. 

Hardware timers simulation provides all the functionality of node's internal 
timers (including watchdog timer, external timers, etc.). 

Battery consumption simulation is based on energy consumption of node's 
parts (CPU - for all power saving modes, RF module - for sending and 
receiving, sensors, actuators, flash memory). 

5.2. WSN Simulation Server 

WSN Simulation server's (server, for short) main role is to simulate node's 
environment. That includes: 

− supplying data for sensor readings and reacting to actuator commands; 
− simulating message sending and receiving. 
In order to achieve these goals, server needs additional functionality: 
− reading simulation configuration files and creating simulation 

environment; 
− receiving messages from all nodes and determining which message can 

go to which node; 
− calculating every node's visibility to all other nodes; 
− calculating current physical data for all sensors; 
− starting, stopping or pausing simulation; 
− displaying all relevant data; 
− user interaction with simulation; 
− monitoring of the whole simulation process. 
At the start of the simulation, server first reads configuration files. Every 

node is described with its ID, coordinates, battery state, node's software 
(name of the file with software image), start and stop time(s). Terrain is 
described with simplified obstacles. Each obstacle has its type (square/circle), 
coordinates, RF attenuation factor and, eventually, description of its 
movement during the simulation. Since the simulation can be done on a 
computer network, server also needs a list of all computers available for 
simulation (their IP addresses). For each simulated node, a new process is 
created on one of available computers. 

Calculating RF visibility between nodes is done by using each node's 
range/strength and by including influence of obstacles. For each node it is 
determined which nodes can receive its messages, and from which nodes it 
can receive messages. If there are moving obstacles, this calculation must be 
done after each obstacle configuration change. 

 RF interference is simulated using RF interference sources (each 
described with its coordinates and strength, similar to RF module strength) 
and by calculating packet collision (based on sending time of each packet). 
Random RF interference is also included via probability factor. 
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Sensor data is described as a two-column table with time and value in each 
row. Server calculates actual value for the current time using linear 
interpolation. 

Separate configuration file describes conditions for automatic simulation 
pausing. Simulation can be paused when certain amount of time passes, 
when (average) value of some variable or parameter (e.g. software version, 
battery capacity, working status, internal variables, etc.) for a node or group of 
nodes reaches certain value, etc. 

5.3. Graphical Interface 

Important part of the server's functionality is a graphical representation of 
simulated WSN. Each node is represented with a square and some basic text 
information. Square's color roughly describes node's status. Detailed 
information about node can be obtained by clicking on it (node's range is 
displayed as a transparent circle and more text data is shown). Graphical 
interface allows many operations on simulated WSN: 

− loading and saving current WSN configuration; 
− starting, pausing and stopping of the whole simulation; 
− changing of parameters for one or more nodes (working state, variables, 

coordinates, etc.); 
− changing of parameters for one or more obstacles (coordinates, size, 

etc.); 
− viewing graph representation of any parameter; 
− launching text editor to manually edit configuration files or to edit node's 

source code; 
− compiling node's source code. 

5.4. Additional programs 

Additional programs are used to generate some of data needed for 
simulation. Their functions are: 

− generating regular/random node placement; 
− generating sensor data using mathematical functions; 
− generating data for obstacle movement during time. 
Additional programs can be executed from GUI, or independently from the 

command line. 
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6. Conclusion and Further Work 

Main contribution of WAPAS is uniform object oriented programming model, 
suitable for both hardware constrained and unconstrained platforms (with 
some limitations for the hardware constrained platforms). 

Preemptive part of WAPAS is based on COLIBROS operating system. For 
non-preemptive system, the whole application is transformed to fit in 
cooperative multitasking paradigm and hardware limitations. Application 
programmer may or may not understand all details of this transformation, but 
(s)he must be aware of certain limitations. Level of application programmer's 
expertise necessary for efficient usage of this programming model (especially 
in non-preemptive environments) remains to be determined. 

Though WAPAS is still in development phase, we are simultaneously 
developing simulation environment with graphical user interface, to ease 
application development. 
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