
UDC 004.738.52

Interfacing the System Evaluation Method LSP
with E-commerce Web Sites

Greydon Buckley1 and Jozo Dujmović2

1Department of Computer Science
San Francisco State University

greydonb@hotmail.com
2Department of Computer Science

San Francisco State University
jozo@sfsu.edu

Abstract. For many people faced with a tough purchasing decision, the
research tool of choice is a web browser. Search engines solve the
general problem of finding relevant data, however it is up to the user to
sort, filter, and evaluate it. Decision support methods such as LSP can
turn raw data into formal evaluations, but they are generally
disconnected from the Web – the most up-to-date, widely-used, and
convenient source of data available. This paper demonstrates how LSP
can be connected to the Web, so that live data from e-commerce web
sites can be used in consumer-oriented system evaluations.

Keywords: Web Information Extraction Systems (WIES); Logic Scoring
of Preference (LSP) method.

1. Introduction

Web Information Extraction Systems (WIES) are tools that transform web
pages into program-friendly structures that can be used by a variety of web
applications and services. A recent WEIS survey [1] provided evaluation and
comparison of various information extraction approaches and found that
despite the great necessity for WIES the automation degree is generally
rather low.

The information extraction automation degree is not constant – it depends
on the type of application that uses automatically extracted data. The goal of
this paper is to expand the results form [1] by investigating the degree of
automatic extraction in detail, using a specific class of service: evaluation of
systems using the Logic Scoring of Preference (LSP) method [4]. We selected
this class of service because it is a typical e-commerce service that includes
evaluation and selection of cars, homes, etc. Therefore, we decided to build
WIES for the LSP method and to investigate its applicability in the real estate
evaluation case. The goals of our analysis are (1) to provide a detailed survey
of information extraction techniques, tools, and problems in this realistic
special case, and (2) to provide a reliable quantitative estimate of the

Jozo Dujmović and Greydon Buckley

26 ComSIS Vol. 5, No. 1, June 2008

achieved degree of automation. We believe that our results are typical and
can be used by WIES designers, planners, and users.

2. LSP method for system evaluation

System evaluation is a process of determining the ability of a system to satisfy
user requirements. In the context of e-commerce, it is how we decide what to
buy. Evaluations can range from simple feature-by-feature comparisons to
full-blown mathematical modeling supported by dedicated decision-support
software. The LSP method for system evaluation [4,5,6] falls into the latter
category. It is capable of reducing a large and complex set of system
attributes into a single overall quality indicator that precisely indicates how
well those attributes match against user-specified criteria. This process is
illustrated in Fig. 1 where we present both the structure of an LSP criterion
and the process of providing inputs for the LSP method if the source of data
about evaluated systems is Internet, i.e. an e-commerce web site.

1E

Data Source (Internet)

Automatic extractionUser assisted extraction

()n ng x
nx

2 2()g x1 1()g x

2E nE

0 1 1(,...,) (,...,)n nE L E E G x x= =

0E Overall preference

Cost/Preference Analysis 0C

0Q Overall quality of
evaluated system

Attribute
criteria

Logic ag-
gregation of
preferences

Attributes 1x 2x

Preferences

Total cost

LSP criterion

Extraction of system attributes

Fig. 1. Extraction of attributes and the structure of LSP criterion

The LSP criterion is a systematically designed complex function that uses
input attributes of an evaluated system to compute an overall system quality

Interfacing the System Evaluation Method LSP with E-commerce Web Sites

ComSIS Vol. 5, No. 1, June 2008 27

indicator. In the case of large and complex systems input attributes are
provided by a team of professional evaluators and domain experts. In the
case illustrated in Fig. 1 we consider a simple situation of evaluating an object
whose attributes are available on Internet, posted on an e-commerce web
site. Of course, the evaluator could manually collect all input data for
evaluation and then use them as inputs for the LSP criterion function. On the
other hand, it would be much better if the extraction of inputs could be done
automatically using a specialized tool. Then the collected data could be
automatically forwarded to a tool that implements the LSP criterion. Fig. 1
shows a realistic situation where automatic extraction of data includes a
fraction of total inputs, and remaining inputs are provided by evaluator. Before
presenting the problem of automatic data extraction we have to understand
the basics of the LSP method.

The values of attributes ∈R1,..., ,n ix x x , ,..., ,1 2i n n= ≥ are inputs for

the LSP criterion function. In the case of real estate, examples of input
attributes can be the area of a home (ix), and the home-work distance (jx).
For each attribute we specify requirements in the form of an attribute criterion
function (), [,], ,...,0 1 1i i i iE g x E i n= ∈ =[. For example, we could be
perfectly satisfied with the area ≥ 1ix A , and the area ≤ 0ix A could be
unacceptable. In such a case the elementary attribute criterion could be

 = − − < ≤ ≤0 1 0 0 1min{1,max[0,() /()]}, , 0 1i i iE x A A A A A E .

So, iE denotes the degree of satisfaction with the area of evaluated home.

Similarly, the distance from home to work 0jx D≥ could be considered

unacceptable while the distance 1jx D≤ could perfectly satisfy the
homebuyer. In such a case the criterion could be

 0 0 1 1 0min{1,max[0,() /()]}, , 0 1j j jE D x D D D D E= − − < ≤ ≤

The resulting values ,...,1 nE E are called elementary preference scores.

They express the degree of satisfaction of each specific requirement (0 = no
satisfaction, 1 = complete satisfaction). The next step is a logic aggregation of
preference (,...,)=0 1 nE L E E that computes the overall preference score 0E
that reflects the overall ability of the evaluated system to satisfy user
requirements. The aggregation process is based on graded logic functions,
i.e. functions that provide parameterized continuous transition from
conjunction to disjunction. The basic preference aggregation function is the
generalized conjunction/disjunction (GCD) [7] that is usually implemented
using the weighted power mean:

()1/
1 1, 0 1, 1, [0,1], [0,1], 2

rrk k
out i i i i i outi ie w e w w e e k= == < < = ∈ ∈ ≥∑ ∑

Jozo Dujmović and Greydon Buckley

28 ComSIS Vol. 5, No. 1, June 2008

Using stepwise aggregation of groups of related inputs we can make more
complex logic functions [8] and organize the tree-like aggregation structure
that eventually yields the overall preference indicator 0E , That indicator
reflects the overall capability of evaluated system to satisfy user requirements.

The final evaluation and selection step is to use a cost/preference analysis

to compute an overall system quality indicator 0Q as a function of the overall
preference 0E and the total cost 0C . Among many possible cost/preference
models the simplest is /0 0 0Q E C= . We assume that the evaluation is
regularly performed as a part of the comparison of multiple alternatives and
selection of the best system. In such cases competitive systems are ranked
according to decreasing values of the overall quality 0Q and the system with
the highest 0Q value is proposed for acquisition.

The presented evaluation process critically depends on our ability to extract
relevant, up-to-date inputs for the evaluation process. This nontrivial step
combines a spectrum of advanced software tools and technologies
[3,11,12,13,19], and in some cases generates only partial results. In this
paper we identify major problems related to automated attribute extraction
and offer several solutions to this problem. It is important to emphasize that
system evaluation is only one of many problems where the Web data
extraction techniques are indispensable. Therefore, the results of this paper
are applicable in a variety of Web-oriented applications.

3. Problems of Web Data Extraction

Whenever we access Web data we are faced with a data that are primarily
prepared for visual consumption and consequently pay little attention to
facilitating programmatic access. Generally, the difficulties are the
consequences of the following:
• Intentional barriers designed to impede extraction of proprietary/reusable

data:
o Client filtering
o Automation policies
o Protected/encrypted display formats
o Authentication/verification

• Unintentional barriers:
o Lack of website development standards
o Browser quirks mode
o Limited expertise of website developers
o Pages optimized for on-line viewing

Interfacing the System Evaluation Method LSP with E-commerce Web Sites

ComSIS Vol. 5, No. 1, June 2008 29

Client filtering [10] – Prevents access to content based on the source of
the request (usually determined at the IP level). This tactic is a successful
barrier against various program-based (“bot”) attacks from common sources.

Automation policies [2] – Directives embedded into web pages that well-
behaved programs visiting the site voluntarily obey. This gives site owners a
way to declare what data is accessible to bots, and how it should be read.

Protected/encrypted display formats – This may be as simple as shifting
content around or heavy-handed such as requiring a browser “plug-in”. This
practice can drive traffic away by adversely affecting search engine scores.

Authentication/verification – Restrictions that usually require human
involvement, either to enter credentials or to perform a simple task that would
be difficult for a program to accomplish (such as CAPTCHA-style puzzles
[17]). Most programs are foiled by this type of obstacle.

Lack of website development standards – The same page layout can be
coded many different ways using completely different HTML elements, and
there are currently no internet-wide standards that govern this.

Quirks mode [12] – Web browsers handle an extraordinary range of
coding styles and they can cover up certain serious developer mistakes. This
functionality would be difficult to reproduce in a standalone data extraction
program without essentially writing a new browser.

Limited experience – The majority of web sites are developed by people
with minimal formal programming education [15,16]. No doubt the
professionals are concentrated in the e-commerce sector, but the Web is still
dominated by a “hobbyist” culture.

Pages optimized for viewing – The web is oriented around free-flowing
hyperlinked content. This is nearly opposite the linear, structured format
typical of ideal data extraction solutions.

While this is by no means an exhaustive list, it illustrates the magnitude of

difficulty involved in designing a general-purpose web data extraction solution,
and the fact that there is no single accepted solution for locking down content.
In general intentional barriers are easier to overcome than unintentional ones,
which tend to result in unpredictable, hard-to-parse pages. It is this random
element to site designs more than anything else that complicates any attempt
at automated data extraction.

The collective effect of intentional and unintentional barriers results in an
overall level of programmatic accessibility called the cooperation level of the
site, where fully-cooperative means there exists a convenient and efficient
means for extracting useful data, and non-cooperative means data extraction
is difficult or impossible.

4. Data Extraction and LSP Integration

Given the wide range of data presentation formats and variety of
impediments, it would be difficult to construct a 100% automated general-

Jozo Dujmović and Greydon Buckley

30 ComSIS Vol. 5, No. 1, June 2008

purpose data retrieval tool without writing a full browser. Any tool that is built
around one or several (or even several dozen) specific data sources would
miss out on the vast potential of the internet. Therefore, in this project we
attempt to bridge the gap by:

1. Providing a tool to collect data specific to the currently-selected LSP

project.
2. Providing automated data-collection features where possible, and general

data-entry assistance elsewhere.
3. Defining an open standard for storing and moving system attributes.
4. Creating a data repository based on the standard, featuring an interface

that is compatible with existing LSP tools.

In short, the goal is to help users find and collect the data more efficiently,

and make it easier to share and reuse.
The general solution to collecting data from restricted data sources is to

emulate human behavior programmatically as much possible, and involve
human users when it is unavoidable. To avoid having to rewrite most of the
functionality that makes browsers so flexible, a browser extension is the
logical solution. Browser extensions (also known as “add-ons”) [13] provide a
way to leverage the exceptional parsing ability of common browsers and
create a seamless connection to the LSP analytic engine running on a remote
server.

There are many ways to present the same set of data, but standard
conventions and HTML limitations can be used to frame data retrieval and
entry services. Extensions have full access to any currently-displayed HTML
data, regardless of the source, so it is possible to view, analyze, and attempt
to reconcile it against LSP project data. To analyze data on a given page, the
contents must be broken down into a navigable set of related low-level
components, and there must be some way to navigate this structure and
explore relationships between them, both logical and physical (i.e. position).

Although the underlying page code can often be difficult for programs to
analyze, humans have little trouble understanding the displayed content. This
is because no matter how stylized and embellished the presentation, and no
matter how complex the underlying code is, the data is usually arranged in
columns, rows, grids, or other conventional publishing layouts. We can make
a program analyze a web page more "intelligently" by forcing it to look past
the actual structure, and making it consider what the page actually looks like
to a user. Not all pages lend themselves to this approach, but enough do to
make it a worthwhile endeavor. The technique is as follows:

1. Search for HTML elements that are typically used to display structured

data, such as Tables and DIVs.
2. Within those blocks, find the absolute coordinates (starting from the top-

left corner of the content window) of the elements contained by the block.

Interfacing the System Evaluation Method LSP with E-commerce Web Sites

ComSIS Vol. 5, No. 1, June 2008 31

3. By finding those inline elements that fall on the same (or close) x-
coordinate, we can programmatically discern what elements will form a
column of data to the user’s eye, no matter how obfuscated the code is.

Once the column structure is determined, it is possible to make educated

guesses about the content based on criteria and system information in the
current project. For example, data for a particular system could be discerned
by looking at the top-most element in a column (that with the lowest y value)
and, assuming it is a column header, match it against system names in the
current project (Fig. 2). If a match is found, further steps can be taken to
automatically extract the data into the data entry grid.

Fig. 2. Inferring Page Structure

Each criterion definition includes a regular expression value for the name
and the legal values that apply to it. When combined with structural analysis it
becomes possible to programmatically “read” data on a web page.

Label/Value Proximity - Attribute searches closely follow the behavior of a
human reader performing the same search. First, the current attribute is
searched for by label (using regular expressions). Once found, this cell
position is used as an anchor for locating the applicable value. The value
search goes left-to-right, top-to-bottom (adjusted appropriately for the current
locale settings) as a human reader would behave, and values found closer to
the label anchor have a higher probability of being correct. When multiple
potential matches are found, the values are presented in decreasing order of
proximity, with the most probable value being the default. Many page
extraction algorithms follow a similar pattern of emulating human reading
habits in the hopes of improving extraction accuracy [1].

Once a user has collected some data they can post an update to the
repository directly, either to restore it later for further editing, or to immediately
run an LSP evaluation. To post the updates, all of the current system data is
bundled into a single XML document and posted to the repository server via
asynchronous XML (AJAX) calls. In the realm of information extraction
systems, this general approach can be categorized as a “supervised multiple-
pass record-level wrapper which relies on regular expressions to extract data

C1 C2

R1C1 R1C2

R2C1 R2C2

R3C2R3C1

Jozo Dujmović and Greydon Buckley

32 ComSIS Vol. 5, No. 1, June 2008

from semi-structured (HTML) content” [1]. The complete design and
implementation details for the LSP/data extraction project can be found in [9].

Figure 3. shows the complete process:

1. The evaluation is set up using standard LSP tools such as ISEE [5]
2. Evaluation metadata is imported into the WebForager server.
3. The WebForager browser add-on uses this information to assist data

collection in a normal web browsing session.
4. Collected system data is returned to the LSP server and stored in a

neutral format in the repository.
5. The system data is exported to standard LSP tools, and the evaluation

results are sent via HTTP back to the browser. To the end-user, this
simply appears as a comprehensive report in a new tab in their browser.

LSPCalc
WebForager
Server
ASP.NET

ISEE
etc.

Browser

Extension
XUL

1. Setup LSP project

2. Import into
WebForager

3. Data
Collection

 Web Sites
HTML, XML,
JScript

SQL

5. Run
Evaluation

4. Upload System

LSP
Evaluation

Download Results to Browser

AJAX

HTTP

Fig. 3. Lifecycle of a Web-based LSP Evaluation

5. Sample Evaluation: Real Estate

Real Estate is an excellent test subject for exploring system evaluations
based on web data. Buying a home is a major life event, in terms of both cost
and the amount of effort required for evaluations, so the work required for a
proper evaluation is easily justified. The industry is steadily shifting research
and selection power to the consumer – via the Internet [14] – and there exist
web sites representing the full spectrum of cooperation, from fully-open to
fully-closed. Finally, system attributes for home selections are very well-
defined and fairly static over time.

Interfacing the System Evaluation Method LSP with E-commerce Web Sites

ComSIS Vol. 5, No. 1, June 2008 33

Multiple Listing Service (MLS) was created to allow real estate brokers to
share listing information in a consistent, centralized, data-driven way, with
unique identifiers (MLS numbers) assigned to each property. MLS predates
the creation of the Web by decades, but the idea would seem to translate
perfectly. Despite this, there are over 900 semi-cooperative local MLS
organizations, and consolidation has been slow. The reason for this lack of
consolidation is not technical, but most likely grounded in economics [14].

Put simply, MLS data has intrinsic value to the brokers that control it, and it
is in their best interest to remain in control. This has the unfortunate effect of
dispersing valuable home information, forcing home buyers to either manually
consolidate the data themselves, or let their agent determine their “short list”
of homes based on some loose criteria. The common sense approach would
be exactly opposite: use objective facts to reduce a large list of homes to a
short list that all fulfill minimum buyer requirements, then apply the costly and
time-consuming in-depth research towards the top-scoring results.

In this case study, we demonstrate how results may be consolidated from
several sources, allowing prospective home buyers to run comprehensive
LSP evaluations against a list of homes. This can immediately eliminate
unqualified homes and highlight those that are most likely to satisfy the buyer.

Data is consolidated from three sources (Fig. 4):

• A (simulated) direct MLS feed.
• A regional “independent” real estate web site (with non-MLS listings).
• Data extracted from the pages of a regional real estate web site featuring

searchable MLS-based listings.

Fig. 4. LSP/Real Estate Data Integration

LSP Project Setup
This example features a trivial LSP evaluation intended to show how data

from disparate web-based sources can be consolidated into a single

Web
Forager

Web Site

Repository

WebForager
Server

Browser

Extension

Simulated
MLS Feed

LSP Toolset

Cooperative
Feed

LSP
Tools

Jozo Dujmović and Greydon Buckley

34 ComSIS Vol. 5, No. 1, June 2008

evaluation. The number of elementary criteria and complexity of the
aggregation structure could easily be extended to any size. We are mainly
interested in a subset of core home data – information that is found in most
MLS records. The attributes are based on three major categories (Table 1):

Layout – this includes physical dimensions, number of rooms, etc. (relative
importance 40%)

Amenities – a sampling of typical home features, such as hardwood floors
and air conditioning (relative importance 20%)

Location – typically these attributes are specific to a given buyer and not
made explicit in MLS (relative importance 40%)

Table 1. Preference Aggregation

Criterion Operator Block ID Operator
Property Type 50
Bedrooms 30
Bathrooms 20

CA Layout 40

A/C 25
Granite 45
Hardwood 30

D- Amenities 20

Work Distance 40
School Distance 30
Shops Distance 30

C+ Location 40

C+

G
lo

ba
l P

re
fe

re
nc

e

These three categories are considered mandatory and the strong partial

conjunction aggregator (C+) reflects this requirement [4]. The layout
aggregator is the medium partial conjunction CA. All partial conjunction
aggregators require simultaneous satisfaction of all inputs and punish
systems that are unable to provide the required level of simultaneity. Most
house-hunting efforts emphasize the physical dimensions and location of a
house, and amenities are considered secondary priorities, the rationale being
that it is easier to put in new floors than to add an extra room or relocate the
house. This is expressed using appropriate weights. The presented criterion
also uses a weak partial disjunction aggregator D-, enabling inputs to easily
compensate each other.

Data Collection
After the initial LSP project setup and WebForager import, the two external

feeds were incorporated (Fig. 4), providing the user with a starting point for
comparisons. The remaining records were gathered in an interactive
browsing session and uploaded to join the existing data.

MLS Feeds - Real estate agents who wished to provide LSP as a service to
their customers would likely provide listing data to WebForager in the form of
raw MLS records. The format is highly structured and easily imported into
relational tables (see Fig. 5) using a simple data transformation script. Once
uploaded, this data can be included in any LSP report.

Interfacing the System Evaluation Method LSP with E-commerce Web Sites

ComSIS Vol. 5, No. 1, June 2008 35

Non-standard Feeds - A growing number of alternatives allow buyers and
sellers to bypass MLS entirely. These companies could conceivably adopt
the XML-based system attribute exchange schema used by the WebForager
system. The advantage would be twofold, as they would benefit from a
common data exchange, and system data would be directly usable in LSP
evaluations.

ListID|PropType|AgentID|AgentName|AgentPhone|OfficeID|Offi...
21234321|SFR|23322112|Bob Smith|555-555-5555|23423432|Real...
21211131|SFR|12233432|Bob Smith|555-555-5555|23423432|Real...
23332111|SFR|73311172|Alice Jones|555-555-5555|23423432|Re...
28733221|SFR|23322112|Alice Jones|555-555-5555|23423432|Re...
26543221|SFR|23322112|Ed Lee|555-555-5555|23423432|Mortgag...

Fig. 5. Sample MLS Data Feed

Extracted Page Data – Some sites allow simple queries, but only a limited
number of records are displayed at one time, and there is no mechanism for
downloading data for off-line use. To allow this data to be compared against
data gathered from other sources, it is extracted and uploaded via the
WebForager browser extension (Fig. 6).

Fig. 6. Browser Extension with Simulated Real Estate Listings

After the various records were imported and extracted, an LSP evaluation
was run directly from the browser with ten candidate homes, including three
from the MLS feed (MLS prefix), four from the direct feed (REP), and three
from data extracted by the browser extension (WFB). The final LSP ranking is
listed in Table 2.

Jozo Dujmović and Greydon Buckley

36 ComSIS Vol. 5, No. 1, June 2008

The top three selections were close to each other, while the middle three
differed significantly enough to possibly drop them out of contention, and the
bottom four were clearly not worth consideration. The overall preference
scores are then used as inputs for the cost/preference analysis. This
approach gives a buyer and agent the ability to focus on only those homes
that are most likely to be satisfactory, and given the time-critical nature of real
estate, this could be a tremendous advantage.

Table 2. LSP Preference Ranking

Rank Overall Preference Score Identifier
1 74.29% REP003
2 72.23% WFB001
3 70.83% REP001
4 60.61% REP002
5 60.22% MLS002
6 60.09% MLS003
7 53.72% REP004
8 51.06% WFB003
9 0% WFB002

10 0% MLS001

6. Conclusions

Search engines do an effective job of categorizing and indexing the Web, but
the actual data must generally be gathered and analyzed manually.
Connecting LSP to live data provided by e-commerce web sites allows it to be
used in a wider range of selection problems, and it creates a way to harness
the growing volume of data available on the web. Creating this integration
entailed solving three basic problems: (1) extracting and transforming data
from non-cooperative sites, (2) importing data from cooperative sites, and (3)
building a web-server interface to the predominantly single-user-oriented LSP
tools.

Programs intended to automatically extract data from web pages must
overcome a wide range of technical impediments – some intentionally
created, and some not. The general solution for circumventing these barriers
is to create algorithms that emulate human reading patterns. Due to the
combined “randomizing” effect that the various impediments have on website
structures, general automated extraction tools can only hope to achieve
partial success in most cases. In this case, “success” is measured in terms of
the level of automation achieved.

Interfacing the System Evaluation Method LSP with E-commerce Web Sites

ComSIS Vol. 5, No. 1, June 2008 37

Extraction
Errors, 9%

User-
Provided

Data, 31% Automatically
Extracted
Data, 60%

Fig. 7. Typical industry-specific extraction rates

The actual success rate depends on how tightly the tool is tied to the target
sites. According to our experiments, a tool that has been tuned for use in a
particular industry – automotive sites for example – might experience a 70% -
90% extraction rate on certain specific sites, but overall the typical success
rate will be in the 50% - 60% range, leaving users to manually transpose
much of the data (Fig. 7). These success rates are not a property of the LSP
method, but of information extraction solutions within the e-commerce
problem domain. Similar results may be expected in a spectrum of other
applications that depend on similarly-structured Web data outside of e-
commerce.

An important point to consider in these results is that many website data
extraction problems are completely avoidable. Certainly the intentional
barriers can be removed at the whim of the site owners, but even the
unintentional ones – the most difficult class of problems – are mostly the
result of mere habit or lack of standardization.

There are initiatives that seek to address some of these issues, but the
burden remains on website developers to embrace them. XHTML [20]
attempts to formalize HTML into a stricter syntax, and “Really Simple
Syndication” (RSS) provides a standard means for sharing certain types of
content. Web Services presents a widely-supported standard which solves
many technical issues related to remote data access, but it is first and
foremost a developer resource, meaning that both content producers and
consumers must embrace the standard on a technical level. Perhaps the
most ambitious project is the Resource Description Framework (RDF) [18],
which provides a general framework for describing data on the web. To date,
RDF has not gained widespread acceptance, and in general research in the
area of automated website data sharing/extraction remains surprisingly
underdeveloped outside of academia.

Jozo Dujmović and Greydon Buckley

38 ComSIS Vol. 5, No. 1, June 2008

7. References

1. Chang, C-H, M. Kayed, M.R. Girgis, K.F. Shaalan, A Survey of Web
Information Extraction Systems. IEEE TKDE, Vol. 18, No. 10, pp. 1411-
1428, October 2006.

2. Crow, D., The Robots Exclusion Protocol;
http://googleblog.blogspot.com/2007/02/robots-exclusion-protocol.html,
2007

3. Darnell et al., HTML Unleashed. Sams Publishing, 1999.
4. Dujmović, J.J., Quantitative Evaluation of Software. Proceedings of the

IASTED International Conference on Software Engineering, edited by
M.H. Hamza, pp. 3-7. IASTED/Acta Press, 1997.

5. Dujmović, J.J., M. Kadaster, A Technique and Tool for Software
Evaluation. Proceedings of the Sixth IASTED International Conference on
Software Engineering and Applications (Editor: M.M. Hamza) pp. 743-
748, ACTA Press, 2002.

6. Dujmović, J.J., and H. Bai, Evaluation and Comparison of Search Engines
using the LSP Method. ComSIS, Vol. 3, No. 2, pp.31-56, December 2006.

7. Dujmović, J.J. and H.L Larsen, Generalized Conjunction/Disjunction.
International Journal of Approximate Reasoning 46 (2007) pp. 423-446.

8. Dujmović, J.J., Preference Logic for System Evaluation. IEEE
Transactions on Fuzzy Systems, Vol. 15, No. 6, pp. 1082-1099,
December 2007.

9. Buckley, G., Interfacing the LSP Method with e-commerce Web Sites.
Department of Computer Science, San Francisco State University, SFSU-
CS-CE-07.16, May 2007.

10. Ellis, E., Speed, T., The Internet Security Guidebook. Academic Press,
2001.

11. Mozilla Foundation: XUL Genealogy: XML - MDC;
http://developer.mozilla.org/en/docs/XUL_Genealogy:_XML.

12. Mozilla Foundation: Mozilla’s Quirks Mode;
http://developer.mozilla.org/en/docs/Mozilla's_Quirks_Mode.

13. Mozilla Foundation, XUL Developer’s Guide; http://www.xulplanet.com.
14. National Association of Realtors, 2006 MLS Technology Survey. Center

for REALTOR® Technology, 2006.
15. Netcraft, March 2007 Web Server Survey. Referenced 3/5/2007;

http://news.netcraft.com/archives/web_server_survey.html.
16. U.S. Department of Labor, Bureau of Labor Statistics: Occupational

Outlook Handbook for Computer Software Engineers. Referenced
1/20/2007; http://www.bls.gov/oco/ocos267.htm.

17. Von Ahn, L., Blum, M., Hopper, N., Langford, J. The CAPTCHA Project,
Carnegie Mellon School of Computer Science; http://www.captcha.net.

18. World Wide Web Consortium, Resource Description Framework.
Referenced 12/2/2006; http://www.w3.org/RDF.

19. World Wide Web Consortium, W3C Document Object Model
Recommendations; http://www.w3.org/2003/02/06-dom-support.html.

Interfacing the System Evaluation Method LSP with E-commerce Web Sites

ComSIS Vol. 5, No. 1, June 2008 39

20. World Wide Web Consortium, XHTML™ 1.0 The Extensible HyperText
Markup Language (Second Edition); http://www.w3.org/TR/xhtml1, 2002

Greydon Buckley was born in California and received a B.S. and M.S. in
Computer Science from San Francisco State University. Since 1990 he has
worked as a professional software engineer, primarily developing large-scale
financial and planning applications for fortune 1000 companies. His research
interests include system integration problems, multidimensional databases,
alternative software development methodologies, HCI, and long-term trends in
software engineering. Mr. Buckley is currently a member of the Platform
Architecture team at CA, Inc., where he is helping to build the next-generation
product infrastructure for CA’s industry-leading project and portfolio
management application suite.

Jozo J. Dujmović was born in Dubrovnik, Croatia, and received the Dipl. Ing.
degree in electronic and telecommunication engineering in 1964, and the
M.Sc. and Sc.D. degrees in computer engineering, in 1973 and 1976
respectively, all from the University of Belgrade, Serbia.
Since 1994 he has been Professor of Computer Science at San Francisco
State University, where he served as Chair of Computer Science Department
from 1998 to 2002. His teaching and research activities are in the areas of
soft computing, software metrics and computer performance evaluation. In
1973 he introduced the concepts of andness and orness and logic
aggregators based on continuous transition from conjunction to disjunction.
He is the author of approximately 130 refereed publications, including 13
books and book chapters. Before his current position at San Francisco State
University, he was Professor of Computer Science at the University of
Belgrade, University of Florida (Gainesville), University of Texas (Dallas), and
Worcester Polytechnic Institute. In addition, he was teaching in the graduate
Computer Science programs at the National Universities of San Luis and
Jujuy (both in Argentina). At the University of Belgrade, where he was
teaching from 1968 to 1992, he also served as Chairman of Computer
Science Department, and as founding Director of the Belgrade University
Computing Center. His industrial experience includes work in the Institute “M.
Pupin” in Belgrade, and consulting in the areas of decision methods,
performance evaluation, and software design.
Prof. Dujmović is the recipient of three best paper awards, and a Senior
Member of IEEE. He is an editor of Informatica, and served as General Chair
of the Eight IEEE International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS 2000),
and as General Chair of the Fourth ACM International Workshop on Software
and Performance (WOSP 2004).

Received: October 16, 2007; Accepted: March 6, 2008.

