
UDC 004.423.2, DOI: 10.2298/csis0902047M

Model Transformations to Bridge
Concrete and Abstract Syntax of Web Rule

Languages

Milan Milanović1, Dragan Gašević2, Adrian Giurca3,
Gerd Wagner3, Sergey Lukichev3 and Vladan Devedžić1

1 GOOD OLD AI Network, FON-School of Business Administration, University of
Belgrade, Serbia, Jove Ilića 154, 11000 Belgrade

milan@milanovic.org, devedzic@fon.rs
2 School of Computing and Information Systems, Athabasca University, Canada

dgasevic@acm.org
3 Institute of Informatics, Brandenburg Technical University at Cottbus, Germany

{Giurca, G.Wagner, lukichev}@tu-cottbus.de

Abstract. This paper presents a solution to bridging the abstract and
concrete syntax of a Web rule languages by using model transforma-
tions. Current specifications of Web rule languages such as Semantic
Web Rule Language (SWRL) or RuleML define their abstract syntax
(e.g., metamodel) and concrete syntax (e.g., XML schema) separately.
Although the recent research in the area of Model-Driven Engineering
(MDE) demonstrates that such a separation of two types of syntax is a
good practice (due to the complexity of languages), one should also
have tools that check validity of rules written in a concrete syntax with
respect to the abstract syntax of the rule language. In this study, we use
the REWERSE I1 Rule Markup Language (R2ML), SWRL, and Object
Constraint Language (OCL), whose abstract syntax is defined by using
metamodeling, while their textual concrete syntax is defined by using ei-
ther XML/RDF schema or Extended Backus-Naur Form (EBNF) syntax.
We bridge this gap by a bi-directional transformation defined in a model
transformation language (ATLAS Transformation Language, ATL). This
transformation allowed us to discover a number of issues in both web
rule language metamodels and their corresponding concrete syntax, and
thus make them fully compatible. This solution also enables for sharing
web rules between different web rule languages.

Keywords: rules, MDE, syntax, transformations, languages, R2ML,
OCL, SWRL.

1. Introduction

Using and sharing rules on the Web are some of the main challenges that the
Web community tries to solve. The first important stream of research in this
area is related to the Semantic Web technologies where researchers try to

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 48

provide formally-defined rule languages (e.g., Semantic Web Rule Language,
SWRL [29]) that are used for reasoning over Semantic Web ontologies. The
main issue to be solved is the type (e.g., open or closed world) of reasoning
that will be used, so that formal-semantics of such languages can be defined.
However, as in constructing any other language, defining abstract syntax and
concrete syntax is an unavoidable part of the language definition. An impor-
tant characteristic of Semantic Web rule languages is that they do primarily
not deal with interchange of rules between various types of rule languages on
the Web. This means that Semantic Web rule languages do not tend to com-
promise their reasoning characteristics for the broader syntactic expressivity.
This is actually the main focus on the second stream of research on the Web
that is chiefly articulated through the W3C effort called Rule Interchange For-
mat (RIF) [23], while the most known proposals are REWERSE Rule Markup
Language (R2ML) [57] and RuleML [11]. The primary result expected from
this research stream is an XML-based concrete syntax for defining rules on
the Web. Although the XML syntax for such a language is certainly the prag-
matic expectation of the Web users, for a good definition of such a language it
is also important to have a well-designed abstract syntax [12].

Although the work on both types of Web rules is very important, even a fur-
ther impact will be achieved once we define technique, which will allow for the
development of Web applications that are using Web rules. Model-driven
engineering (MDE) is a promising approach to this problem, where, for exam-
ple, Object Constraint Language (OCL) can be used to model and specify
different aspects of Web applications [24]. In our particular case, Web rules
can be specified by using OCL, which are used together with UML [46]. In
UML, various model elements such as classes or state machines can be an-
notated by logical constraints defined by using OCL. In this way, UML models
constrained by OCL expressions are more accurate and complete. OCL is
today used in a number of tools, and it is accepted as a standard by the OMG
(Object Management Group) [44]; it can be also used to define constraints on
MOF (Meta Object Facility)-based metamodels [42]. The OCL 2.0 specifica-
tion [0] explicitly defines an abstract and concrete syntax of the language, that
is, a MOF-based metamodel and a textual concrete syntax, respectively.

The current practice of rule language design demonstrates that there is
usually no tool support that connects an abstract syntax with a concrete syn-
tax of a rule language. The main reason of having such a tool is to enable for
the validation of rule expressions encoded in various concrete (e.g., XML-
based or EBNF-based) syntax w.r.t. the abstract syntax. Not should a rule
only follow a concrete syntax of the language, but it also must be valid in
terms of the abstract syntax. An optimal situation will be, if we can provide a
transformation between a concrete syntax and an abstract syntax. On the
other hand, such a transformer may also help us check the correctness and
appropriateness of the abstract syntax based on the expressions encoded in
the concrete syntax.

In this paper, we try to address this problem of bridging the gap between an
abstract and concrete syntax of Web rule languages. In our study we analyze
the R2ML [57], SWRL [29] and OCL languages whose concrete syntax is

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 49

defined by using XML, Resource Definition Framework (RDF), and EBNF,
respectively. Since R2ML and OCL languages leverage the benefits of a new
software engineering discipline MDE [9], the abstract syntax of R2ML and
OCL is defined by a metamodel that is specified by using the Meta-Object
Facility (MOF) metamodeling language [42]. SWRL specification [29] does not
propose an abstract syntax defined by a metamodel, but it is proposed in a
research literature [14]. In [43] is said that a metamodel specifies syntax of a
modeling language by omitting some aspects of the graphical or textual ap-
pearance of the language, such as geometric shapes or punctuation. For
example, a metamodel might have an element for kinds of rules and another
for logical formulas, but no mention of how generalization appears in a
graphical or textual syntax. This is sometimes called “abstract syntax”, as
distinguished from “concrete syntax”, which includes the detailed graphical or
textual appearances. The use of the MDE approach for defining abstract syn-
tax of rule languages enables us to have first leverage metamodels as means
for checking validity of concrete expressions in rule languages. Moreover, we
can define more advanced constraints over metamodels by using a constraint
language such as OCL. This enables us to leverage a richer set for defining
well-formedness rules of Web rule languages. This is a more expressive me-
chanisms comparing to the XML syntax definition mechanisms (e.g., XML
scheme), which do not have this kind of mechanism.

Along with their abstract syntax, R2ML, SWRL and OCL have concrete
syntax that has been developed for encoding rules by domain experts in vari-
ous tools. The R2ML concrete syntax is defined by an XML Schema, the
SWRL concrete syntax is defined by XML and RDF Schemas, while the OCL
concrete syntax is defined by an EBNF textual concrete syntax. However,
there is no solution that enables mappings and transforming concrete syntax
of these languages into their compliant metamodels. This gap between the
rule languages metamodels and their concrete syntax causes the following
problems:
1. Rules represented in the R2ML, SWRL and OCL concrete syntax require a

means in order to be stored in MOF-based model repositories. This will en-
able their validation w.r.t. their metamodels. In order to be automatically
verified, constraints for checking models coherence must be written in a
language for which automatic translation to an executable form is possible.
The well known OCL solution is used here.

2. The rule language metamodels cannot be instantiated based on rules en-
coded in their concrete syntax with the present tools, and thus their meta-
models cannot be validated with real-world rules.

In this paper, we demonstrate how MDE tools and model transformation

languages can be used to overcome R2ML, SWRL and OCL issues listed
above. To describe this approach, we first give a short introduction into the
main initiatives for sharing Web rules and into the basics of MDE concepts
that our solution is based on. In Section 3, we describe the rule languages,
i.e., abstract and contract syntax of R2ML, SWRL, and OCL. In Section 4, we
explain our conceptual solution to bridging between each rule language’s

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 50

abstract and concrete syntax, and also we explain our implementation ap-
proach, while in Section 5 we give some general and technically-specific best
practices to bridge between abstract and concrete syntax of rule languages.
In Section 6, we report on the main experience that we obtained when imple-
menting transformations and consequences on the R2ML, SWRL and OCL
metamodels, while we highlight the related work on rule language transforma-
tions in Section 7. We conclude in Section 8.

2. Background

This section introduces the basic concepts and technologies that are used in
our solution to bridging the gap between abstract and concrete syntax of Web
rule languages. Namely, we introduce the W3C’s Rule Interchange Format
initiative and fundamental concepts of MDE such as metamodeling, Model-
Driven Architecture (MDA), XMI, technical spaces, and model transforma-
tions.

2.1. Rule Interchange Format

Rule Interchange Format (RIF) [23] is the W3C’s initiative that aims at defining
an intermediary language between various rule languages. Its goal is not to
provide a formally defined semantic foundation for reasoning on the Web such
as OWL for ontologies. The current state of this initiative is that it defines a set
of requirements and use cases for sharing rules on the Web. However, there
is no official submission to this initiative yet.

RuleML is a language that tends to be a proposal for RIF. RuleML is a
markup language for publishing and sharing rule bases on the World Wide
Web [27]. RuleML builds a hierarchy of rule sublanguages upon XML, RDF,
XSLT, and OWL. The current RuleML hierarchy consists of derivation (e.g.,
SWRL and First Order Logic-FOL), integrity, reaction, transformation and
production rules (e.g., Jess). RuleML is based on Datalog. RuleML rules are
defined in the form of an implication between an antecedent and consequent,
with the meaning whenever the logical expression in the antecedent holds,
then the consequent must also hold. However, an important constraint of
RuleML is that it cannot fully represent all the constructs of various languages
such as Object Constraint Language (OCL) [44] or SWRL [29] and it cannot
satisfy many RIF requirements yet. It is important to mention that is a proposal
for the RuleML abstract syntax [12] by means of a metamodel, but there has
not been any solution allowing for bridging between that abstract syntax and
the concrete syntax of RuleML.

In this paper, we use REWERSE I1 Rule Markup Language (R2ML) as a
language that covers all RIF requirements for sharing rules, and hence solves
some of the RuleML constraints. We describe its abstract and concrete syntax
in Section 3. As R2ML has separately defined abstract and concrete syntax,

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 51

we demonstrate how model transformations can be used to bridge between
its abstract and concrete syntax.

2.2. Model Driven Engineering

MDE is a new software engineering discipline in which the process heavily
relies on the use of models [9] [18], while the OMG’s MDA [40] is considered
a possible metamodeling architecture enabling the use of the MDE principles.
The core concept in MDE is model. A model defined is a set of statements
about some system under study [53]. Models are usually specified by using
modeling languages (e.g., UML), while modeling languages can be defined by
metamodels. A metamodel is a model of a modeling language. That is, a
metamodel makes statements about what can be expressed in the valid mod-
els of a certain modeling language [53].

MDE consists of three layers, namely:
• M1 layer or model layer where models are defined by using modeling lan-

guages;
• M2 layer or metamodel layer where models of modeling languages (i.e.

metamodels) are defined (e.g., UML or Ontology Definition Metamodel,
ODM [45]) by using metamodeling languages such as MOF;

• M3 layer or metametamodel layer where the only metamodeling language
is defined (i.e. MOF) by itself [42].

The relations between different MDE layers can be considered as instance-

of or conformant-to, which means that a model is an instance of (i.e., confor-
mant to) a metamodel, and a metamodel is an instance of (i.e., conformant to)
a metametamodel. The rationale for having only one language on the M3
layer is to have a unique grammar space for defining various modeling lan-
guages on the M2 layer. Thus, various modeling language can be processed
in the same way, for example, by using the same API. An example of such
APIs are Java Metadata Interface (JMI) [32] and Eclipse Modeling Framework
(EMF)1 that enables the implementation of a dynamic, platform-independent
infrastructure to manage the creation, storage, access, discovery, and ex-
change of MOF-based metadata. The most comprehensive implementation of
JMI is NetBeans’ Metadata Repository (MDR)2 that contains implementation
of a MOF-based repository including persistent storage mechanism for storing
the MOF-based metadata. An important feature of MOF is that it inherits the
graphical syntax of UML, that is, MOF is a subset of UML class models, so
that an abstract syntax of a modeling language defined by MOF can be repre-
sented by using UML class diagrams.

We should mention also the well-formedness rules in terms of metamodel-
ing architectures. Typically, they are defined on the metamodel level, by using
a combination of a metamodeling language (MOF) and a constraint language

1 http://www.eclipse.org/emf/
2 NetBeans MDR: http://mdr.netbeans.org/

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 52

(OCL). The constraints are defined over metamodels, most commonly, in a
form of integrity constraints such as OCL invariants. These rules regulate a
set of valid models (i.e., expressions of a modeling language), and only those
models that are fully compliant with such well-formedness rules are consid-
ered well-formed. For example, well-formedness of R2ML is defined by using
MOF and OCL, while all R2ML rules (i.e., models) must comply to the well-
formedness rules of R2ML

Note also that for each MOF-based metamodel and model, one can auto-
matically generate their corresponding XML schema (so called XML Metadata
Interchange–XMI) by following the OMG’s XMI specification [48]. This enables
sharing MOF-based models and metamodels among different MOF-based
model repositories. MDR implements functionalities for exporting/importing
XMI documents compliant with various MOF-based metamodels (e.g., the
R2ML metamodel).

2.3. Technical spaces

Although MDE principles for defining modeling languages seems quite prom-
ising, the reality is, that languages can be defined and represented by using
various technologies such as XML, databases, and MOF. In fact, the MDE
theory introduces a concept of technical spaces [6], where a technical space
(TS) is a working context with a set of associated concepts, body of knowl-
edge, tools, required skills, and possibilities [34]. Although some technical
spaces are difficult to define, they can easily be recognized (e.g., XML, MDA,
databases, and Semantic Web). In the case of the problem analyzed in this
paper, we have to bridge between two technical spaces – the MDE technical
space (as we assume that abstract syntax of the rule languages is defined by
using metamodeling) and technical spaces, such as XML, RDF and EBNF
that are used for defining concrete syntax of rule languages.

2.4. Model Transformations

Model transformations represent the central operation for handling models in
the MDA [0]. Model transformations are the process of producing one model
from another model of the same system [40]. In fact, a model transformation
means converting an input model, which conforms to one metamodel, to an-
other model, which conforms to another metamodel (see Fig. 1). This conver-
sion is done by defining rules that match and/or navigate elements of source
models resulting in the production of elements of the target model. The trans-
formation itself is a model, which conforms to some transformation metamodel
[7]. Languages for defining model transformations are generally declarative,
and include approaches based on relations [1], or those based on patterns of
logical constraints [16]. In November 2005, the OMG published the final speci-
fication of the MOF2 Query View Transformation (QVT) standard [47]. MOF2

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 53

QVT is defined by a MOF-based metamodel (in the similar way as the R2ML
metamodel is defined), and thus QVT is located on the M2 layer of the MDA
(i.e., transformation language in Fig. 1).

Fig. 1. An overview of model transformations

QVT may be used for many kinds of model transformations such as from
object model to data model or from business model to object model. Although
it is very important to have a standard such as MOF2 QVT, it is equally impor-
tant to use an appropriate tool that allows us to represent models and meta-
models being transformed between different technical spaces (e.g., MOF and
XML). In our research, we have decided to use ATLAS Transformation Lan-
guage (ATL) [3] as the primary language and tool for model transformations
based on the following arguments: an open-source software, the biggest user
community, a solid developer support, a rich knowledge base of model trans-
formation examples and projects, and a very mature support for technical
spaces (e.g., XML, EMF, and MOF).

ATL is a hybrid (i.e., declarative and imperative) transformation language,
and it is based on the OMG OCL norm [44] for both its data types and its de-
clarative expressions. ATL and QVT share some common features, as they
initially shared the same set of requirements defined in QVT Request for pro-
posals [47]. However, the actual ATL implementation is different from the QVT
standard, although the QVT standard defines requirements primarily for tools,
and not for languages. ATL is implemented as an Eclipse plug-in and inte-
grates the notion of technical spaces. Although mainly intended to deal with
MDA models, this framework should also handle other kinds of models from
different technical spaces (e.g., Java programs, XML documents, and data-
bases). The ATL Eclipse perspective provides tools for importing/exporting
various XML formats into/from ATL’s MOF based model repository. This is
implemented in the form of the following tools:
• XML injection: takes an XML file as the input and produces its equivalent

model that is conformant to the XML metamodel defined in MOF (the next
section gives more details about this metamodel). We should also mention

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 54

that XML injection can be used for RDF too, because we consider that RDF
can be represented by XML (and in fact, one of the most commonly used
RDF concrete syntax is XML-based), but in general case RDF enables
more freedom in syntax defining of RDF expressions.

• XML extraction: produces an XML file from the model conformant to the
metamodel defined in either Ecore or MOF. We should also say here that
as for XML injection, XML extractor can be used for RDF files, too.

• EBNF injection: takes a textual file (written in the textual concrete syntax of
a rule language) as the input and produces an equivalent model that is con-
formant to the rule language’s metamodel defined in either Ecore or MOF.

• EBNF extraction: produces a textual file (written in the textual concrete
syntax of a rule language) from the model conformant to the rule lan-
guage’s metamodel defined in either Ecore or MOF.

In addition, ATL toolkit also includes TCS (Textual Concrete Syntax) tools

[30]. TCS represents domain specific language (DSL) for defining textual con-
crete syntaxes in MDE. As a part of ATL toolkit it can be used for parsing text-
to-model and serialization model-to-text. In our work presented in this paper,
we used TCS for EBNF injection/extraction.

3. Rule Languages Representations

In this section, we describe briefly the three rule languages under study (i.e.,
R2ML, SWRL and OCL), by means of their abstract and concrete syntax.

3.1. R2ML Metamodel and R2ML XML Schema

This section is devoted to the description of the R2ML language [57][59] by
explaining the R2ML abstract syntax and R2ML XML-based concrete syntax.
Due to the size of the R2ML language, we only give an excerpt of the lan-
guage related to integrity and derivation rules in this section. For the complete
definition of the R2ML metamodel and R2ML XML schema, we refer readers
to [50].

3.1.1. The R2ML Abstract Syntax: R2ML Metamodel

The R2ML metamodel is defined by using the MOF metamodeling language.
In Fig. 2, we give a UML class diagram depicting the MOF definition of integ-
rity rules with the definition of RuleBase and RuleSet. An R2ML RuleBase
contains IntegrityRuleSet-s or DerivationRuleSet-s, while either of these two
RuleSet-s contains specific rules, integrity or derivation, respectively. An in-
tegrity rule, also known as (integrity) constraint, consists of a constraint asser-
tion, which is a sentence (or formula without free variables) in a logical lan-

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 55

guage such as first-order predicate logic or OCL [44]. R2ML supports two
kinds of integrity rules: the alethic and deontic ones. An alethic integrity rule
can be expressed by a phrase, such as “it is necessarily the case that” and a
deontic one can be expressed by phrases, such as “it is obligatory that” or “it
should be the case that.” In Fig. 2 we, define constraint on the IntegrityRule
class, by means of OCL constraints to check well-formendess of the R2ML
models, and we describe these well-formendess rules in more detail later in
this subsection.

Example 1 (Integrity rule). If a rental is not a one way rental then the re-
turn branch of the rental must be the same as the pick-up branch of the rental.

Fig. 2. The metamodel of integrity rules with RuleBase and RuleSet

R2ML defines the general concept of LogicalFormula that can be Conjunc-
tion, Disjunction, NegationAsFailure, StrongNegation, and Implication. The
concept of a QuantifiedFormula is essential for R2ML integrity rules, and it
subsumes existentially quantified formulas and universally quantified formu-
las. LogicalFormula can also be AtLeastQuantifiedFormula, AtMostQuanti-
fiedFormula, and AtLeastAndAtMostQuantifiedFormula that allow defining
cardinality constrains in R2ML rules.

A derivation rule has conditions and a conclusion (see Fig. 3) with the ordi-
nary meaning that the conclusion can be derived whenever the conditions
hold. Conditions of a derivation rule are instances of the AndOrNafNegFor-
mula class representing quantifier-free logical formulas with conjunction, dis-
junction, and negation. Conclusions are restricted to quantifier-free disjunctive
normal forms (LiteralConjunction) without NAF (Negation as Failure, i.e. weak
negation).

Example 2 (Derivation rule). The discount for a customer buying a prod-
uct is 7.5 percent if the customer is premium and the product is luxury.

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 56

Fig. 3. An excerpt of the R2ML metamodel for derivation rules

Terms are the basic constituents of atoms in R2ML. Similar to atoms, the
R2ML language distinguishes between object terms, data terms, and generic
terms. An ObjectTerm is an ObjectVariable, an ObjectName, a Reference-
PropertyFunctionTerm, or an ObjectOperationTerm. R2ML also has
DataTerms, where a DataTerm is a DataLiteral, DataVariable, or DataFunc-
tionTerm, while DataFunctionTerm can be DataOperationTerm, AttributeFunc-
tionTerm, or DatatypeFunctionTerm.

R2ML supports Variables too. Variables are provided in the form of Object-
Variable (i.e. variables that stand for objects), DataVariable (i.e. variables that
stand for data literals), and GenericVariable (i.e. variables that do not have a
type).

3.1.2. R2ML XML Schema

The concrete syntax of the R2ML language is defined in a form of an XML
schema. This XML schema is defined based on the R2ML MOF-based meta-
model by using the following mapping rules:
1. Every metamodel class is represented by an XML element and a complex-

Type in the XML schema. The names of the XML element and complex
type are the same as the class name. If the class is abstract, the corre-
sponding element is also abstract. The corresponding XML element con-
tains XML attributes for each data type attributes from the model class. The
R2ML metamodel contains only optional or required attributes which are
mapped to optional and required attributes, respectively in the XML Sche-
ma. The metamodel does not contain any attribute whose type is a class.

2. A MOF association is mapped to an XML attribute that is part of the content
model of the XML complexType generated from the class referencing this
association. If a name of an association end is defined, then this name is
used as an XML attribute name. If the association end name is not defined,
then referenced class name is used as an XML attribute name.

3. Composite and n-ary MOF associations are always serialized by using
XML elements. A composite association is mapped to an XML element that
is a part of the content model of the XML complexType generated from the
class referencing this association. If an association end name is provided,

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 57

then this name is used for the corresponding XML element name. If an as-
sociation end is undefined then the referenced class name is used.

In Fig. 4, we give the integrity (Fig. 4a) and derivation (Fig. 4b) rules defined
in Example 1 and Example 2, respectively, in a form of XML documents fol-
lowing the R2ML XML schema.

<r2ml:RuleBase>
<!--Namespace definitions are omitted to reduce the size of this example-->
 <r2ml:IntegrityRuleSet>
 <r2ml:AlethicIntegrityRule r2ml:id="IR001">
 <r2ml:constraint>
 <r2ml:UniversallyQuantifiedFormula>
 <r2ml:ObjectVariable r2ml:name="r1" r2ml:classID="Rental"/>
 <r2ml:Implication>
 <r2ml:antecedent>
 <r2ml:NegationAsFailure>
 <r2ml:ObjectClassificationAtom
 r2ml:classID="OneWayRental">
 <r2ml:ObjectVariable r2ml:name="r1"/>
 </r2ml:ObjectClassificationAtom>
 </r2ml:NegationAsFailure>
 </r2ml:antecedent>
 <r2ml:consequent>
 <r2ml:EqualityAtom>
 <r2ml:ReferencePropertyFunctionTerm
 r2ml:referencePropertyID="returnBranch">
 <r2ml:contextArgument>
 <r2ml:ObjectVariable r2ml:name="r1"/>
 </r2ml:contextArgument>
 </r2ml:ReferencePropertyFunctionTerm>
 <r2ml:ReferencePropertyFunctionTerm
 r2ml:referencePropertyID="pickupBranch">
 <r2ml:contextArgument>
 <r2ml:ObjectVariable r2ml:name="r1"/>
 </r2ml:contextArgument>
 </r2ml:ReferencePropertyFunctionTerm>
 </r2ml:EqualityAtom>
 </r2ml:consequent>
 </r2ml:Implication>
 </r2ml:UniversallyQuantifiedFormula>
 </r2ml:constraint>
 </r2ml:AlethicIntegrityRule>
 </r2ml:IntegrityRuleSet>
</r2ml:RuleBase>

<r2ml:RuleBase>
<!--Namespace definitions are omitted to reduce the size of this
example-->
 <r2ml:DerivationRuleSet>
 <r2ml:DerivationRule r2ml:id="DR004">
 <r2ml:conditions>
 <r2ml:ObjectClassificationAtom
 r2ml:classID="PremiumCustomer">
 <r2ml:ObjectVariable r2ml:name="customer"
 r2ml:classID="Customer"/>
 </r2ml:ObjectClassificationAtom>
 <r2ml:ObjectClassificationAtom
 r2ml:classID="LuxuryProduct">
 <r2ml:ObjectVariable r2ml:name="product"
 r2ml:classID="Product"/>
 </r2ml:ObjectClassificationAtom>
 <r2ml:AssociationAtom
 r2ml:associationPredicateID="buy">
 <r2ml:objectArguments>
 <r2ml:ObjectVariable r2ml:name="customer"/>
 <r2ml:ObjectVariable r2ml:name="product"/>
 </r2ml:objectArguments>
 </r2ml:AssociationAtom>
 </r2ml:conditions>
 <r2ml:conclusion>
 <r2ml:AttributionAtom r2ml:attributeID="discount">
 <r2ml:subject>
 <r2ml:ObjectVariable r2ml:name="customer"/>
 </r2ml:subject>
 <r2ml:value>
 <r2ml:TypedLiteral r2ml:datatype="xs:decimal"
 r2ml:lexicalValue="7.5"/>
 </r2ml:value>
 </r2ml:AttributionAtom>
 </r2ml:conclusion>
 </r2ml:DerivationRule>
 </r2ml:DerivationRuleSet>
</r2ml:RuleBase>

a) b)

Fig. 4. R2ML XML representation of the integrity rule from Example 1 (a) and the deri-
vation rule from Example 2 (b)

3.2. OCL Metamodel and OCL EBNF-based Concrete Syntax

In this subsection, we describe the OCL language by explaining its MOF-
based abstract syntax and EBNF-based textual concrete syntax. In this sec-
tion, we describe only those OCL elements that are relevant to our discussion,
while its complete description could be found in [44].

3.2.1. The OCL Abstract Syntax: OCL Metamodel

The OCL metamodel (i.e., abstract syntax for OCL v2.0) is also defined by
using MOF [3]. In this abstract syntax, a number of meta-classes from the

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 58

UML 2.0 metamodel are imported [3]. The OCL metamodel is divided into
several packages:
• The Types package describes the concepts that define the type system of

OCL. It shows the types predefined in OCL as well as the types that are
deduced from the UML models.

• The Expressions package describes the structure of OCL expressions.
• The EnhancedOCL package that we have added to the standard OCL me-

tamodel to represent invariant constructs that are not supported in the
standard OCL metamodel (more details are given later in this subsection).

An overview of the inheritance relationships between all classes defined in

the package is shown in Fig. 5. The basic structure of the package consists of
the OCL metamodel’s classes such as OclExpression that is an abstract su-
perclass for all OCL expressions; and FeatureCallExp that is superclass for
the OperationCallExp and PropertyCallExp classes. OperationCallExp repre-
sents an operation defined on a UML Classifier (such as UML Class), while
PropertyCallExp models a reference to an Attribute of a Classifier defined in a
UML model.

Fig. 5. The basic structure of expressions in the OCL metamodel

Since the standard specification of the OCL metamodel [3] does not con-
tain support for OCL invariants (constraints that always must hold), we had to
introduce the EnhancedOCL package. Thus, we just improved the model of
the OCL language (i.e., OCL metamodel) to more precisely reflect the con-
structs that can be represented in the OCL language. Otherwise, we would
not be able to provide mappings between OCL abstract and concrete syntax
as explained in Section 4.3, given that we found out that OCL metamodel

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 59

could not support all OCL expressions3. This package contains the Invariant
class, as a subclass of the OclModuleElement class (see Fig. 6). The white
classes are from the UML metamodel, light-gray (or yellow) colored ones are
from the standard OCL metamodel, and dark gray (green) are classes that we
defined.

Fig. 6. Elements of the EnhancedOCL package in the OCL metamodel

Our OclModuleElement class represents a superclass for following ele-
ments:
• OCL invariant elements (represented with the Invariant class);
• OCL operations and properties, that is, “def” elements (represented with

the abstract class OclFeature) that are represented with classes OclOpera-
tion and OclProperty, respectively; and

• OCL derivation rules, i.e., "derive" elements represented with class De-
riveOclModuleElement.

3.2.2. The OCL Concrete Syntax

The concrete syntax of the OCL language is defined in a form of a full attrib-
ute grammar, where each production in an attribute grammar may have syn-
thesized attributes attached to it [44]. The value of synthesized attributes of
elements on the left hand side of a production rule is always derived from
attributes of elements at the right hand side of that production rule. Each pro-
duction may also have inherited attributes attached to it. In the attribute

3 We are very grateful to Mariano Belaunde, who is involved in the OCL and QVT

standardization process, for his generous help in defining the EnhancedOCL pack-
age.

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 60

grammar that specifies the concrete syntax, every production rule is denoted
using the EBNF formalism and annotated with synthesized and inherited at-
tributes, and disambiguating rules. Each production rule has one synthesized
attribute called ast (short for abstract syntax tree), that holds the instance of
the OCL Abstract Syntax that is returned by the rule. Each production rule
also has one inherited attribute called env (short for environment), that holds a
list of names that are visible from the expression. All names are references to
elements in the model. In fact, env is a name space environment for the ex-
pression or expression part denoted according to the production rule [44].

The mapping from concrete to abstract syntax is described as part of the
grammar in [44]. It is described by adding a synthesized attribute ast to each
production which has the corresponding metaclass from the abstract syntax
as its type. This allows the mapping to be fully formalized within the attribute
grammar formalism. We show in Fig. 7 an example of production rules for
OclModuleElement.

[A] OclModuleElementCS ::= DeriveOclModuleElementCS

[B] OclModuleElementCS ::= DefOclModuleElementCS

[C] OclModuleElementCS ::= InvariantCS
Fig. 7. Production rules for OCLModuleElement

The Abstract syntax mapping for OclModuleElement is defined in Fig. 8.

OclModuleElementCS.ast : OclModuleElement
Fig. 8. Abstract syntax mapping of OclModuleElement

Mapping from abstract to concrete syntax can be defined by applying the
production rules from left to right, as shown in Fig. 7. In Section 3.1.1, we
have shown some examples of invariants in the OCL textual concrete syntax.
The full definition of the OCL concrete syntax with well-formedness rules can
be found in [3].

3.3. SWRL Metamodel and SWRL Concrete Syntax

In this section, we present the SWRL language [3] by explaining its SWRL
abstract syntax as well as its XML-based and RDF-based concrete syntax.
Because mappings of SWRL OWL/XML Schema and its metamodel follow the
same principles as for R2ML XML Schema and R2ML metamodel (in Section
3.2.2), we will here describe only parts of the SWRL relevant to our discus-
sion, that is, SWRL’s abstract syntax (metamodel) and it’s two concrete syn-
taxes. SWRL that tends to be a standardized reasoning layer built on top of
Web Ontology Language (OWL). OWL is a standard ontology language that
Semantic Web applications use to exchange their ontologies.

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 61

3.3.1. The SWRL Abstract Syntax: RDM Metamodel

In the official W3C’s submission of the SWRL language, there is no meta-
model defined. In [3], authors, inspired by OMG’s Ontology Definition Meta-
model (ODM) [45] (a standardized MOF-based metamodel for OWL), pro-
posed a Rule Definition Metamodel (RDM) – a MOF-based metamodel for
SWRL [3]. As SWRL includes OWL constructs, RDM represents an extension
of ODM [45]. ODM defines a metamodel for ontologies, by using the MOF
metamodeling language.

Fig. 9. Rule Definition Metamodel (adapted from [0])

SWRL defines rules as part of ontology. To reflect this, the RDM meta-
model defines the Rule class as a subclass of ODM’s OntologyElement. A
SWRL rule (Rule class) consists of an antecedent (body) and a consequent
(head). Both the antecedent and consequent consist of a set of atoms which
can possibly be empty, as depicted by the multiplicity in Fig. 94. Every SWRL
rule is an implication, which means that if all atoms of the antecedent hold,
then the consequent holds. The same antecedent or consequent can be used
in several rules, as indicated in the meta-model by the multiplicity of the asso-

4 Remark: some associations are not shown for the sake of better readability.

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 62

ciation between the Rule class, on the one hand, and the Antecedent class or
the Consequent class on the other.

3.3.2. The SWRL Concrete Syntax

The SWRL language has two concrete syntax, namely, the RDF/XML con-
crete syntax [5] and OWL/XML concrete syntax [28]. We will give a short de-
scription of both in the following two subsections.

3.3.2.1. RDF/XML concrete syntax

As SWRL is defined on top of OWL, while OWL is based on RDF [35] (frame-
work created to standardize defining and using metadata, i.e., resource de-
scriptions on the Web), SWRL has an RDF-based concrete syntax. RDF
Schema (RDFS) [13] is used to define vocabulary for RDF documents, and
thus specify object types to which a certain property can be applied. This
means that RDFS provides a basic typing mechanism for RDF models. The
full definition of the RDF/XML schema of SWRL can be found in [29].

We mapped the SWRL RDF schema to the RDM metamodel by using the
following mapping rules defined that we defined:
1. Every metamodel class is represented by an RDFS Class. The name of the

RDFS Class is the same as the class name. The corresponding RDFS
Class contains super-classes for each super-class from the model class.

2. A MOF association of RDM is mapped to an RDF Property. If a name of an
association end is defined, then this name is used as a name of the RDF
Property. If the association end name is not defined, then the referenced
class name is used as an RDF Property name. Such an RDF Property has
a domain attribute, which represents an RDF Class to which the property is
attributed, and a range attribute which defines the scope of the property
(the type speaking in terms of programming languages).

3.3.2.2. OWL/XML concrete syntax

The SWRL OWL/XML Concrete Syntax is a combination of the OWL Web
Ontology Language XML Presentation Syntax5 [28] with the RuleML XML
syntax [0]. The mapping rules between the SWRL OWL/XML Schema and
RDM metamodel follow the similar rules as we defined between R2ML XML
Schema and R2ML metamodel defined in Section 3.1.2.

5 XML Presentation Syntax is actually a concrete syntax defined by using XML Sche-

ma.

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 63

4. An implementation example: an ATL/QVT based
approach

In this section, we describe implementation details of transformations between
rule languages abstract and concrete syntax. We first show how we bridge
between the XML Schema concrete syntax and the MOF-based abstract syn-
tax of R2ML. Then, we describe specificities of bridging between SWRL’s
RDF concrete syntax (because for the SWRL OWL/XML Schema concrete
syntax is the same as for R2ML). In the last part of this subsection, we de-
scribe how we bridge between the OCL EBNF-based concrete syntax and its
abstract syntax (MOF-based metamodel). Using these bridges between the
abstract and concrete syntax of rule languages, we cover most of the avail-
able rule languages relevant for the web rule community.

We would also mention that we do not describe the transformation between
the SWRL OWL/XML Schema and RDM metamodel here, because this trans-
formation follow the similar principles as the transformation between R2ML
XML Schema and R2ML metamodel also described in this subsection.

4.1. Transformations between R2ML XML Schema and R2ML
Metamodel

In this subsection, we explain the transformation steps undertaken to trans-
form R2ML XML documents into the models compliant to the R2ML meta-
model. We have already explained that the R2ML concrete syntax is an XML-
based syntax and conforms to the R2ML XML Schema explained in Section
3.1.2. This syntax is located in the XML TS. However, the R2ML metamodel is
defined in MOF, that is, it is in the MDE TS. To develop transformations be-
tween these two representations of R2ML, we should put them into the same
technical space. We decided to implement these transformations in the MDE
TS by using QVT and its implementations such as ATL. This approach en-
ables easier maintaining of transformations, it has a better tool for managing
MOF-based models, and also has one more important benefit, that is, MOF-
based models can automatically be transformed into XMI [48]. This means,
that we can produce the R2ML XMI documents by using general-purpose
tools for transforming MOF-based models into XMI [48] implemented as a part
of MOF-based repositories. We base our solution on the second alternative,
i.e., in the MDE TS by using ATL. The overall organization of the transforma-
tion process is shown in Fig. 10. It is obvious that the transformation between
the R2ML XML schema and the R2ML metamodel consists of two transforma-
tions, namely: 1. From the R2ML metamodel to the R2ML XML schema (i.e.,
from the XML TS to the MDE TS); and 2. From the R2ML XML schema to the
R2ML metamodel. In the rest of the section we explain both of these trans-
formations.

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 64

Fig. 10. The transformation scenario: R2ML XML format into the R2ML metamodel
and vice versa

4.1.1. Transforming R2ML XML Schema into R2ML MOF-based
Metamodel

The transformation process consists of two primary steps as follows.
Step 1. XML injection from the XML TS to the MDE TS. This means that

we have to represent R2ML XML documents (RuleBase.xml from Fig. 10) into
the form compliant to MOF. We use the XML injector that transforms R2ML
XML documents (written w.r.t. the R2ML XML Schema, R2ML.xsd from Fig.
10) into the models conforming to the MOF-based XML metamodel (step 1 in
Fig. 10) that defines XML elements such as XML Node, Element, and Attrib-
ute. This has an extremely low cost, since the XML injector is distributed as a
general-purpose tool together with ATL, which performs the XML injection
automatically.

An XML model (RuleBase_XML in Fig. 10), created by the XML injector, is
located on the M1 layer of the MDE TS. This means that the XML injector
instantiates the MOF-based XML metamodel. We can manipulate with these
models like with any other type of MOF-based metamodels. Thus, such XML
models can be represented in the XMI format (step 2 in Fig. 10). This XMI
format can be regarded as an implicitly defined XML schema (XML_XMI.xsd)
compliant to the XML metamodel. Since ATL can use MDR as model handler,
we can employ MDR’s tool for exporting XMI documents (e.g., Rule-
Base_XML.xmi). For example, R2ML rules from Examples 1 and 2 (see Sec-
tion 3.1.1) are represented in the XMI document in Fig. 11.

Step 2. A transformation of XML models into R2ML models. We transform
an XML model (RuleBase_XML) created in Step 1 into an R2ML model (Ru-
leBase_R2ML) by using an ATL transformation named XML2R2ML.atl (step 3
in Fig. 10). The output R2ML model (RuleBase_R2ML) conforms to the R2ML
metamodel. In the XML2R2ML.atl transformation, source elements from the
XML metamodel are transformed into target elements of the R2ML metamo-

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 65

metamodel. The XML2R2ML.atl transformation is performed on the M1 level
(i.e., the model level) of the MDE TS. This transformation uses the information
about elements from the M2 (metamodel) level, i.e., metamodels defined on
the M2 level (i.e., the XML and R2ML metamodels) in order to provide trans-
formations of models on the level M1. It is important to point out that M1 mod-
els (both source and target ones) must be conformant to the M2 metamodels
(this check is automatically done by ATL’s transformation engine during at
run-time as this is the fundamental requirement of metamodeling). This princi-
ple is well-known as metamodel-driven model transformations [8]. In Table 1,
we give an excerpt of mappings between the R2ML XML Schema, XML
metamodel, and R2ML metamodel (where names of XML Schema and
metamodel elements represent constraints on their instances). For XML
Schema complex types, an instance of the XML metamodel element is cre-
ated through the XML injection described in Step 1 above. Such an XML ele-
ment is then transformed into an instance of the R2ML metamodel element by
using the XML2R2ML.atl transformation (Step 2). The ATL transformation is
done for classes, attributes, and references.

<XML.Root xmi.id = 'a1' name = 'r2ml:RuleBase' value = ''>
 <XML.Element.children>
 <XML.Element xmi.id = 'a6' name = 'r2ml:IntegrityRuleSet'
 value = ''>
 <XML.Element.children>
 <XML.Element xmi.id = 'a1'
 name = 'r2ml:AlethicIntegrityRule' value = ''>
 <XML.Element.children>
 <XML.Attribute xmi.id = 'a2' name = 'r2ml:id'
 value = 'IR001'/>
 <XML.Element xmi.id = 'a3'
 name = 'r2ml:constraint' value = ''>
 <XML.Element.children>
 <XML.Element xmi.id = 'a4'
 name = 'r2ml:UniversallyQuantifiedFormula'
 value = ''>
 <XML.Element.children>
 <XML.Element xmi.id = 'a24'
 name = 'r2ml:ObjectVariable' value = ''>
 <XML.Element.children>
 <XML.Attribute xmi.id = 'a12'
 name = 'r2ml:name' value = 'r1'/>
 <XML.Attribute xmi.id = 'a13'
 name = 'r2ml:classID' value = 'Rental'/>
 </XML.Element.children>
 </XML.Element>
 <!--..-->
 </XML.Element>
 <!--..-->
 </XML.Element.children>
 </XML.Element>
 </XML.Element.children>
 </XML.Root>

<XML.Root xmi.id = 'a1' name = 'r2ml:RuleBase' value = ''>
 <XML.Element.children>
 <XML.Element xmi.id = 'a6' name = 'r2ml:IntegrityRuleSet'
 value = ''>
 <XML.Element.children>
 <XML.Element xmi.id = 'a15' name = 'r2ml:DerivationRule'
 value = ''>
 <XML.Element.children>
 <XML.Attribute xmi.id = 'a22' name = 'r2ml:id'
 value = 'DR001'/>
 <XML.Element xmi.id = 'a23' name = 'r2ml:conditions'
 value = ''>
 <XML.Element.children>
 <XML.Element xmi.id = 'a4'
 name = 'r2ml:ObjectClassificationAtom'
 value = ''>
 <XML.Element.children>
 <XML.Element xmi.id = 'a24'
 name = 'r2ml:ObjectVariable' value = ''>
 <XML.Element.children>
 <XML.Attribute xmi.id = 'a32'
 name = 'r2ml:classID'
 value = 'PremiumCustomer'/>
 <XML.Element xmi.id = 'a33'
 name = 'r2ml:ObjectVariable' value = ''/>
 <XML.Element.children>
 <XML.Attribute xmi.id = 'a42'
 name = 'r2ml:classID'
 value = 'Customer'/>

 <XML.Attribute xmi.id = 'a42'
 name = 'r2ml:nane'
 value = 'customer'/>
 </XML.Element.children>
 </XML.Element>
 </XML.Element.children>
 </XML.Element>
 <!--..-->
 </XML.Element>
 <!--..-->
 </XML.Element.children>
 </XML.Element>
 </XML.Element.children>
 </XML.Root>

a) b)

Fig. 11. The integrity and derivation rules from Example 1 and Example 2 in Section
3.1.1. represented in the XML XMI format

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 66

Table 1. An excerpt of mappings between the R2ML XML schema and the R2ML
metamodel

R2ML schema XML metamodel R2ML metamodel Description
RuleBase Root

name =
'r2ml:RuleBase'

RuleBase Captures a
collection of
rules.

IntegrityRuleSet Element
name =
'r2ml:IntegrityRuleSet'

IntegrityRuleSet Captures a set
of integrity
rules.

AlethicIntegrityRule Element
name =
'r2ml:AlethicIntegrityRule'

AlethicIntegrityRule Represents an
alethic integrity
rule.

ObjectVariable Element
name =
'r2ml:ObjectVariable'

basCont-
Voc.ObjectVariable

Represents an
object variable.

Mappings between elements of the XML metamodel and elements of the

R2ML metamodel are defined as a sequence of rules in the ATL language.
These rules use additional helpers (similar to functions in programming lan-
guages) in defining mappings. Each rule in the ATL has one input element
(i.e., an instance of a meta-class from a MOF based metamodel) and one or
more output elements. In fact, the ATL transformation takes an input XML
model from a model repository and creates a new model compliant to the
R2ML metamodel. This actually means that we instantiate the R2ML meta-
model (M2 level), i.e., create R2ML models (M1 level). In our ATL transforma-
tion, we mainly use so-called ATL matched rules. A matched rule matches a
given type of source model element, and generates one or more kinds of tar-
get model elements. These rules are activated by the ATL rule engine for
each element of a given type of the source model. Fig. 12 gives an example
of a matched rule which is in fact an excerpt of the X2ML2R2ML.atl transfor-
mation for the Root class (XML!Root) of the XML metamodel. The ATL rule
RuleBase transforms the Root of the XML model (RuleBase_XML) into the
RuleBase element (i.e., R2ML!RuleBase in Fig. 12) of the R2ML metamodel.
The RuleBase element (the Root of an XML tree) captures a collection of
different RuleSets (i.e., Derivation, Integrity, Reaction or Production). Each
RuleSet includes rules of their own kind (e.g., IntegrityRuleSet includes only
IntegrityRule-s). From the ATL rule shown in Fig. 12, we invoke rules for
nested elements (e.g., DerivationRuleSet and IntegrityRuleSet) as well as for
the ruleBaseID attribute.

module XML2R2ML;
create OUT : R2ML from IN : XML;

rule RuleBase {
 from
 i : XML!Root
 to o : R2ML!RuleBase (
 ruleBaseID <- i.getAttrVal('xmlns:r2ml'),
 rules <- XML!Element.allInstances()->select(e |
 e.name = 'r2ml:DerivationRuleSet'
 or e.name = 'r2ml:IntegrityRuleSet')

)
Fig. 12. An excerpt of the transformation: A matched rule

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 67

However, this type of rules is not suitable for all input elements of the XML
metamodel that we transformed into the R2ML metamodel. This is typical for
a situation when several input elements represent the same entity, while in
the target model we have to have only one unique definition of that element
and other should only refer to that one. For example, the ObjectVariable XML
element in the input rules might be used several times (as this is a tree) and
the only way to know that all of them refer to the same variable is by the value
of its name attribute (e.g., customer). However, in the target R2ML meta-
model, an ObjectVariable should only be defined once (as it is a graph), while
all other parts of the model can only refer to that definition. Fig. 4a shows an
R2ML IntegrityRule, while Fig. 13 gives the same rule in a form of a UML
object diagram representing instances of the R2ML MOF-based metamodel.
In Fig. 4a, we can see that the r1 ObjectVariable element is a unique for the
whole rule, and it appears at 3 different (marked) places in the rule. This
means that an XML tree contains three different nodes referring to the same
object, i.e., the r1 ObjectVariable. On the other hand, the instance of the
R2ML MOF-based metamodel contains one and only one node referring to
that object (r1:ObjectVariable), as it is shown in Fig. 13. Three links to that
object represent three different appearances of that ObjectVariable in the
whole rule.

Fig. 13. A UML object diagram that represents the integrity rule shown in Fig. 4 in the
R2ML XML format

It is obvious that matched rules are unsuitable for this type of transforma-
tion. As a solution to this issue, we employed ATL’s “unique lazy” rules. They

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 68

are “lazy”, since we have to invoke them explicitly from some other rule. They
are ”unique”, since for a specific element of the source model they only create
an element of the target model once, while all other executions of the same
rule for that specific input element create references to the only target defini-
tion. This type of rules resembles called templates in XSLT with the main
distinction that XSLT does not possess any mechanism for unique element
definitions, which is very hard to implement in XSLT [15]. The unique lazy ATL
rule that transforms ObjectVariables from the XML metamodel into the R2ML
metamodel is shown in Fig. 14. It transforms an Element of the XML meta-
model (XML!Element) whose attribute name has the value
“r2ml:ObjectVariable”. This element is transformed into the ObjectVariable
element of the R2ML metamodel (R2ML!ObjectVariable) following all condi-
tions given above.

unique lazy rule ObjectVariable {
 from i : XML!Element (i.name = 'r2ml:ObjectVariable')
 to ov : R2ML!ObjectVariable (
 type <- i.children->select(c | c.oclIsKindOf(XML!Attribute) and
 c.name = 'r2ml:classID')
 ->collect(e | thisModule.ClassRule(e))
 ->first(),
 name <- i.getAttrVal('r2ml:name')
)
}
Fig. 14. An excerpt of the transformation from the R2ML XML format to the R2ML
metamodel: A unique lazy rule

After applying the above ATL rules to the input XML models, R2ML models
(RuleBase_R2ML) are stored in the model repository. Such R2ML models can
be exported in the form of R2ML XMI documents (e.g., RuleBase_R2ML.xmi
in Fig. 10). For example, for rules shown in Fig. 11 (i.e., in the XMI format of
the XML metamodel), we get an R2ML XMI document in Fig. 15. Fig. 15
shows a RuleBase that contains IntegrityRulesSet with one AlethicIntegri-
tyRule. AlethicIntegrityRule then is constrained by a UniversallyQuantified-
Formula, which contains variable declarations. The current version of the
transformation of the R2ML XML format into the R2ML metamodel covers
derivation, integrity, reaction rules and production rules.

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 69

<R2ML.RuleBase xmi.id="a1">
 <R2ML.RuleBase.rules>
 <R2ML.IntegrityRuleSet xmi.id="a2">
 <R2ML.IntegrityRuleSet.rules>
 <R2ML.Rules.AlethicIntegrityRule xmi.id="a3">
 <R2ML.Rules.IntegrityRule.constraint>
 <R2ML.Formulas.UniversallyQuantifiedFormula
 xmi.id="a4">
 <R2ML.Formulas.QuantifiedFormula.variables>
 <R2ML.Terms.TerBasic.Variables.ObjectVariable
 xmi.idref="a5"/>
 </R2ML.Formulas.QuantifiedFormula.variables>
 <R2ML.Formulas.QuantifiedFormula.formula>
 <R2ML.Formulas.Implication xmi.id="a11">
 <R2ML.Formulas.Implication.consequent>
 <R2ML.Atoms.EqualityAtom
 xmi.id="a12" isNegated="false">
 <R2ML.Atoms. EqualityAtom.terms>
 <R2ML.ReferencePropertyFunctionTerm
 xmi.idref="a7"/>
 <R2ML. ReferencePropertyFunctionTerm
 xmi.idref="a9"/>
 </R2ML.Atoms.AtBasic.EqualityAtom.terms>
 </R2ML.Atoms.AtBasic.EqualityAtom>
 </R2ML.Formulas.Implication.consequent>
 <!--...-->
 </R2ML.Formulas.Implication>
 <!--...-->
 </R2ML.IntegrityRuleSet>
 </R2ML.RuleBase.rules>
</R2ML.RuleBase>

<R2ML.RuleBase xmi.id="a1">
 <R2ML.RuleBase.rules>
 <R2ML.DerivationRuleSet xmi.id = 'a2'>
 <R2ML.DerivationRuleSet.rules>
 <R2ML.Rules.DerivationRule xmi.id = 'a3'>
 <R2ML.Rules.DerivationRule.conclusions>
 <R2ML.Formulas.qf.LiteralConjunction xmi.id = 'a4'>
 <R2ML.Formulas.qf.LiteralConjunction.atoms>
 <R2ML.Atoms.AttributionAtom xmi.id = 'a5'
 isNegated = 'false'>
 <R2ML.Atoms.AttributionAtom.dataValue>
 <R2ML.Vocabulary.TypedLiteral xmi.idref = 'a6'/>
 </R2ML.Atoms.AttributionAtom.dataValue>
 <R2ML.Atoms.AttributionAtom.attribute>
 <R2ML.Vocabulary.Attribute xmi.idref = 'a7'/>
 </R2ML.Atoms.AttributionAtom.attribute>
 <R2ML.Atoms.AttributionAtom.subject>
 <R2ML.Terms.Variables.ObjectVariable
 xmi.idref = 'a8'/>
 </R2ML.Atoms.AttributionAtom.subject>
 </R2ML.Atoms.AttributionAtom>
 </R2ML.Formulas.qf.LiteralConjunction.atoms>
 </R2ML.Formulas.qf.LiteralConjunction>
 </R2ML.Rules.DerivationRule.conclusions>
 <!--...-->
 </R2ML.Rules.DerivationRule>
 </R2ML.DerivationRuleSet.rules>
 </R2ML.DerivationRuleSet>
 </R2ML.RuleBase.rules>
 </R2ML.RuleBase>

a) b)

Fig. 15. The R2ML XMI representation of the R2ML integrity and derivation rules
shown in Fig. 4 (R2ML XML) and Fig. 11 (XML XMI)

4.1.2. Transforming R2ML MOF-based Metamodel and R2ML XML
Schema

Along with the transformation of the R2ML XML schema to the R2ML meta-
model, we have also defined a transformation in the opposite direction, i.e.,
from the R2ML metamodel to the R2ML XML schema (R2ML2XML). This
transformation process consists also of two primary steps as follows.

Step 1. The transformation of R2ML models to XML models. We transform
an R2ML model (RuleBase_R2ML from Fig. 10) into an XML model (Rule-
Base_XML) by using an ATL transformation named R2ML2XML.atl (step 5 in
Fig. 10). After applying this transformation to the input R2ML models, XML
models (RuleBase_XML) are stored in the model repository (Rule-
Base_XML.xmi in Fig. 10). The output XML model conforms to the XML me-
tamodel. The R2ML2XML.atl transformation transforms elements of the
source R2ML metamodel to elements of the target XML metamodel. This
transformation is also executed on the M1 level, as well as the XML2R2ML.atl
transformation. Mappings from Table 1 between the R2ML XML Schema,
XML metamodel, and R2ML metamodel apply here with no changes. So, for
the R2ML rules given the R2ML XMI format in Fig. 15, we get an XML model
which can be serialized back into the XML XMI format (step 6 in Fig. 10), as it
is shown in Fig. 11.

Step 2. The XML extraction from the MDE TS to the XML TS. In this step,
we transform the XML model (RuleBase_XML in Fig. 10) which conforms to

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 70

MOF-based XML metamodel and is generated in step 1 above, to the Rule-
Base.xml document (Step 7 in Fig. 10). The XML extractor is a part of the ATL
toolkit.

Creating a transformation from the R2ML metamodel to the R2ML XML
schema (R2ML2XML) appeared to be easier to implement than the
XML2R2ML transformation. For the R2ML2XML transformation, we needed
only one helper for the checking the negation of Atoms. All the ATL matched
transformation rules are defined straightforward similar as in the XML2R2ML
transformation, except for unique elements (like ObjectVariable). For every
R2ML metamodel element, we create a necessary number of XML meta-
model elements (Attribute, Element), which corresponds to the R2ML XML
Schema. Since XML metamodel Element's children association end is defined
as a composition [39], we can just not use one ObjectVariable and then refer-
ence to it from different Elements. To implement the support for transforming
these elements, we used ATL lazy rules, which when called create a new
element with the same content from the same input element. For example, for
a unique lazy rule, which created a unique ObjectVariable element (from Fig.
14), we define a corresponding lazy rule like the one shown in Fig. 16.

lazy rule ObjectVariable {
 from i : R2ML!ObjectVariable
 to o : XML!Element (
 name <- 'r2ml:ObjectVariable',
 children <- Sequence { attrName,

 if not i.classRef.oclIsUndefined() then
 thisModule.ClassRule(i.classRef)
 else OclUndefined
 endif
 }

),
 attrName : XML!Attribute (
 name <- 'r2ml:name',
 value <- i.name
)
}

Fig. 16. An excerpt of the ATL transformation from the R2ML metamodel to the R2ML
XML: A lazy rule

This rule creates an output XML Element with the name
"r2ml:ObjectVariable" for every R2ML ObjectVariable element on which it is
applied. In Fig. 16, we also give an example of invocation of another lazy rule
(i.e., ClassRule) for the R2ML Class elements that are also unique.

4.2. Transformations between SWRL RDF/XML Schema and RDM
Metamodel

Because the transformation between the SWRL OWL/XML Schema and the
RDM metamodel follows very similar principles as the transformation between
the R2ML XML Schema and the R2ML metamodel, described in Section

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 71

4.1.1, we will describe here in detail only differences which are important for
the bi-directional transformation between the SWRL RDF/XML Schema and
the RDM metamodel.

Regarding both transformations, to define them we need to define two sets
of transformations. The first set of transformations for bridging between the
SWRL OWL/XML Schema and the RDM metamodel, and the second set for
bridging between the SWRL RDF/XML Schema and the RDM metamodel. For
bridging between the SWRL OWL/XML Schema and the RDM metamodel, we
need to define two transformations, namely, a transformation from the SWRL
OWL/XML Schema to RDM metamodel (which includes the XML injection and
XML2RDM.atl transformation form Fig. 17) and another transformation from
the RDM metamodel to the SWRL OWL/XML Schema (which includes
RDM2XML.atl transformation and XML extraction in Fig. 17). For bridging
between the SWRL RDF/XML Schema and the RDM metamodel, we also
need to define two transformations, namely, a transformation from the SWRL
RDF/XML Schema and the RDM metamodel (which includes the XML injec-
tion and the RDF2RDM.atl transformation from Fig. 17) and a transformation
from the RDM metamodel to the SWRL RDF/XML Schema (which includes
the RDM2RDF.atl transformation and the XML extraction from Fig. 17) The
overall organization of the transformation process is shown in Fig. 17.

Fig. 17. The transformation scenario: SWRL XML and RDF format into the RDM me-
tamodel and vice versa

To bridge between the SWRL RDF concrete syntax and the SWRL abstract
syntax (i.e., RDM), we first use the XML injector, (see Fig. 17, 1b. for RDF TS:
XML injection), a part of ATL that automatically transforms SWRL RDF docu-

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 72

ments (for RDF syntax) into the models conforming to the MOF-based XML
metamodel that defines XML. Once we inject SWRL RDF rules into a MOF-
based representation (Rules.xml in Fig. 17), we can manipulate with them like
with any other type of MOF-based models. Thus, such XML models can be
represented in the XML XMI format (in Fig. 17, step 2: XMI export). Now we
transform between XML models (Rules_XML from Fig. 17) and RDM-
compliant models (Rules_RDM from Fig. 17). This actually requires writing
two ATL transformations (Fig. 17, step 3b: RDF2RDM.alt and step 5b:
RDM2RDF.atl), and hence this is the bridge between both the SWRL XML-
based and RDF-based concrete syntax and the SWRL abstract syntax. Both
transformations are executed on the M1 level, but they require the input and
output models to be compliant to the input and output metamodels (i.e., XML
and RDM), respectively. This way we check validity of all input SWRL XML-
based and RDF-based rules w.r.t. the RDM metamodel. Since we have im-
plemented transformations in both directions, we can transform RDM rules
into the XML models, that can later be exported into SWRL RDF concrete
syntax (Fig. 17, step 6: XML export) to obtain the rule in the RDF/XML syntax-
form. Note also that once we transform SWRL rules into the RDM representa-
tion, we can also export SWRL rules into the RDM XMI format (Fig. 17, step
7b: XMI export in RDF TS), and thus we can share SWRL rules with any
MOF-compliant repository. This is another important contribution to the RDM
metamodel itself [14] that improves its practical value to be used by other
MOF-based tools.

As we have mentioned in the beginning of this section, the transformation
between the SWRL OWL/XML Schema and the RDM metamodel follow the
same principles as transformation between the R2ML XML Schema and the
R2ML metamodel. We should note differences for this transformation in rela-
tion to the transformation between the SWRL RDF/XML Schema and the
RDM metamodel. The first step (1a. XML injection from Fig. 17) and the last
(7a. XML extraction from Fig. 17) are different, because we inject and extract
SWRL OWL/XML files to the XML TS and not to RDF TS. For the transforma-
tion between the XML metamodel and the RDM metamodel, we defined two
transformations (3a. XML2RDM.atl and 5a. RDM2XML.atl from Fig. 17) that
transforms XML instances of SWRL OWL/XML rules to and from RDM meta-
model, respectively.

4.3. Transformations between OCL concrete syntax and OCL
Metamodel

This transformation includes bridging between the OCL (EBNF-based) con-
crete syntax and the OCL abstract syntax (i.e., OCL metamodel). Because the
OCL textual concrete syntax is located in the EBNF TS, we need to create an
instance of the OCL metamodel (abstract syntax) in the MDE TS. To do this,
we first use the EBNF injector, (see Fig. 18, step 1: EBNF injection), a part of
the ATL toolkit, and the OCL Lexer and Parser. We generated the OCL Pars-
er and Lexer by using the ATL TCS (Textual Concrete Syntax) tools.

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 73

Fig. 18. The transformation scenario between OCL concrete and abstract syntax (me-
tamodel)

The OCL Parser automatically transforms OCL invariants into the models
conforming to the MOF-based OCL metamodel. Once we created the OCL
TCS and generated OCL Parser and Lexer based on it, the EBNF injector
takes for input the OCL metamodel, OCL code that we want to parse (as the
.ocl textual file), generated OCL Lexer and Parser, and it returns a MOF-
based OCL model as output. Once we inject OCL invariants into a MOF-
based representation (OCL Rule in Fig. 18), we can manipulate with them like
with any other MOF-based model (and export it into OCL XMI, step 2 in Fig.
18). Fig. 19 shows an excerpt of the mappings between the OCL meta-model
(in the KM3 format6, Fig. 19a) and its textual concrete syntax defined in TCS
(Fig. 19b).
Fig. 19 shows the corresponding part of the OCL metamodel, because TCS
works in a way that, for each element of a metamodel, it defines a description
in the textual concrete syntax, by using the constructs of the TCS language
(e.g., template). The figure shows the following elements:
• Class OclModule is represented with ownedElements (of the type OclMod-

uleElement) and is a construct which is first created (denoted with main).
• Class Invariant is represented with: the context definition (i.e., the name of

the appropriate UML or MOF class), the keyword "inv", the name of this
constraint if it is defined, the symbol ":", and the specification (body) of this
constraint. The elements <newline> and <tab> are used in serialization of

6 KM3 is a domain specific language (DSL) for defining metamodels as well as MOF or

Ecore. Its syntax is very similar to the one of Java [3].

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 74

the OCL model to the OCL code, and they represent a new line feed, and
text bias, respectively.

• Class OclContextDefinition is represented with the keyword "context" and
contextElement element.

class OclModule extends Package {
 reference ownedElements[*] ordered container : OclModuleElement;
 }

class Invariant extends OclModuleElement {
 attribute name : String;
 reference specification container : OclExpression;
 }

class OclContextDefinition extends Element {
 reference contextElement container : Class;
 }

template OclModule main
 : ownedElements
 ;

template Invariant context
 : (isDefined(contextDefinition) ? contextDefinition)
 <newline> <tab> "inv" (isDefined(name) ? name)
 <no_space> ":" [specification] { endNL = false}
 ;

template OclContextDefinition
 : "context" contextElement
 ;

a) OCL meta-model b) OCL textual concrete syntax

Fig. 19. An excerpt of transforming the OCL meta-model elements into the OCL tex-
tual concrete syntax (TCS)

TCS elements are associated to their corresponding elements in the
metamodel by their names. For example, TCS template OclModule corre-
sponds to the KM3 class OclModule, while ownedElement corresponds to the
KM3 OclModuleElement class (and all its subclasses).

5. Experiences

The transformation is tested on a set of real world rules collected by the
REWERSE Working Group I1 at Brandenburg University of Technology at
Cottbus, from different sources such as Warmer and Kleppe’ book [60] and
the SWRL specification [29]. In this section, we report on some lessons
learned when developing and applying the transformations. These lessons
also helped us validate the R2ML, RDM and OCL MOF-based metamodels as
well as to propose some changes to the R2ML, RDM and OCL metamodels. It
is important to notice that while we here report on some of the experiences
with the use of R2ML, the same can be applied to SWRL, as that was the
language for which there was not any solution available to bridging its abstract
and concrete syntax. We have already indicated some our experience with
the OCL metamodel, and what extensions to that model we had to do in Sec-
tion 3.2.

Making Unique Mappings for Bridging Abstract and Concrete Syntax. In the
case we have defined abstract and concrete syntax in different technical
spaces, we need to define conceptual mappings between corresponding ele-
ments of that syntax (such as in the case of R2ML as shown in Section 3.1).
When such mappings are defined, we need to define rules for checking con-
sistency between abstract and concrete syntax (these rules represent well-
formedness rules shown, e.g., for R2ML in Section 3.1.1). Based on the de-
fined mappings, we can later define two unidirectional transformations (for
both directions) or one bidirectional transformation to bridge concrete models
into one or another technical space (such as for R2ML in Section 4.1.1.), con-

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 75

forming to the rule language’ metamodel, or concrete syntax definition, re-
spectively

Transformations based on Mappings for Bridging Abstract and Concrete
Syntax. Once a technical space for the representation of a rule language’s
abstract syntax is chosen (e.g., MOF or EBNF), and when such an abstract
syntax is defined, we then need to choose a suitable solution to developing
the transformation. This solution should be based on criteria such as potential
to define needed transformations, flexibility to change those transformations,
and compatibility to work in needed technical spaces. Once the abstract or
concrete syntax of the rule language is changed, we need to change map-
pings between their elements and implemented transformations, too.

XML/RDF Schema and Metamodel Mappings. XML Schema elements and
metamodel elements are mapped in the following way: every metamodel
class is mapped to an XML element and a complexType in the XML schema
(or to RDF class if we map RDF-based syntax). The names of the XML ele-
ment and complex type are the same as the class’s name. If the class is ab-
stract, the corresponding element is also abstract (this holds only for XML, not
for RDF which does not have a mechanism for defining abstract classes). The
corresponding XML element contains XML attributes for each data type attrib-
utes from the model class. A MOF association is mapped to an XML attribute
(or to an RDF Property in the case of RDF-based syntax). Such an XML at-
tribute is a part of the content model of the XML complexType mapped from
the class referencing the association that is being mapped. Composite and n-
ary MOF associations are always mapped using XML elements. A composite
association is mapped to an XML element that is a part of the content model
of the XML complexType generated from the class referencing this associa-
tion. In the case of RDF, a MOF composite association is mapped to an RDF
Property whose domain is a translated class referencing the association and
whose range is the translated class referenced by the association.

Transformations of Rule Language Variables. As model transformation lan-
guages transform every element of the input model into the corresponding
element of the output model, this can be problematic if we want to have only
one output element for multiple input elements (i.e., one-to-many transforma-
tion) such as the case for rule language variables as described in section 4.1.
In order to define these types of transformation rules, we need to search
through the input XML model graph to find all occurrences of a variable (by
using helper functions described in section 5.2.1.2) and to create a unique
element with the same name in the output model. In the opposite direction the
situation is a bit simpler. In the case we need to create multiple elements in
the output model from one unique element of the input model, we propose
using transformation rules/functions, which when called create a new element
with the same content from the same input element (see Fig. 16).

Abstract classes. Originally, some classes of the R2ML metamodel were
defined as abstract classes (e.g., Disjunction, Conjunction, and Implication)
[58]. When we attempted to transform rules form the R2ML XML format into
the R2ML metamodel, we faced the problem that the ATL engine refused
executing the ATL transformations. The problem was that some classes

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 76

should actually have not been abstract, as the MDR model repository pre-
vented their instantiation by strictly following the R2ML metamodel definition.
This was an obvious indicator to change such classes not to be abstract. We
should note that we did not face this problem with the RDM and OCL meta-
models.

Conflicting compositions. Since the meaning of MOF compositions is fully
related to instances of classes connected by compositions, it is very hard to
validate the use of compositions in MOF-based metamodels without instanti-
ating metamodels. This means that for a class A that composes a class B, an
instance of the class B can only be composed by one and only one instance
of the class A. It is also correct to say that a class C also composes the class
B. However, the same instance of the class B cannot be composed by two
other instances, regardless of the fact that one of them is an instance of the
class A and another one of the class C [10]. Since ATL uses the MDR model
repository for storing input and output models of transformations, MDR does
not allow us to execute ATL transformations that break the MOF semantics
including the part related to compositions. This actually helped us identify
some classes in the R2ML and RDM metamodels breaking this rule. To over-
come this problem, we have changed (“relaxed”) the composition with a regu-
lar association relation. This makes sense, since a variable should be de-
clared once, while all other elements should refer to that variable (not com-
pose it).

Transformations summary. During the implementation of the transforma-
tions, we created a certain number of different ATL rules and helpers for
transformations. Table 2, shows the number of different ATL rules for the
transformations that bridge between the R2ML XML Schema and R2ML me-
tamodel.

Table 2. Number of different ATL rules in XML2R2ML and R2ML2XML transformations

Transformation/rules Matched rules Lazy rules Unique lazy
rules

Helpers

R2ML XML schema
to R2ML metamodel

43 0 9 28

R2ML metamodel to
R2ML XML schema

43 12 0 1

The number of matched rules is the same for both transformations. This is

obvious because we transform R2ML elements straightforwardly to their
R2ML XML Schema representation and vice versa. As described in section
4.1.1, for every element that must be defined as unique in the MDE TS (i.e.,
the R2ML metamodel), we used unique lazy rules for its creation. In the oppo-
site direction, we have only used lazy rules, since we wanted to create more
than one output elements with same contents from one input element. The
number of helpers is much higher in the XML2R2ML transformation, and this
is due to the need to walk through the input XML model and find occurrences
of the same ObjectVariable, as described in sections 5.2.1.2 and 5.2.1.4.

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 77

For transformations between the SWRL OWL/XML Schema and RDM
metamodel, a summary of the used types of transformation rules is shown in
Table 3.

Table 3. Number of different ATL rules in the XML2RDM and RDM2XML transforma-
tions

Transformation/rules Matched rules Lazy rules Unique lazy
rules Helpers

SWRL OWL/XML Schema
to RDM meta-model 35 0 3 23

RDM meta-model to
SWRL OWL/XML Schema 35 3 0 1

As with the transformation of the R2ML metamodel into the R2ML XML

Schema, the number of the matched rules is the same for both transforma-
tions. As already described for R2ML, for every element which must be de-
fined as unique in the MDE TS (i.e., RDM metamodel), we used unique lazy
rules for their creation. In the opposite direction, we used only lazy rules, be-
cause we had to create more than one output element with the same contents
from the same input element (see Section 5.2.1.4). The number of helper
operations is larger in the XML2RDM transformation, because we need to
search through the input XML model to find instances of the same Individual-
Variable elements.

Regarding transformations between the SWRL RDF/XML Schema and
RDM metamodel, a summary of the used types of transformation rules is
shown in Table 4.

Table 4. Number of different ATL rules in the RDF2RDM and RDM2RDF transforma-
tions

Transformation/rules Matched rules Lazy rules Unique lazy
rules Helpers

SWRL RDF/XML Schema
to RDM meta-model 35 0 3 23

RDM meta-model to
SWRL RDF/XML Schema 35 3 0 1

As with the transformation between SWRL OWL/XML Schema and RDM

metamodel, the number of transformation rules and helpers is the same, be-
cause the SWRL OWL/XML Schema and RDF Schema have the same num-
ber of elements.

For the OCL metamodel and OCL concrete syntax bidirectional transforma-
tion, we defined a number of transformation rules (called templates in TCS),
and a summary is shown in Table 5.
In this case from Table 5, we can see that we have 51 templates, that is, one
simple TCS template for every non-abstract metamodel class whose corre-
sponding concrete syntax element does not have operator associated with it.
We have 6 primitiveTemplates for every primitive type (such as integer, boo-
lean), one enumerationTemplate which corresponds to the OCL metamodels

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 78

CollectionKind enumeration, and we also have six operatorTemplates used to
describe those OCL abstract syntax element that have operators associated
with them (as described in Section 5.2.2.3).

Table 5. Number of different ATL/TCS rules in the OCL metamodel to and from OCL
concrete syntax

Transformation/rules primitiveTem-
plate template operatorTem-

plate
enumerationTem-

plate
OCL metamodel
to/from OCL concrete
syntax

6 51 6 1

6. Related work

XML Interchange Metadata (XMI) is one of the most related works to our ap-
proach. It is the OMG’s specification providing a set of rules for mapping be-
tween MOF-based models, metamodels, and metametamodels and XML.
Although XMI allows for sharing MOF-based artifacts between various appli-
cations, it is rather a verbose solution that produces many XML elements and
attributes and without ways for developers to define and use their own XML-
based concrete syntax suitable for specific domains such as Web rule lan-
guages. In this paper, we have shown how model transformation languages
can be used to bridge this gap between concrete and abstract syntax of
R2ML, SWRL and OCL, and thus a way for approaching various Web rule
definitions. A special advantage of this approach is that once we have map-
pings between an arbitrary R2ML, SWRL and OCL concrete syntax and their
corresponding abstract syntax, we also have mappings between that arbitrary
R2ML, SWRL and OCL concrete syntax and the R2ML, SWRL and OCL XMI
concrete syntax, respectively.

The proposed solution will even be more suitable if we only need to provide
one bi-directional transformation between any pair of concrete and abstract
syntax. This problem has already been addressed by several researchers,
where they have proposed different solutions for bridging MOF-based abstract
syntax (e.g., metamodels) and textual [30] [41] and graphical [19] concrete
syntax of languages. Given that all current solution are looking at this problem
at a more general level, i.e., mappings between MOF-based metamodels and
EBNF grammars, we think that it would be useful to have their specialization
dealing only with mappings between XML (as a special type of EBNF gram-
mars) and MOF. This is actually very similar to transformations between XML
schemas and Semantic Web ontologies (i.e., so-called lifting and lowering)
[2]. One another interesting initiative in this area is related to model weaving
[17]. The use of matching transformations and model weaving enabled to
semi-automate the production of model transformations. Matching transforma-
tions are a special kind of transformations that implement heuristics and algo-
rithms (such as element similarity and best links [17]) to create weaving mod-
els, while weaving models are models that capture different kinds of relation-

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 79

ships between models in a weaving metamodel7. The weaving model is trans-
lated into a model transformation language (such as ATL). This approach
could enable, to some extent (we can say that variables cannot be supported
in this way), bridging XML/RDF based concrete syntax with their abstract
syntax (i.e., metamodels) by defining weaving models between the XML
metamodel and the rule language’s corresponding metamodel elements.

To the best of our knowledge, there is no solution to transforming rule lan-
guages based on model transformation languages. Most of previous solutions
to transforming rule languages such as RuleML and SWRL are implemented
by using XSLT or programming languages (Java) [25] [4] [20]. By the nature,
our solution is the most similar to those based on the use of XSLT, as a gen-
eral purpose transformation language for the XML TS. Examples of transfor-
mations for the RuleML language, which are done by using the XSLT ap-
proach, are the following: XSLT translator [56] between the Horn-logic sub-
sets of RuleML and Relational-Functional Markup Language (RFML) [51],
XSLT translator from RuleML to Jess [55], translators between Positional
RuleML to Object-Oriented RuleML [49], and translator from RFML to
RuleML. Note also that there are some translators for R2ML developed by
using XSLT [50] such as translators from R2ML to F-Logic, between the F-
Logic XML format and R2ML, from R2ML to Jess, R2ML to RuleML, R2ML to
the rules of Jena2 – a most commonly used Semantic Web framework [37],
and from R2ML to JBoss rules.

Although the use of XML is very suitable, the previous analysis of the use
of XSLT for sharing knowledge indicates that XSLT is hard to maintain where
modifications of input and output formats can completely invalidate previous
versions of XSLTs [31]. Even some recent experiences in transforming rule
languages (SWRLp) report on constraints of XSLT (e.g., to transform unique
symbols) that can only be overcome by XSLT extensions implemented in
other languages such as Java and Jess [36]. An important drawback of the
XSLT approach is that XSLT does not have any language to check validity of
the XML documents regarding XML Schema to which it conforms to during
the execution of the transformation and it does not have a constraint language
such as OCL in MDE TS. In our case, we used the ATL language whose main
benefits are a good support different technical spaces through XML and
EBNF injection and extraction and advanced features for creating and using a
richer set of transformation rules (matched, called, lazy, and unique).

The OMG’s Ontology Definition Metamodel (ODM) specification is closely
related to our work [45] [21], as it specifies MOF-based metamodels for Se-
mantic Web ontology languages Resource Description Framework Schema
and OWL, i.e., it defines the abstract syntax of RDFS and ODM by using
MOF. The ODM speciation also defines QVT-based mappings between the
ODM and RDFS metamodels with metamodels of languages such as UML,
Common Logics, Topic Maps, and Entity-Relationship model. However, all
these transformations are defined on the level of metamodels, thus everything

7 The weaving metamodel is a metamodel capable of representing correspondences

and links between model elements [0].

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 80

happens in the MDE TS [22]. This means that, for example, there is a gap
between the RDF/XML syntax [5] usually supported by OWL tools (as a con-
crete syntax of the OWL language) and the OWL metamodel (i.e., an abstract
syntax of OWL). Our approach shows how this can be overcome, so that one
can achieve the full compatibility between abstract and concrete syntax of a
Web language for knowledge representation. We hope that our experience
will be used in developing the future Web rule interchange standard.

7. Conclusion

In this paper, we have demonstrated potentials of model transformations for
transforming Web rule languages. First, the use of model transformation lan-
guages forces us to use valid source and target models. This means that the
transformation cannot be executed properly if either of rule models is not fully
conformant to its metamodel. In our case, the source XML rule models have
to be conformant to the XML metamodel, while R2ML, RDM and OCL models
have to be conformant to the R2ML, RDM and OCL metamodels, respec-
tively. Second, every time we execute the model transformation, the elements
of the target model are instantiated in the model repository. This means that
the model transformation provided us with the mechanism for instantiation of
the rule language metamodels, i.e. their abstract syntax. This helped us de-
tect some issues in the rule language metamodels such as conflicting compo-
sitions and inappropriate abstract classes in the R2ML metamodel. Third,
instances of rule metamodels are stored into MOF-based repositories such as
MDR. Since model repositories have generic tools for exporting/importing
models and metamodels in the XMI format, we employ them to export in-
stances of the R2ML, RDM and OCL metamodels in the XMI format, and thus
share R2ML, RDM and OCL models with other MOF-compliant applications.
Finally, the use of ATL is more appropriate than XSLT when transforming
rules between the XML and MDE technical spaces, since ATL supports ad-
vanced features (e.g., lazy and unique lazy rules) for transforming between
languages based on metamodels (i.e., graphs) and XML-based concrete syn-
tax (i.e., trees).

Looking from the perspective of general applicability of the proposed ap-
proach to other Web rule languages, let us refer to F-Logic and Web Service
Modeling Language (WSML). For example, F-Logic's mainly used concrete
syntax is textual, while the EU-funded NeON project defined a metamodel for
F-Logic [26]. This basically means that our ATL/TCS approach to bridging
between an EBNF-defined concrete and MOF-based abstract syntax of a
Web rule language can directly be applied to F-Logic. Of course, the case of
F-Logic is even more interesting, as F-Logic has an XML-based concrete
syntax, which means that our approach to mapping between XML-based con-
crete syntax and MOF-based abstract syntax of rule languages can directly be
applied to F-Logic as well. Furthermore, once F-Logic is placed in the MDE
TS (via its MOF-based metamodel), we can then provide transformations

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 81

between F-Logic and other rule languages (e.g., R2ML), without a need to
pay attention to different concrete syntax of F-Logic. Similarly, WSML has
EBNF- and XML-based textual concrete syntax, which indicates that for most
of current and forthcoming Web rule languages our solution can be used. This
is even more significant, if we are aiming at further integration of Web rule
languages into the software development process, where MDE can play a
vital role.

In the future work, we will use real-world rules we have transformed into the
R2ML metamodel for implementing transformations between the R2ML me-
tamodel and other rule languages. Currently, we are implementing a bi-
directional model transformation between the R2ML metamodel and the MOF-
based OCL metamodel and between the R2ML metamodel and the SWRL
language (using its RDM metamodel). In this way, we will be able to validate
the potentials of the R2ML metamodel to integrate various rule languages as
well as to (re)use rules from different origins in MOF-based applications. Of
course, in this research, we will have to address even more challenges, since
we need to bridge between three technical spaces, namely, XML (SWRL con-
crete syntax), EBNF (OCL concrete syntax), and MOF (metamodels of R2ML,
OCL, and RDM) [38]. In this way, we will be able to validate the potentials of
the R2ML metamodel to integrate various rule languages as well as to (re)use
rules from different origins in MOF-based applications.

8. Acknowledgements

The research of Athabasca University has in part been support by Canada’s
NSERC-funded LORNET Research network (http://www.lornet.org/). The
research of the Brandenburg University of Technology at Cottbus has partially
been funded by the European Commission and by the Swiss State Secretariat
for Education and Research within the 6th Framework Programme project
REWERSE number 506779 (cf. http://rewerse.net).

9. References

1. Akehurst, D., H., Kent, S., "A relational approach to defining transformations in a
metamodel", In Proceedings of the 5th International Conference on The Unified
Modeling Language, Dresden, Germany, pp. 243-258, 2002.

2. An, Y., Borgida, A., Mylopoulos, J., “Constructing complex semantic mappings
between XML data and ontologies”, In Proceedings of the 4th International Se-
mantic Web Conference, LNCS 3729, Galway, Ireland, pp. 6-20, 2005.

3. ATLAS Transformation Language (ATL), http://www.sciences.univ-
nantes.fr/lina/atl.

4. Ball, M., Boley, B., Hirtle, D., Mei, J., Spencer, B, "Implementing RuleML Using
Schemas, Translators, and Bidirectional Interpreters", In Proc. of the W3C Work-
shop on Rule Languages for Interoperability, Washington, D.C., 2005.

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 82

5. Beckett, D. (Ed.), RDF/XML Syntax Specification (Revised), W3C Recommenda-
tion, http://www.w3.org/TR/rdf-syntax-grammar/, 2004.

6. Bézivin, J., Kurtev, I., "Model-based Technology Integration with the Technical
Space Concept", In Proceedings of the Metainformatics Symposium, 2006.

7. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F. Kurtev, I., and Lindow, A., “Model
Transformations? Transformation Models!”, In Proceedings of the 9th International
Conference on Model Driven Engineering Languages and Systems, LNCS 4199,
Genoa, Italy, 2006.

8. Bézivin, J., "From Object Composition to Model Transformation with the MDA", In
Proceedings of the 39th International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems, Santa Barbara, USA, pp. 350-355,
2001.

9. Bézivin, J., “On the unification power of models”, Software and System Modeling,
vol. 4, no. 2, pp. 171–188, 2005.

10. Bock, C., “UML 2 Composition Model", Journal of Object Technology, Vol. 3, No.
10, pp. 47-73, 2004.

11. Boley, H., "The Rule Markup Language: RDF-XML Data Model, XML Schema
Hierarchy, and XSL Transformations", Invited Talk, INAP2001, Tokyo, Springer-
Verlag, LNCS 2543, pp. 5-22, 2001.

12. Boley, H., Wagner, G., Tabet, S., Antoniou, G., "The Abstract Syntax of RuleML:
Towards a General Web Rule Language Framework", Rule Markup Initiative (Ru-
leML), Proc. of the 2004. IEEE/WIC/ACM Int. Conf. on Web Intelligence (WI’04).
Beijing, pp. 628-631, 2004.

13. Brickley, D., Guha, R., V., “RDF Vocabulary Description Language 1.0: RDF
Schema”, W3C Working Draft. [Online]. Available:
http://www.w3.org/TR/2003/WD-rdf-schema-20031010/.

14. Brockmans, S., Haase, P., “A Metamodel and UML Profile for Rule-extended OWL
DL Ontologies - A Complete Reference”, Universität Karlsruhe (TH) - Technical
Report, 2006.

15. Czarnecki, K., Helsen, S., “Feature-based survey of model transformation ap-
proaches”, in IBM Syst. J., Vol. 45, No. 3. (July 2006), pp. 621-645.

16. Duddy, K., Gerber, A., Lawley, M., Raymond, K., Steel, J., “Model transformation:
A declarative, reusable patterns approach”, In Proceedings of the. 7th IEEE Inter-
national Enterprise Distributed Object Computing Conference, pp. 174-195, 2003.

17. Del Fabro, M., D., Valduirez, P., “Semi-automatic Model Integration using Math-
cing Transformations and Weaving Models”, In Proceedings of the 2007 ACM
Symposium on Applied Computing (Seoul, Korea, March 11 - 15, 2007). SAC '07.
ACM, New York, NY, 963-970..

18. Favre, J., M., "Towards a Basic Theory to Model Model Driven Engineering", In
Proc. of the UML2004 Int. Workshop on Software Model Engineering (WISME
2004), Lisbon, Portugal, 2004.

19. Fondement, F., Baar, B., “Making Metamodels Aware of Concrete Syntax”, In
Proceedings of the 1st European Conference on Model Driven Architecture
(ECMDA): Fundamentals and Applications, LNCS 3748, Nuernberg, Germany,
pp. 190-204, 2005.

20. Gandhe, M., Finin, T., Grosof, B., “SweetJess: Translating DamlRuleML to Jess”,
In Proceedings of the International Workshop on Rule Markup Languages for
Business Rules on the Semantic Web at 1st International Semantic Web Confer-
ence, the Sardinia, Italy, 2002.

21. Gašević, D., Djurić, D., Devedžić, V., "Model Driven Architecture and Ontology
Development", Springer, Heidelberg, 2006.

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 83

22. Gašević, D., Djurić, D., Devedžić, V. “Bridging MDA and OWL ontologies”, Journal
of Web Engineering, vol. 4, no. 2, pp. 119-134, 2005.

23. Ginsberg, A., “RIF Use Cases and Requirements”, W3C Working Draft,
http://www.w3.org/TR/rif-ucr/, 2006.

24. Gómez, J., Cachero, C., Pastor, O., “LES Objects: A Model-based Code Genera-
tion Environment for Object-Oriented Conceptual Modeling of Web Application In-
terfaces”, In Proceedings of the 16th European Conference on Object-Oriented
Programming, Málaga, Spain, 2002.

25. Grosof, B., N., Gandhe, M., D., Finin, T., W., “SweetJess: Translating DAMLRu-
leML to JESS”, In Proceedings of the 1st International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web, Sardinia, Italy, 2002.

26. Haase, P, Brockmans, S., Palma, R., Euzenat, Z., d'Aquin, M., "D1.1.2 Updated
Version of the Networked Ontology Model, NeOn Project Deliverable D1.1.2, Au-
gust 2007, http://www.neon-project.org/web-content/index.php?option= com_ we-
blinks&task=view&catid=17&id=56.

27. Hirtle, D., Boley, H., Grosof, B., Kifer, M., Sintek, M., Tabet, S., Wagner, G.,
“Schema Specification of RuleML 0.91”, http://www.ruleml.org/spec/, 2006.

28. Hori, M., Euzenat, J., Patel-Schneider, F., P., “OWL Web Ontology Language XML
Presentation Syntax”, W3C Note, 2003.

29. Horrocks I., Patel-Schneider P., F., Boley, H., Tabet, S., Grosof, B., Dean, M.,
"SWRL: A Semantic Web Rule Language Combining OWL and RuleML", W3C
Member Submission, http://www.w3.org/Submission/SWRL/, 2004.

30. Jouault, F., Bézivin, J., Kurtev, I., “TCS: a DSL for the Specification of Textual
Concrete Syntaxes in Model Engineering”, In Proceedings of the 5th International
Conference on Generative programming and Component Engineering, Portland,
USA (in press), 2006.

31. Jovanović, J., Gašević, D., “XML/XSLT-Based Knowledge Sharing”, Expert Sys-
tems with Applications, Vol. 29, No. 3, pp. 535-553, 2005.

32. Java Metadata Interface (JMI) Specification, Sun Microsystems, JSR-000040,
http://jcp.org/aboutJava/communityprocess/final/jsr040/index.html.

33. Kifer, M., Lausen, G., Wu, “J. Logical foundations of object oriented and frame-
based languages”, in Journal of the ACM 42, 741–843, 1995.

34. Kurtev, I., Bézivin, J., Aksit, M., "Technological Spaces: an Initial Appraisal", Coo-
pIS, DOA'2002, Industrial track, 2002.

35. Lassila, O., Swick, R., R., “Resource Description Framework (RDF) Model and
Syntax Specification”, W3C Recommendation. [Online]. Available:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

36. Matheus, C., J., "SWRLp: An XML-Based SWRL Presentation Syntax", In Pro-
ceedings of the 3rd International Workshop on Rules and Rule Markup Languages
for the Semantic Web, Hiroshima, Japan, pp. 194-199, 2004.

37. McBride, B., “Jena: A Semantic Web Toolkit”, IEEE Internet Computing, vol. 6, no.
6, pp. 55-59, 2002.

38. Milanović, M., Gašević, D., Guirca, A., Wagner, G., Devedžić, V., “On Interchang-
ing between OWL/SWRL and UML/OCL”, In Proceedings of 6th Workshop on
OCL for (Meta-) Models in Multiple Application Domains (OCLApps) at the 9th
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems (MoDELS), Genoa, Italy, pp. 81-95, 2006.

39. Milanović, M., “Modeling Rules on the Semantic Web“, Master thesis, University of
Belgrade, 2007.

40. Miller, J., Mukerji, J., (eds.) "MDA Guide Version 1.0.1", OMG, 2003.

Milan Milanović, Dragan Gašević, Adrian Giurca, Gerd Wagner, Sergey Lukichev and
Vladan Devedžić

ComSIS Vol. 6, No. 2, December 2009 84

41. Muller, P., A., Fleurey, F., Fondement, F., Hassenforder, M., Schneckenburger,
R., Gérard, S., Jézéquel, J., M., “Model-Driven Analysis and Synthesis of Con-
crete Syntax”, In Proceedings of the ACM/IEEE 9th International Conference on
Model Driven Engineering Languages and Systems, LNCS 4199, Genoa, Italy, pp.
98-110, 2006.

42. Meta Object Facility (MOF) Core, v2.0, OMG Document formal/06-01-01,
http://www.omg.org/cgi-bin/doc?formal/2006-01-01, 2005.

43. OMG Business Process Definition MetaModel (BPDM), Beta 2, OMG Adopted
Specification, OMG Document Number: dtc/07-12-04, http://www.omg.org/cgi-
bin/doc?dtc/2007-12-04, 2007.

44. OMG Object Constraint Language, OMG Specification, Version 2.0, formal/06-05-
01, http://www.omg.org/docs/formal/06-05-01.pdf, 2006.

45. OMG Ontology Definition Metamodel (ODM), Sixth Revised Submission, OMG
Document ad/2006-05-01, http://www.omg.org/docs/ad/06-05-01.pdf, 2006.

46. OMG Unified Modeling Language (UML) 2.0, Docs. formal/05-07-04 & formal/05-
07-05, 2005.

47. OMG MOF QVT Final Adopted Specification, OMG document 05-11-01, 2005.
48. OMG Meta Object Facility (MOF) 2.0 XMI Mapping Specification, v2.1, OMG Doc-

ument formal/2005-09-01, http://www.omg.org/cgi-bin/doc?formal/2005-09-01,
2005.

49. Object-Oriented to Positional RuleML Translators http://www.ruleml.org/ooruleml-
xslt/oo2prml.html, 2006.

50. REWERSE I1 Rule Markup Language (R2ML), http://oxygen.informatik.tu-
cottbus.de/rewerse-i1/?q=node/6, 2006.

51. Relational-Functional Markup Language (RFML), http://www.relfun.org/rfml/, 2006.
52. Sendall, S., Kozaczynski, W., “Model Transformation: The Heart and Soul of

Model-Driven Software Development”, IEEE Software 20, no. 5, 42-45, 2003.
53. Seidewitz, E., "What Models Mean", IEEE Software, pp. 26-32, 2003.
54. Sintek, M., Decker, S., “TRIPLE - A Query, Inference, and Transformation Lan-

guage for the Semantic Web”, in Proceedings of International Semantic Web Con-
ference (ISWC), Sardinia, June 2002.

55. Translator from RuleML to Jess, http://www.ruleml.org/jess/, 2006.
56. Translators between RuleML and RFML, http://www.relfun.org/ruleml/rfml-

ruleml.html, 2006.
57. Wagner, G., Giurca, A., Lukichev, S., “R2ML: A General Approach for Marking-up

Rules”, In Proceedings of Dagstuhl Seminar 05371, in F. Bry, F. Fages, M. Mar-
chiori,H. Ohlbach (Eds.) Principles and Practices of Semantic Web Reasoning,
http://drops.dagstuhl.de/opus/volltexte/2006/479/, 2005.

58. Wagner, G., Damasio, C., V., Antioniou, G., “Towards a general web rule lan-
guage”, International Journal of Web Engineering and Technology, Vol. 2, Nos.
2/3, pp.181–206, 2005.

59. Wagner, G., Giurca, A., Lukichev, S., Antoniou G., Damasio C., V., Fuchs N., E.,
“Language Improvements and Extensions”, REWERSE I1-D8 deliverable,
http://rewerse.net/deliverables.html, 2006.

60. Warmer, J., Kleppe, A., The Object Constraint Language: Getting Your Models
Ready for MDA, Second Edition, Addison Wesley, 2003.

Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Laguages

ComSIS Vol. 6, No. 2, December 2009 85

Milan Milanović is a PhD candidate at University of Belgrade. His main re-
search interests are rules, modeling and metamodeling, Service Oriented
Architectures and Enterprise systems. His Internet address is
http://milan.milanovic.org.

Dragan Gašević is a Canada Research Chair in semantic technologies and
an Assistant Professor at the School of Computing and Information Sys-tems,
Athabasca University, Canada. His current research interests are in the area
of semantic tech-nologies, software language engineering and ser-vice ori-
ented architectures. He can be reached at http://dgasevic.athabascau.ca

Adrian Giurca is a senior researcher at the Institute for Informatics of the
Brandenburg University of Technology, Germany.He received in 2004 a doc-
toral degree from the University of Bucharest. He has been or is involved in
research projects founded by the European Commission (FP6). He has been
member of the Network of Excellence REWERSE (http://rewerse.net 2004-
2008) of the 6th Framework Program of the European Commission. His main
research interests are: Knowledge Bases, Logic Programming and Uncer-
tainty, Rule Markup Languages and the Semantic Web (FLogic, R2ML, RIF,
RDF, OWL) and UML. He can be reached at http://www.informatik.tu-
cottbus.de/~agiurca/.

Sergey Lukichev is a Research Assistant in Institute of Informatics, Bran-
denburg University of Technology at Cottbus, Germany. His main research
interests are: A UML-based rule modeling, Rule markup languages for the
Semantic Web, Rule interchange and Rule verification. He holds a M.Sc. de-
gree at University of Amsterdam. He can be reached at
http://oxygen.informatik.tu-cottbus.de/~lukichev.

Gerd Wagner is a Professor of Internet Technolo-gy at the Brandenburg Uni-
versity of Technology at Cottbus, Germany. His research interests in-clude
agent-oriented modeling and agent-based simulation, foundational ontologies,
(business) rule technologies and the Semantic Web. He can be reached at
http://www.informatik.tu-cottbus.de/~gwagner/.

Vladan Devedžić is a professor of computer science at the University of Bel-
grade, Serbia. His main research interests include software engineer-ing,
intelligent systems, knowledge representation, ontologies, Semantic Web,
intelligent reasoning, and applications of artificial intelligence tech-niques to
education and medicine. He can be reached at http://devedzic.fon.rs.

Received: January 22, 2009; Accepted: August 26, 2009.

