
Computer Science and Information Systems 21(4):1913–1961 https://doi.org/10.2298/CSIS240229065B

Automatic Conceptual Database Design based on
Heterogeneous Source Artifacts⋆

Goran Banjac, Drazen Brdjanin, and Danijela Banjac

Faculty of Electrical Engineering, University of Banja Luka
Patre 5, 78000 Banja Luka, Bosnia and Herzegovina

{goran.banjac,drazen.brdjanin,danijela.banjac}@etf.unibl.org

Abstract. The article presents an approach to the automatic derivation of
conceptual database models from heterogeneous source artifacts. The approach is
based on the integration of conceptual database models that are derived from
source artifacts of one single type by already existing tools, whereby those models
possess limited certainty given their limited completeness and correctness. The
uncertainty of the automatically derived models from specific source artifacts is
expressed and managed through the effectiveness measure of the generation of
specific concepts of the input conceptual database models. The approach is
implemented by the DBomnia tool – the first online web-based tool enabling
automatic derivation of conceptual database models from heterogeneous source
artifacts (business process models and textual specifications). DBomnia employs
other pre-existing tools to derive conceptual models from sources of the same type
and then integrates those models. The case study-based evaluation proves that the
implemented approach enables effective automatic derivation of the conceptual
database model from a set of heterogeneous source artifacts. Moreover, the
automatic derivation of the conceptual database model from a set of heterogeneous
source artifacts is more effective than each independent automatic derivation of the
conceptual database model from sources of one single type only.

Keywords: AMADEOS, DBomnia, Schema integration, Schema matching,
Schema merging, TexToData, UML class diagram, Uncertain schema.

1. Introduction

The database design process undergoes several typical steps [20], whereby the first and the
most important step is conceptual design. The result of the conceptual database design is
the conceptual database model (CDM), which is platform-independent and describes the
target database on a high level of abstraction. The result of all subsequent steps, including
the database specification for the specific target database management system, can be
straightforwardly derived starting from the CDM. This is the main reason why researchers
have been significantly interested in the topic of automated CDM design.

Motivation. Automated CDM design has been a research topic since the 1980s [15], and
since then a plethora of papers have been published in the field. Although different types

⋆ This article constitutes an extended version of the conference paper entitled ”Towards Automatic Conceptual
Database Design based on Heterogeneous Source Artifacts” presented at the workshop Modern Approaches
in Data Engineering and Information System Design, 4th of September 2023 Barcelona, Spain.

1914 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

of artifacts (models, textual specifications, recorded speech, etc.) have been introduced as
a source in the automated CDM design, the existing tools enable CDM synthesis based
on sources of one single type only, whereby the generated CDMs are not 100% complete
nor 100% correct.

Objectives. Since there is still no tool enabling the fully automatic generation of the
complete target CDM from sources of one single type, we started to investigate the
possibilities of increasing the completeness and correctness of automatically generated
target CDMs by deriving them from heterogeneous source artifacts (compared to the
CDMs derived from sources of one single type). Accordingly, we define our research
objectives as follows:

1. define an approach and implement a tool enabling automatic CDM derivation from a
set of heterogeneous source artifacts,

2. evaluate the approach by assessing the CDM derived from a set of heterogeneous
source artifacts against the CDMs that are derived from the source artifacts of one
single type.

Contributions. The main contribution of our research is the approach for the integration
of incomplete and incorrect CDMs that are automatically derived from specific source
artifacts. In our approach, we employ existing, already developed tools for CDM
derivation from specific source artifacts, and then we integrate those CDMs. Uncertainty
of CDMs automatically derived from specific source artifacts is expressed and managed
through the effectiveness measure of generation of specific concepts (classes, attributes,
associations, generalizations) of the input CDMs.

The second main contribution is the implemented tool named DBomnia. DBomnia is
the first online web-based tool that enables automatic CDM derivation from a set of
heterogeneous source artifacts. Currently, DBomnia supports two types of source
artifacts: business process models (BPMs) and textual specifications. DBomnia is a full
CASE tool for forward engineering of relational databases.

This article constitutes an extended version of the workshop paper [4], which is
extended by: (i) formalization of the proposed approach, (ii) detailed presentation of the
proposed approach, (iii) more detailed presentation of the related work, and (iv) case
study-based evaluation of the proposed approach and implemented tool.

Article organization. This article is structured as follows. After this introduction, the
second section presents the related work. The necessary definitions are provided in the
third section. The proposed approach is presented in the next three sections. Firstly, an
overview of the approach is presented in the fourth section, then the schema matching
step is presented in the fifth section, while the sixth section presents the schema merging
step. The implemented tool is presented in the seventh section. The eighth section presents
the evaluation. The final section concludes the article.

2. Related Work

This section presents the related work. Firstly, we provide an overview of the existing
approaches and tools to (semi-)automatic CDM design, followed by an overview of the
existing approaches to schema matching and integration.

Automatic Conceptual Database Design... 1915

2.1. (Semi-)automatic CDM Design

The existing approaches and tools for (semi-)automatic CDM design derive the target
model from the source artifacts of the same type and can be classified as: Text-based,
Model-based, Form-based, and Speech-based.

Text-based approaches constitute the oldest and most dominant category. These
approaches and tools derive CDMs from textual specifications that are typically
unstructured and represented in some natural language (NL). They can be further
classified (as suggested in [56]) as: (1) Linguistics-based, (2) Pattern-based, (3)
Case-based, (4) Ontology-based, and (5) Multiple approaches.

Most text-based approaches and tools are linguistics-based. They use natural
language processing (NLP) techniques to convert NL text into the CDM. The
development of these approaches started with Chen’s eleven rules [15] for the translation
of English text into the corresponding CDM, which have been further enhanced and
extended in [42, 40, 28]. The most important linguistics-based tools are: ER-Converter
[40], CM-Builder [27], and LIDA [42]. The main representatives of other categories are:
pattern-based APSARA [44], case-based CABSYDD [17], ontology-based OMDDE
[54], and HBT [56] belonging to the multiple approaches.

The existing text-based tools typically support one single source NL (mainly English)
and do not provide multilingual support. Only TexToData [13] enables automatic CDM
derivation from textual specifications in different source NLs, even with very complex
morphology (e.g. Slavic languages). In our approach presented in this article, we employ
TexToData as one of the generators of uncertain CDMs in the multi-sourced automatic
CDM synthesis.

Model-based approaches and tools emerged as an alternative to those that are text-
based, in order to avoid their shortcomings mainly related to the modest effectiveness
for languages with complex morphology. The existing approaches and tools take source
models that can be represented by a number of different notations, which can be classified
(according to [10]) as: (1) Process-oriented (e.g. BPMN), (2) Function-oriented (e.g. Data

CDM
design

Speech
based

Model
based

Process
oriented

Function
oriented

Goal
oriented

Commu-
nication
orientedForm

based

Text
based

Multiple

Ontology
based

Case
based

Pattern
based

Linguistics
based

Fig. 1. Taxonomy of approaches to (semi-)automatic CDM design

1916 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

Flow Diagram), (3) Communication-oriented (e.g. Sequence Diagram), and (4) Goal-
oriented (e.g. TROPOS).

There is still no model-based approach nor tool enabling automatic derivation of the
complete target CDM from a source model (regardless of the notation). Only a few
papers present a set of formal rules for automatic CDM derivation (e.g. [55, 9]), while
the majority give only guidelines and informal rules that do not enable automatic CDM
derivation. Most of the proposed tools are actually transformation programs (e.g. [47,
31]) specified in some model-to-model transformation language (e.g. ATL [30]), while
only a small number of papers present real CASE tools for automatic model-driven
CDM synthesis (e.g. [39, 11]).

There is only one single online model-driven tool named AMADEOS [11], which
enables the automatic derivation of an initial CDM from a set of BPMs. The most recent
AMADEOS release [53] supports the whole BPM-driven forward database engineering
process by using the standard UML notation in all stages. In our approach presented in
this article, we employ AMADEOS as one of the generators of uncertain CDMs in the
multi-sourced automatic CDM synthesis.

Form-based approaches take collections of forms as the source, whereby the most
important tools are EDDS [16] and IIS*Case [33].

Speech-based approaches constitute the smallest category – in the existing literature,
there is only one paper [12] presenting the SpeeD tool that is able to derive CDM from
recorded English speech.

In comparison to the existing approaches that consider only sources of one single
type, and in comparison to the existing tools that enable (semi-)automatic CDM
derivation from sources of one single type, there is only our paper [4] that considers
automatic CDM derivation from heterogeneous source artifacts and corresponding tool
that enables automatic CDM derivation from two different types of source artifacts:
textual specifications and BPMs.

2.2. Schema Matching and Integration

In the essence of our research objective is the problem of uncertain schema integration,
i.e. integration of CDMs that are automatically generated by the tools that do not generate
100% correct nor 100% complete models.

Schema integration has been a research topic since the 1980s. It has been heavily
investigated and is part of the research to this day. The term schema integration,
introduced in [5], is defined as the activity of integrating database schemas. It is a
generic term that is used in two contexts. In the database design context, it means to
produce a global conceptual schema of the proposed database, and in the distributed
database management context it means to produce a global schema that represents a
virtual view of all databases in such an environment.

Schema integration implies the creation of a unified representation of the schemas
from different sources. It consists of two core parts: schema matching and schema
merging. Schema matching is the process of discovering mappings (correspondences)
between different schemas, while schema merging is the process of the unification of
different schemas based on the discovered mappings [36].

Automatic Conceptual Database Design... 1917

In the 2000s researchers started to investigate the topic of generic model
management. In [8], the authors introduce the term model management and propose to
generalize and integrate model management operations (such as matching and merging)
to support generic model management. The term model is used to refer to any structured
representation of the data (e.g. relational schema, XML, etc.). After that, numerous
papers emerged focusing on generic model management operations, such as generic
matching (e.g. [35]) and generic merging (e.g. [43]).

Although some papers deal with the uncertainty that is inherent in the schema
matching step [36], the state of the art is the integration of the source schemas that can
be described as reliable. Reliable source schemas are the product of reliable sources (e.g.
when integrating schemas of the databases already in use). In this article, we deal with
the integration of the models with reduced reliability, because tools for automated CDM
derivation do not generate 100% correct nor 100% complete models.

Techniques. Over the years, many schema matching techniques have been introduced.
Here we provide a basic taxonomy of matching techniques (according to [7]) with the
focus on techniques adopted in our approach.

Basic categorization of schema matching techniques includes instance-based and
schema-based techniques. Instance-based techniques use data instances to discover
mappings among schema elements, while schema-based techniques rely only on schema
information.

In our approach we deal with the conceptual (database) models, meaning there aren’t
any data instances that can be used during the schema matching process. Consequently,
we are not able to use the instance-based techniques, which makes the schema-based
techniques the cornerstone of our approach. Schema-based techniques can be
categorized into element-level (they consider individual schema elements) and
structure-level techniques (they consider groups of elements).

Another category of matching techniques is constraint-based. Constraint-based
techniques use schema constraints such as data types, relationship cardinalities,
participation constraints, etc.

Due to the unreliability of the input CDMs (in the sense of the CDM structure),
which constitutes the main challenge in our approach, the usage of structure-based
techniques is limited (but it is still possible to some extent). Therefore, we have to rely
on linguistic matching techniques. Linguistic matching techniques use names and/or
other textual descriptions of the schema elements to discover mappings between
elements of different schemas. Linguistic matching (according to [57]) commonly
includes string (e.g. element name) pre-processing (e.g. tokenization, elimination of
special characters, stemming, lemmatization, elimination of stop words, etc.),
identification of the semantic similarity (e.g. using NLP-based techniques) and/or
identification of the syntactic similarity. Linguistic matching can include techniques of
auxiliary information usage (e.g. thesaurus usage to find acronyms, synonyms,
homonyms, heteronyms, etc.).

Our approach is not limited to single-language input artifacts and automatically
generated CDMs, rather our approach limits the language in one execution to a single
language (e.g. in one execution all artifacts can be in the English language, but it is
possible that in another execution all artifacts are in the German language, etc.).
Currently, a combination of multiple languages in one execution is not considered.

1918 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

Due to the multilingual nature of the input CDMs (in different executions) and
considering a large number of supported languages, the semantic analysis constitutes a
great challenge and belongs to a separate research project that is out of the scope of this
article. Here we are focused on the syntactic similarity measures.

Syntactic similarity measures for string comparison can be categorized (according to
[24]) as character-level or token-level. Character-level measures compare strings on the
level of a single character, while token-level measures compare string tokens. Typical
representatives of character-level measures are edit-distance measures (Levenshtein [32],
Damerau–Levenshtein [19], Needleman and Wunsch [38], Smith and Waterman [52],
Smith–Waterman–Gotoh [25], Hamming [26], Jaro [29], Jaro–Winkler [58]) and longest
common string [23]. Typical representatives of token-level measures are set-based
measures (Jaccard [45], Dice [1]) and bag-of-tokens measures (Cosine [18], Euclidean
[37], Manhattan [37]).

Some papers consider a combination of character-level and token-level measures.
Such measures are called soft measures [24]. The basic principle of a soft measure is to
apply the token-level measure, but when comparing tokens a character-level measure is
used, i.e. two tokens are considered a match if their character-level measure is above
some defined threshold. The typical usage of a soft measure is to eliminate possible
typographical errors on a token level.

If different techniques are used to perform matching, then such combination of
techniques is called hybrid technique (if different techniques are combined together to
perform matching) or composite technique (if different techniques are performed
independently and only combine the results). Our approach can be classified as a hybrid.

Usage of machine learning techniques. A number of schema matching approaches
leverage of machine learning (ML) techniques. Some papers present approaches that
apply ML techniques to the problem of combining different matchers (i.e. matching
techniques). Examples of such approaches are LSD [21], YAM [22], and ALMa [46].

Another use case for ML techniques in the schema matching process is when such
techniques are used as part of a similarity measure. The Automatch system [6] uses
probabilistic methods and a knowledge base about schema attributes to calculate
matching scores between the attributes of two schemas. Afterwards, an optimization
process is carried out to find optimal schema matching (with respect to the sum of the
individual attribute matching scores). Schema matching at the element level and
structure level is proposed in [2], where ML techniques are used to generate matching
results at the element level. Features for ML are constructed using different string
similarity metrics and text processing techniques based on entity names. Element level
and structure level mappings are combined to produce the final result. In [14], features
are constructed using string similarity metrics and semantic information from entity
names. These features are used as input to an ML model that predicts entity matchings.
In [48], features (about attributes) for ML are constructed based on schema information
(data type, not null specification, etc.). These features are used to create corresponding
clusters, and attribute mappings are discovered from these clusters. SMAT [59] is based
on NLP techniques and uses attribute names and descriptions to obtain schema
mappings. Matching between two attributes is proportionate to the similarity of the
corresponding sentence pair, where each sentence is constructed from attribute name and
description.

Automatic Conceptual Database Design... 1919

Usage of ML techniques in the schema matching process is diverse. Corpus-based
matching approach [34] uses a corpus of schemas and mappings in particular domain
to augment information about input schemas. Authors argue that augmenting evidence
about input schemas provide better matching results. The ADnEV approach [51] presents
an additional step in the schema matching task. It uses deep learning to calibrate matching
result of other (algorithmic) matchers. PoWareMatch [50] combines algorithmic matching
and deep learning to improve human matching results.

Lately, researchers have tried to leverage the recent emergence of (large) language
models. Paper [61] presents a novel linguistic schema matching approach that uses fine-
tuned pre-trained language model for a more precise calculation of similarity between
each pair of attributes in input schemas. The problem of similarity calculation is regarded
as a binary text classification problem, where prediction of a correct match is based on
a sentence that describes corresponding attributes (concatenation of the attributes’ names
and descriptions). The SMUTF approach [60] combines rule-based feature engineering,
pre-trained language models, and generative large language models to predict the match
score (the probability that two columns are matched). The ReMatch approach [49] uses
retrieval-enhanced large language models in the process of selecting candidate matches.
The approach is designed to aid human matchers throughout their work.

Schema matching approaches that use ML techniques also focus on matching
complete and reliable schemas, with the dominant usage of attribute names and
descriptions, and attribute values (where possible). However, in our future work we will
focus on utilizing ML techniques to improve current results.

3. Definitions

In this section, we provide the necessary definitions.

3.1. CDM Representation

We use the UML class diagram [41] to represent the CDMs, thus the representation of the
CDMs generated by different generators, as well as the target integrated CDM, is unified.

Each CDM (UML class diagram) contains two packages, ICM PT and ICM CD. The
ICM PT package contains definitions of the primitive types (e.g. Integer, Text, Double,
etc.), while the ICM CD package contains the CDM itself.

Definition 1: Let P , E, R, and G be sets of primitive types, classes, associations,
and generalizations, respectively. The conceptual database model, CDM(P,E,R,G), is
a UML class diagram with the following properties:
1. Each entity type is represented by the corresponding class e ∈ E of the same name.
2. Let attrs(e) be a set of attributes (ownedAttribute:Property) of the class e∈E. Each

attribute a ∈ attrs(e) corresponds to an attribute of the respective entity type,
whereby its type, denoted type(a), is a primitive type (type(a)∈P).

3. A class may contain a single operation, named PK, which represents the primary key
of the corresponding entity type [53]. The primary key attributes should be listed as
the operation parameters, i.e. operation parameters should correspond to the primary
key attributes by the name and by the type.

1920 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

4. Each relationship type is represented by the corresponding binary association r∈R of
the same name, whose memberEnd:Property attribute is an ordered pair of association
ends (source(r) and target(r)). The type of each association end is an entity type
(type(source(r)) ∈ E ∧ type(target(r)) ∈ E). The association end multiplicities
correspond to the relationship cardinalities and participation constraints. The lower
value of the association end multiplicity (lower(source(r)) and lower(target(r)))
corresponds to the participation constraint of the entity type at the opposite end of the
association. The upper value of the association end multiplicity (upper(source(r))
and upper(target(r))) corresponds to the mapping cardinality of the entity type at
the opposite end of the association.

5. Each generalization/specialization relationship is represented by the corresponding
generalization g ∈ G. It relates specific entity type (specific(g) ∈ E) to a more
general entity type (general(g)∈E, specific(g) ̸=general(g)).

3.2. Quantitative CDM Assessment

The input in the schema integration process is a set of automatically generated CDMs,
which are not 100% correct nor 100% complete. In order to integrate such unreliable
CDMs, it is necessary to know their correctness and completeness. The only way to
precisely determine such measures for some concrete automatically generated CDM is to
manually evaluate it. Considering that we are dealing with automated schema
integration, manual evaluation is not an option, but rather approximate or estimated
values of those measures should be known in advance. Since all our generators are
already evaluated, we propose a posteriori approach – use the calculated measures from
the evaluation of the CDM generators as the estimated measures of the automatically
generated CDMs in the schema integration process.

During the evaluation of generators, we used recall, precision, and F-score as
measures for the evaluation of the automatically generated CDM.

Definition 2: If Nc represents the number of correctly generated concepts in the
generated CDM and Nm represents the number of missing concepts in the generated
CDM, then recall (R) constitutes a measure of completeness of the generated CDM, and
it is defined as:

R =
Nc

Nc +Nm
. (1)

Definition 3: If Nc represents the number of correctly generated concepts in the
generated CDM and Nw represents the number of incorrectly generated concepts in the
generated CDM, then precision (P) constitutes a measure of correctness of the
generated CDM, and it is defined as:

P =
Nc

Nc +Nw
. (2)

Definition 4: The effectiveness, named F-score or F-measure (F), is defined as the
harmonic mean of precision and recall, i.e.

F =
2PR

P +R
. (3)

Automatic Conceptual Database Design... 1921

3.3. Input and Output

Previously described measures are calculated separately for each concept of the CDM,
i.e. classes, attributes, associations, and generalizations. The F-score, as the effectiveness
measure, will be used in the integration approach. Therefore, input in the schema
integration process is a set of automatically generated CDMs, as well as estimated
measures for each input CDM.

Definition 5: Let FE be the estimated effectiveness for classes, and FA be the
estimated effectiveness for attributes in the classes, and FR be the estimated
effectiveness for associations, and FG be the estimated effectiveness for generalizations,
then the estimated effectiveness F of the CDM generation process is represented by the
<FE , FA, FR, FG> tuple, i.e. F =<FE , FA, FR, FG>.

Definition 6: The input I in the schema integration process, is a set of n ordered
pairs (CDMi, Fi), where CDMi is the i-th CDM, while Fi represents its estimated
F-measures, i.e.

I = {(CDMi, Fi) : CDMi = CDM(Pi, Ei, Ri, Gi)∧
Fi =<FEi , FAi , FRi , FGi > ∧
i = 1, . . . , n} .

(4)

Definition 7: The output of the schema integration process is the integrated CDM
CDMO = CDM(PO, EO, RO, GO).

3.4. Syntactic Similarity Assessment

The names of the concepts in input (automatically generated by our generators) CDMs
typically consist of one or a few words, usually without stop words and possibly with
special characters such as underscore (’ ’). Therefore, tokenization of names and a
set-based measure stand out as the candidates for use. Also, to eliminate possible
typographical errors, a set-based measure should be reinforced with the character-level
measure – thus making it a soft measure.

There are (too) many possible combinations of the token-level and character-level
measures and, possibly, some combinations would prove to be a little better than others
for this concrete purpose. However, by defining empirically determined threshold for the
character-level measure, we can achieve acceptable results despite the chosen measures
in the concrete implementation of the tool. Also, when a new type of source artifacts is
introduced and expected measures are determined for the CDM derived from those source
artifacts, again, by (if necessary) modified threshold, chosen (matching) measures should
also run smoothly in that case.

We tried some combinations of measures, and, at the moment, decided to go with the
combination of Jaccard similarity as the token-level measure, and Levenshtein distance
as the character-level measure. Therefore, further in the article, a syntactic similarity
between two strings A and B, denoted synt s(A,B), is calculated as follows.

First, we tokenize the strings on special characters and uppercase letters (e.g.
tokens(BookEdition) = {book, edition}), and we compare two sets of tokens
tokens(A) and tokens(B) to determine the intersection. To determine the intersection

1922 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

of two sets of tokens, we use Levenshtein distance – if the value of Levenshtein distance
between tokens ta∈ tokens(A) and tb∈ tokens(B) is less than defined threshold (LD),
then tokens ta and tb are added to intersection (as a single element) of token sets. Such
intersection of token sets is denoted tokens(A) ∩LD tokens(B).

Definition 8: Considering that Jaccard similarity [45] of two sets P and Q (in general)
is calculated as a ratio between the number of elements in the intersection of the sets
(|P ∩Q|) and the number of elements in the union of the sets (|P ∪Q|), i.e.

Jaccard(P,Q) =
|P ∩Q|
|P ∪Q|

=
|P ∩Q|

|P |+ |Q| − |P ∩Q|
, (5)

we calculate the syntactic similarity of two strings A and B as follows:

synt s(A,B) =
|tokens(A) ∩LD tokens(B)|

|tokens(A)|+ |tokens(B)| − |tokens(A) ∩LD tokens(B)|
. (6)

Note that when determining the number of elements in the union of token sets, we
only use Levenshtein distance when computing the intersection of token sets.

4. Approach Overview

Our task is to integrate multiple (unreliable) CDMs into a single unified CDM. The
schema integration process consists of two core parts: schema matching and schema
merging. Schema matching is the process of discovering mappings (correspondences)
between different schemas, while schema merging is the process of unification of
different schemas based on the discovered mappings [36]. Therefore, the schema
matching process precedes the schema merging process. Figure 2 shows an overview of
the schema integration process. The input in the schema integration process are
(unreliable) CDMs automatically generated by tools for automatic derivation of CDMs
from specific source artifacts (e.g. CDM derived from a source set of BPMs by
AMADEOS, CDM derived from a textual specification by TexToData).

Based on the type of CDM concepts, we divided the schema matching process into
four steps: (i) classes matching step, (ii) attributes matching step, (iii) associations
matching step, and (iv) generalizations matching step. The top elements of the CDM are
classes, so the first step in the schema matching process is the classes matching step.
Other matching steps (attributes matching step, associations matching step, and
generalizations matching step) are directly dependent on the result of the classes
matching step. Therefore, the classes matching step must precede other steps in the
schema matching process. However, the attributes matching step, associations matching
step, and generalizations matching step are not mutually dependent, therefore these steps
can be executed in an arbitrary order.

The schema merging process is, also, divided into four steps: (i) classes merging
step, (ii) attributes merging step, (iii) associations merging step, and (iv) generalizations
merging step. The classes merging step is dependent only on the classes matching step,
while other merging steps are dependent on the classes merging step and corresponding
matching step. Therefore, the classes merging step must precede other merging steps.
Other merging steps are not mutually dependent, therefore these steps can be executed in
an arbitrary order.

Automatic Conceptual Database Design... 1923

Fig. 2. Overview of the schema integration process

The schema matching and schema merging processes are described in detail in the
following two sections.

Note that the default input in the algorithms is I (equation (4)), i.e. a set of n ordered
pairs (CDMi, Fi), so we purposely omitted the explicit definition of such input (in the
require section) and explicitly stated only necessary inputs that are produced as
intermediate results of other algorithms.

5. Schema Matching

The schema matching process in the task of automated schema integration is very
important because the result of the schema merging process (i.e. the final result of the
schema integration task) directly depends on the result of the schema matching process.
Inadequate schema matching may lead to a lower value of the effectiveness of the
integrated CDM than the value of the effectiveness of each input CDM (CDMs that are
being integrated).

1924 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

As already stated, the cornerstone of our approach are schema-based matching
techniques, which consider only schema information. In our case, schema information
includes names, properties (e.g. the properties of classes are attributes and connections to
other classes such as associations and generalizations), and constraints (e.g. cardinalities
and participation constraints for associations). The usage of structure-based techniques
depends directly on the reliability of generated CDM concepts which is, in our approach,
directly expressed with the effectiveness measures.

Due to the unreliability of the input CDMs, the usage of structure-based techniques
is limited. Therefore, we need to use the names of the concepts and rely on linguistic
matching. In cases where we cannot more rely on the structure and constraints, we have
to mostly rely on the names. On the other hand, if the reliability of the structure is good,
then we can combine linguistic matching and structure-based matching and/or constraint-
based matching.

In our approach, we expect that all input CDMs in one execution are in the same
language, but in different executions, the input CDMs can be in different languages. This
brings us to the fact that our approach is not a single-language approach (focusing on only
one language). Due to the multilingual nature of the input CDMs (in different executions),
we are focused on the syntactic similarity measure for linguistic matching. The semantic
analysis constitutes a great challenge and it is not considered in this article.

The aforementioned combination of different matching techniques classifies our
approach in the hybrid matching category. Concerning matching cardinality, we produce
1:1:. . . :1 mapping between schema elements, which means that, for example, a class
from CDM1 can be matched with at most one class from CDM2 and at most one class
from CDM3 and, so on, at most one class from CDMn.

5.1. Classes Matching

In the classes matching step, it is necessary to discover class mappings based on the sets
of classes from input CDMs (E1, . . . , En). The result of the classes matching step is a
list1 of sets of matched classes from different CDMs, ME = [M

(1)
E , . . . ,M

(m)
E], where:

– m is the number of sets of matched classes (each element M (i)
E ∈ME is the set of

classes),
– each set M (i)

E must be a non-empty set,
– each class from each input CDM (∀e ∈ Ei, i = 1, . . . , n) belongs to exactly one set
M

(j)
E , and

– not a single set M (i)
E contains multiple classes from the same CDM.

The minimal number of elements in any set M
(i)
E is 1, which means that the

corresponding class e∈M
(i)
E is not matched with any other class from any other CDM.

The maximal number of elements in any set M (i)
E is equal to the number of input CDMs

(n).

1 We use the term list (according to [3]) to denote an ordered collection of elements (the elements of the list
will usually be sets, but in general may be other entities) separated by commas and surrounded by square
brackets (e.g. X = [X(1), X(2), X(3)] is the list of length 3).

Automatic Conceptual Database Design... 1925

The classes matching step is executed in two phases. In the first phase (Algorithm 1),
we compare every pair of classes (ea, eb) from different CDMs (ea ∈Ei, eb ∈Ej , i ̸= j),
which results in the set of triplets (ea, eb, simE(ea, eb)). The result of the comparison
of two classes ea and eb, is the similarity coefficient, denoted simE(ea, eb) ∈ [0, 1]. A
higher value of the similarity coefficient means that the corresponding classes are more
likely to be the same class, while the lower value means that the corresponding classes
are less likely to be the same class. If the similarity coefficient is greater than or equal to
the defined threshold (thSE

), then the triplet is accepted and added to the output set YE .
The value of the similarity coefficient for classes from different CDMs, ea ∈ Ei,

eb∈Ej , i ̸=j, is determined from classes’ names and attributes, i.e.

simE(ea, eb) = synt s(name(ea), name(eb)) · (1− attr w)

+ attr s(attrs(ea), attrs(eb)) · attr w ,
(7)

where attr w=min(FAi
, FAj

) ·WA represents the attributes’ similarity weight2 (which
depends on the effectiveness measure for attributes of the corresponding CDMs and
empirically determined coefficient WA∈ [0, 1]), and attr s(attrs(ea), attrs(eb))∈ [0, 1]
is the similarity measure for the sets of attributes of the corresponding classes. The
similarity measure for two sets of attributes, A=attrs(ea) and B=attrs(eb), similar to
the calculation of two sets of string tokens, is calculated using Jaccard similarity, i.e.

attr s(A,B) =
|A ∩simA

B|
|A|+ |B| − |A ∩simA

B|
. (8)

where the intersection of two sets of attributes is determined using the similarity measure
for comparison of two attributes. The calculation of the similarity of two attributes is
described in the next subsection. The combination of linguistic matching (names) and
structure-based matching (attributes) makes classes matching a hybrid technique.

Algorithm 1 The first phase of the classes matching step
Ensure: YE

1: YE ← ∅
2: for all Ei : i = 1, . . . , n− 1 do
3: for all ea ∈ Ei do
4: for all Ej : j = i+ 1, . . . , n do
5: for all eb ∈ Ej do
6: simab ← simE(ea, eb)
7: if simab ≥ thSE then
8: YE ← YE ∪ {(ea, eb, simab)}
9: end if

10: end for
11: end for
12: end for
13: end for

2 Values attr w and (1 − attr w) allow us to normalize the simE(ea, eb) value, as well as to favor more
reliable similarity measure (synt s(name(ea), name(eb)) or attr s(attrs(ea), attrs(eb))).

1926 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

Based on the results from the first phase (i.e. the YE set), in the second phase
(Algorithm 2), we try to produce sets of best matching classes from different CDMs. In
the beginning, the result set ME is empty. We also create a helper set TE containing
classes that have not yet been matched. In the beginning, this set contains all classes
from all input CDMs. Later, when we match some class, then we remove it from this set.
Thus, this set enables easy check (whenever necessary) whether some class is already
matched or not.

Until the input set does not become an empty set, steps are repeated as follows. First,
we find the triplet (ea, eb, simE(ea, eb)) in the input set with the highest value of
similarity, i.e. the triplet with the most compatible pair of classes. Such triplet is then
removed from the input set (in the next iteration of the while loop, the next triplet should
be considered). The next step is to check if class ea or class eb are already matched with

Algorithm 2 The second phase of the classes matching step
Require: YE

Ensure: ME = [M
(1)
E , . . . ,M

(m)
E]

1: ME ← ∅ ; TE ← ∪n
i=1Ei

2: while YE ̸= ∅ do
3: (ea, eb, simE(ea, eb))← maxsim(YE)
4: YE ← YE \ {(ea, eb, simE(ea, eb))}
5: if ea ∈ TE ∧ eb ∈ TE then
6: me← {ea, eb} ; ME ←ME ∪ {me} ; TE ← TE \me
7: else if ea ∈ TE then
8: me← met : met ∈ME ∧ eb ∈ met ; Et ← Ei : ea ∈ Ei

9: if me ∩ Et = ∅ then
10: me← me ∪ {ea} ; TE ← TE \ {ea}
11: end if
12: else if eb ∈ TE then
13: me← met : met ∈ME ∧ ea ∈ met ; Et ← Ei : eb ∈ Ei

14: if me ∩ Et = ∅ then
15: me← me ∪ {eb} ; TE ← TE \ {eb}
16: end if
17: else
18: mea ← met : met ∈ME ∧ ea ∈ met ; meb ← met : met ∈ME ∧ eb ∈ met
19: found← false
20: for all Ei : i = 1, . . . , n do
21: if Ei ∩mea ̸= ∅ ∧ Ei ∩meb ̸= ∅ then
22: found← true
23: end if
24: end for
25: if ¬found then
26: mea ← mea ∪meb ; ME ←ME \ {meb}
27: end if
28: end if
29: end while
30: for all e ∈ TE do
31: me← {e} ; ME ←ME ∪ {me}
32: end for

Automatic Conceptual Database Design... 1927

some other classes. If classes ea and eb are not already matched with some other classes
(ea ∈ TE ∧ eb ∈ TE), then classes ea and eb are the elements of the new set that needs to
be added to the output set. If only class ea is already matched with some other classes,
then it is necessary to add class eb to that set of classes that are matched with class ea (if
that does not break the rule that set must not contain multiple classes from same input
CDM). Analogously, if class eb is already matched with some other classes, then it is
necessary to add class ea to that set of classes that are matched with class eb (if that does
not break the rule that set must not contain multiple classes from same input CDM).
Otherwise, if both classes are already matched, but not together (they are in different
sets), then those sets can be joined (if that does not break the rule that set must not
contain multiple classes from the same input CDM). Finally, all unmatched classes from
all CDMs are added to separate (single element) new sets. In the following steps, the
order of the elements in the result is important so the final result (ME) can be considered
to be the list of sets.

Example. To illustrate the classes matching step, let us consider Fig. 3 which shows an
illustrative example of three input CDMs (n = 3): CDM1 = CDM(P1, E1, R1, G1),
CDM2 = CDM(P2, E2, R2, G2), and CDM3 = CDM(P3, E3, R3, G3), where:

P1 = {Text}, E1 = {A1, B1}, R1 = {Z1}, G1 = ∅ ,
P2 = {Text}, E2 = {A2, B2, C2}, R2 = {Z2, Y 2, X2}, G2 = ∅ ,
P3 = {Text}, E3 = {A3, B3, D3}, R3 = {Z3}, G3 = ∅ .
In the first phase of the classes matching step, we compare classes from different

CDMs, i.e. A1 and A2, A1 and B2, A1 and C2, A1 and A3, etc. Let us assume that the
result of the comparison, i.e. the result of the first phase is the following set of triplets (for
simplicity, the set is shown in a supposed descending order by the value of the similarity
coefficient):

YE = {(A1, A2, simE(A1, A2)), (A1, A3, simE(A1, A3)), (A2, A3, simE(A2, A3)),

(B1, B2, simE(B1, B2)), (B1, B3, simE(B1, B3)), (B2, B3, simE(B2, B3))

(A1, B2, simE(A1, B2))} .

Note that the YE set contains only combinations where similarity is greater than or equal
to the defined threshold.

Fig. 3. Illustrative generic example of three input CDMs

1928 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

The second phase of the classes matching step (i.e. the population of the ME set,
based on the YE set) is illustrated in the following lines.

ME ⇒ {∅} ⇒ {{A1, A2}} ⇒ {{A1, A2, A3}} ⇒ {{A1, A2, A3}, {B1, B2}}
⇒ {{A1, A2, A3}, {B1, B2, B3}} ⇒ {{A1, A2, A3}, {B1, B2, B3}, {C2}}
⇒ {{A1, A2, A3}, {B1, B2, B3}, {C2}, {D3}}
⇒ [{A1, A2, A3}, {B1, B2, B3}, {C2}, {D3}] .

At the beginning, classes A1 and A2 form a new set of matched classes, and then the A3
class is added to the same set (containing the A1 class). The (A2, A3) pair is ignored,
because both classes are already matched (together). The {B1, B2, B3} set is formed in
a similar manner. The (A1, B2) pair is ignored because joining the sets containing these
classes would result in a set that contains multiple classes from a single input CDM. At
the end, sets {C2} and {D3} are formed from the unmatched classes.

5.2. Attributes Matching

In the attributes matching step, it is necessary to match attributes of already matched
classes. The input in this step is the output of the classes matching step, i.e. the list of sets
of matched classes from different CDMs (ME = [M

(1)
E , . . . ,M

(m)
E]).

The algorithm for attributes matching is similar to the classes matching step – first,
it is necessary to compare attributes of matched classes, and then create sets of matched
attributes. The output of the attributes matching step is the list of sets of sets of matched
attributes MA = [M

(1)
A , . . . ,M

(m)
A], where each set M (i)

A is the set of sets of matched
attributes of classes from the M

(i)
E set.

The input in the first part of the algorithm (Algorithm 3) is the ME list of sets of
matched classes from different CDMs, while the output is the YA list of sets of triplets
(ata, atb, simA(ata, atb)). Each set Y (i)

A ∈ Y corresponds to the set of matched classes
M

(i)
E ∈ME . Also, each set Y (i)

A is empty in the beginning. Since it is necessary to match
attributes only for matched classes, then the following steps are repeated for each input
set of matched classes M

(i)
E . Each attribute (ata ∈ attrs(ej)) of each class (ej ∈M

(i)
E)

is compared with every attribute (atb ∈ attrs(ek)) of every other class from the same
set of matched classes (ek ∈M

(i)
E). The result of the comparison of two attributes is the

similarity coefficient simA(ata, atb). Attributes ata and atb, and the similarity coefficient
simA(ata, atb) form a triplet (ata, atb, simA(ata, atb)) which is added to the output
set Y (i)

A if the value of the similarity coefficient is greater than or equal to the defined
threshold (thSA

).
The value of the similarity coefficient for two attributes (of classes from different

CDMs) is determined based on attributes’ names, i.e.

simA(ata, atb) = synt s(name(ata), name(atb)) . (9)

Here we completely rely on the attribute names (linguistic matching) as they are,
currently, the most useful information about attributes. If proved to be necessary, it will
be easy to include attribute types in the equation.

Automatic Conceptual Database Design... 1929

Algorithm 3 The first phase of the attributes matching step

Require: ME = [M
(1)
E , . . . ,M

(m)
E]

Ensure: YA = [Y
(1)
A , . . . , Y

(m)
A]

1: for all M (i)
E ∈ME do

2: Y
(i)
A ← ∅ ; nc ← |M (i)

E |
3: for all ej ∈M

(i)
E : j = 1, . . . , nc − 1 do

4: for all ata ∈ attrs(ej) do
5: for all ek ∈M

(i)
E : k = j + 1, . . . , nc do

6: for all atb ∈ attrs(ek) do
7: simab ← simA(ata, atb)
8: if simab ≥ thSA then
9: Y

(i)
A ← Y

(i)
A ∪ {(ata, atb, simab)}

10: end if
11: end for
12: end for
13: end for
14: end for
15: end for

In the second phase (Algorithm 4) of the attributes matching step, it is necessary to
create sets of matched attributes. The input is the list of sets of matched classes and the
list of sets of similarity triplets. The output of the attributes matching step is the list of
sets of sets of matched attributes, where each set M (i)

A ∈MA is the set of sets of matched
attributes that correspond to the set of matched classes M (i)

E ∈ME .

In the beginning, each output set M (i)
A is initialized to an empty set, and the TA set

contains attributes from all classes from the M
(i)
E set. When an attribute is matched, we

remove it from the TA set (which makes it easy to check whether some attribute is already
matched or not). For each input set Y (i)

A ∈ YA of the similarity triplets it is necessary to
create sets of matched attributes as follows. In each iteration of the inner while loop, we
find the (ata, atb, simA(ata, atb)) triplet with the highest value of similarity. That triplet
is removed from the input set (in the next iteration, another triplet should be considered).
Then, it is necessary to check if any of the attributes, ata or atb, has already been matched
with other attributes. If neither of the current attributes is already matched with other
attributes (ata ∈ TA ∧ atb ∈ TA), then the given attributes ata and atb form a new set of
matched attributes (ma) that is added to the set of sets of matched attributes. If one of the
attributes is already matched with other attributes, i.e. if there exists set mat∈M

(i)
A such

that ata ∈ mat or atb ∈ mat, then it is necessary to add other attribute to the same set
(if this does not break the rule that the set must not contain multiple attributes from the
same class). Otherwise, if both attributes are already matched, but not together (they are
in different sets), then those sets can be joined (if this does not break the rule that the set
must not contain multiple attributes from the same class). Finally, all unmatched attributes
are added to separate (single element) new sets – unmatched attributes of classes from the
M

(i)
E set are added to separate sets of the output set M (i)

A .

1930 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

Algorithm 4 The second phase of the attributes matching step

Require: ME = [M
(1)
E , . . . ,M

(m)
E] YA = [Y

(1)
A , . . . , Y

(m)
A]

Ensure: MA = [M
(1)
A , . . . ,M

(m)
A]

1: for all Y (i)
A ∈ YA do

2: M
(i)
A ← ∅ ; TA ← ∪∀e∈M

(i)
E

attrs(e)

3: while Y
(i)
A ̸= ∅ do

4: (ata, atb, simA(ata, atb))← maxsim(Y
(i)
A)

5: Y
(i)
A ← Y

(i)
A \ {(ata, atb, simA(ata, atb))}

6: if ata ∈ TA ∧ atb ∈ TA then
7: ma← {ata, atb} ; M

(i)
A ←M

(i)
A ∪ {ma} ; TA ← TA \ma

8: else if ata ∈ TA then
9: ma← mat : mat ∈M

(i)
A ∧atb ∈ mat ; e← et : et ∈M

(i)
E ∧ata ∈ attrs(et)

10: if ma ∩ attrs(e) = ∅ then
11: ma← ma ∪ {ata} ; TA ← TA \ {ata}
12: end if
13: else if atb ∈ TA then
14: ma← mat : mat ∈M

(i)
A ∧ ata ∈ mat

15: e← et : et ∈M
(i)
E ∧ atb ∈ attrs(et)

16: if ma ∩ attrs(e) = ∅ then
17: ma← ma ∪ {atb} ; TA ← TA \ {atb}
18: end if
19: else
20: maa ← mat : mat ∈M

(i)
A ∧ ata ∈ mat

21: mab ← mat : mat ∈M
(i)
A ∧ atb ∈ mat

22: found← false
23: for all e ∈M

(i)
E do

24: if attrs(e) ∩maa ̸= ∅ ∧ attrs(e) ∩mab ̸= ∅ then
25: found← true
26: end if
27: end for
28: if ¬found then
29: maa ← maa ∪mab ; M

(i)
A ←M

(i)
A \ {mab}

30: end if
31: end if
32: end while
33: for all at ∈ TA do
34: ma← {at} ; M

(i)
A ←M

(i)
A ∪ {ma}

35: end for
36: end for

Example. Now we will illustrate the attributes matching step using the example from the
previous subsection. Here we repeat the output, i.e. the ME list of sets of matched classes:

ME = [M
(1)
E ,M

(2)
E ,M

(3)
E ,M

(4)
E] ,

where

M
(1)
E = {A1, A2, A3}, M

(2)
E = {B1, B2, B3}, M

(3)
E = {C2}, M

(4)
E = {D3}.

Automatic Conceptual Database Design... 1931

In the first phase, we need to create the output list YA of sets of similarity triplets for
attributes. The number of elements in the output list corresponds to the number of
elements in the list ME (m = 4), and element/set Y (i)

A corresponds to the element/set
M

(i)
E . Note that set Y (i)

A contains similarity triplets for attributes of only those classes
that are in the M

(i)
E set. Finally, let us assume the following output of the first phase

(elements in the sets are shown in a supposed descending order by the value of the
similarity coefficient):

YA ={Y (1)
A , Y

(2)
A , Y

(3)
A , Y

(4)
A },

Y
(1)
A ={(a11, a21, simA(a11, a21)), (a21, a31, simA(a21, a31)),

(a12, a22, simA(a12, a22))},

Y
(2)
A ={(b11, b21, simA(b11, b21)), (b11, b31, simA(b11, b31)),

(b21, b31, simA(b21, b31))},

Y
(3)
A =Y

(4)
A = {∅} .

In the second phase of the algorithm, we create the output list of sets of sets of matched
attributes MA = [M

(1)
A ,M

(2)
A ,M

(3)
A ,M

(4)
A], where each M

(i)
A is created from the set of

similarity triplets Y (i)
A . The following lines describe the population of each set M (i)

A .

M
(1)
A ⇒ {∅} ⇒ {{a11, a21}} ⇒ {{a11, a21, a31}} ⇒ {{a11, a21, a31}, {a12, a22}}

M
(2)
A ⇒ {∅} ⇒ {{b11, b21}} ⇒ {{b11, b21, b31}}

M
(3)
A ⇒ {∅} ⇒ {{c21}}

M
(4)
A ⇒ {∅} .

The M
(3)
A set is empty in the beginning. Since Y

(3)
A is empty, only a set containing

(unmatched) attribute c21 is added to M
(3)
A . The M (4)

A set remains empty because Y (4) is
empty and the only class in M

(4)
E (D3∈M

(4)
E) has no attributes.

5.3. Associations Matching

The next step in the matching process is the associations matching step. In this step, it is
necessary to match associations between different input CDMs with respect to already
matched classes. For example, let us consider the result in the classes matching step
example, i.e. the list of sets of matched classes

ME = [{A1, A2, A3}, {B1, B2, B3}, {C2}, {D3}] .

In the associations matching step, it is necessary to create the sets of matched
associations for all combinations of sets of matched classes (M (i)

E and M
(j)
E for

i = 1, . . . ,m and i ≤ j ≤ m). If the list of sets of matched classes has m elements, then
the list of matched associations has to have m(m+ 1)/2 elements. In this example, since
m=4 and m(m+ 1)/2=10, it is necessary to create the list with ten elements, i.e.

1932 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

MR = [M
(1)(1)
R ,M

(1)(2)
R ,M

(1)(3)
R ,M

(1)(4)
R ,

M
(2)(2)
R ,M

(2)(3)
R ,M

(2)(4)
R ,M

(3)(3)
R ,M

(3)(4)
R ,M

(4)(4)
R] .

The elements of the sets M
(i)(j)
R , where i ̸= j, should be the sets of matched

associations between the classes from sets M
(i)
E and M

(j)
E . For example, the M

(1)(2)
R

element should be the set of sets of matched associations between the classes from sets
M

(1)
E and M

(2)
E . Since the M

(1)
E set contains classes A1, A2, and A3, and the M

(2)
E set

contains classes B1, B2, and B3, then we must compare the associations between the
pair of classes (A1, B1) and the associations between the pair of classes (A2, B2) and
the associations between the pair of classes (A3, B3).

The elements of the sets M
(i)(i)
R should be sets of matched reflexive associations of

the classes from the M
(i)
E set. For example, the M

(1)(1)
R element should be the set of sets

of matched reflexive associations between the classes from set M (1)
E . Since the M

(1)
E set

contains classes A1, A2, and A3, then we must compare reflexive associations of the A1
class and reflexive associations of the A2 class and reflexive associations of the A3 class.

In order to produce the list of sets of sets of matched associations, we split the
associations matching step into two phases (similar to previous matching steps). In the
first phase (Algorithm 5), we only compare the associations and create a list of sets of
triplets (ra, rb, simR(ra, rb)), where simR(ra, rb) is the result of the comparison
(similarity coefficient) of the associations ra and rb. As mentioned earlier, if the list of
sets of matched classes has m elements, the YR list of sets of triplets
(ra, rb, simR(ra, rb)) has m(m + 1)/2 elements. In the beginning, each set Y (i)(j)

R is
initialized to an empty set, and then it is populated as follows. First, it is necessary to
find the pair of classes (eka

, ekb
) from the k-th input CDM such that eka

∈ M
(i)
E and

ekb
∈ M

(j)
E . Then, it is necessary to find all associations (R′

k) between that pair of
classes. The next step is to find the pair of classes (epa

, epb
) from the p-th input CDM

such that epa
∈M

(i)
E and epb

∈M
(j)
E . Here is also necessary to find all associations (R′

p)
between that pair of classes. Now, we can compare all associations from R′

k with all
associations from R′

p. If the value of the similarity coefficient is greater than or equal to
the defined threshold (thSR

), then the (ra, rb, simR(ra, rb)) triplet is added to the
Y

(i)(j)
R set. These steps are repeated for every possible combination of k and p, i.e. for

each input set of associations. All these steps represent the steps for the population of the
output set Y (i)(j)

R .
As described above, we compare only associations between already matched classes.

Let there be two associations from different CDMs, ra ∈Rk and rb ∈Rp. Let ra be an
association between the classes eka

∈Ek ∧ eka
∈M

(i)
E and ekb

∈Ek ∧ ekb
∈M

(j)
E , and let

rb be an association between the classes epa ∈Ep∧epa ∈M
(i)
E and epb

∈Ep∧epb
∈M

(j)
E .

This means that one end of the first association is a class matched with a class that is
one end of the second association (both classes are in the M

(i)
E set). Also, the other end

of the first association is a class matched with a class that is the other end of the second
association (both classes are in the M

(j)
E set). The value of the similarity coefficient for

such two associations (and we only compare associations between the pairs of matched

Automatic Conceptual Database Design... 1933

classes) is determined based on associations’ names and constraints (cardinalities and
participation constraints), i.e.

simR(ra, rb) = synt s(name(ra), name(rb)) · (1−Wcard −Wpc)

+ ceq(ra, rb) ·Wcard + peq(ra, rb) ·Wpc ,
(10)

where ceq(ra, rb)∈{0, 1} checks whether the cardinalities of associations are equal, i.e.

ceq(ra, rb) =



1, (type(source(ra)) ∈ M
(i)
E ∧ type(source(rb)) ∈ M

(i)
E

∨type(source(ra)) ∈ M
(j)
E ∧ type(source(rb)) ∈ M

(j)
E)

∧upper(source(ra)) = upper(source(rb))

∧upper(target(ra)) = upper(target(rb))

∨
(type(source(ra)) ∈ M

(i)
E ∧ type(source(rb)) ∈ M

(j)
E

∨type(source(ra)) ∈ M
(j)
E ∧ type(source(rb)) ∈ M

(i)
E)

∧upper(source(ra)) = upper(target(rb))

∧upper(target(ra)) = upper(source(rb))

0, otherwise

, (11)

Algorithm 5 The first phase of the associations matching step

Require: ME = [M
(1)
E , . . . ,M

(m)
E]

Ensure: YR = [Y
(1)(1)
R , . . . , Y

(1)(m)
R , Y

(2)(2)
R , . . . , Y

(2)(m)
R , . . . Y

(m)(m)
R]

1: for i = 1, . . . ,m do
2: for j = i, . . . ,m do
3: Y

(i)(j)
R ← ∅

4: for k = 1, . . . , n− 1 do
5: eka ← e : e ∈ Ek ∧ e ∈M

(i)
E ; ekb ← e : e ∈ Ek ∧ e ∈M

(j)
E

6: R′
k ← {r : r ∈ Rk ∧ (source(r) = eka ∧ target(r) = ekb∨

7: source(r) = ekb ∧ target(r) = eka)}
8: for all ra ∈ R′

k do
9: for p = k + 1, . . . , n do

10: epa ← e : e ∈ Ep ∧ e ∈M
(i)
E ; epb ← e : e ∈ Ep ∧ e ∈M

(j)
E

11: R′
p ← {r : r ∈ Rp ∧ (source(r) = epa ∧ target(r) = epb∨

12: source(r) = epb ∧ target(r) = epa)}
13: for all rb ∈ R′

p do
14: simab ← simR(ra, rb)
15: if simab ≥ thSR then
16: Y

(i)(j)
R ← Y

(i)(j)
R ∪ {(ra, rb, simab)}

17: end if
18: end for
19: end for
20: end for
21: end for
22: end for
23: end for

1934 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

peq(ra, rb)∈{0, 1} checks whether the participation constraints are equal, i.e.

peq(ra, rb) =



1, (type(source(ra)) ∈ M
(i)
E ∧ type(source(rb)) ∈ M

(i)
E

∨type(source(ra)) ∈ M
(j)
E ∧ type(source(rb)) ∈ M

(j)
E)

∧lower(source(ra)) = lower(source(rb))

∧lower(target(ra)) = lower(target(rb))

∨
(type(source(ra)) ∈ M

(i)
E ∧ type(source(rb)) ∈ M

(j)
E

∨type(source(ra)) ∈ M
(j)
E ∧ type(source(rb)) ∈ M

(i)
E)

∧lower(source(ra)) = lower(target(rb))

∧lower(target(ra)) = lower(source(rb))

0, otherwise

, (12)

and Wcard and Wpc are the empirically determined coefficients (0 ≤ Wcard +Wpc ≤ 1).

The combination of linguistic matching (names) and constraint-based matching
(cardinalities and participation constraints) makes the associations matching, also, a
hybrid technique.

In the second phase (Algorithm 6), it is necessary to produce the list of sets of sets of
matched associations based on the results from the first phase. The output list MR has
the same number of elements as the input list YR, i.e. m(m + 1)/2 (this corresponds to
every combination of sets of the list ME). The TR set is a utility set of unmatched
associations between the corresponding pairs of classes from the sets M

(i)
E and M

(j)
E

(when an association is matched it is then removed from this set). Each element M (i)(j)
R

of the output list MR is created from the corresponding set Y
(i)(j)
R of triplets

(ra, rb, simR(ra, rb)) as follows. First, it is necessary to find the triplet
(ra, rb, simR(ra, rb)) in the Y

(i)(j)
R set with the highest value of similarity. The found

triplet is removed from the Y
(i)(j)
R set (in the next iteration of the while loop, the next

triplet must be considered). Now, it is necessary to check if any of the associations, ra or
rb, has already been matched with other associations. If neither of the current
associations is already matched with other associations (ra ∈ TR ∧ rb ∈ TR), then the
given associations ra and rb form a new set of matched associations that is added to the
M

(i)(j)
R set. If one of the associations is already matched with other associations, i.e. if

there exists a set mrt∈M
(i)(j)
R such that ra∈mrt or rb∈mrt, then it is necessary to add

other association to the same set (if this does not break the rule that the set must not
contain multiple associations from the same input CDM). Otherwise, if both associations
are already matched, but not together (they are in different sets), then those sets can be
joined (if this does not break the rule that the set must not contain multiple associations
from the same input CDM). Finally, all unmatched associations are added to separate
(single element) new sets – unmatched associations from each input CDM between the
corresponding classes in sets M (i)

E and M
(j)
E are added to separate new sets of the output

set M (i)(j)
R .

Automatic Conceptual Database Design... 1935

Algorithm 6 The second phase of the associations matching step

Require: ME = [M
(1)
E , . . . ,M

(m)
E] YR = [Y

(1)(1)
R , . . . , Y

(1)(m)
R , Y

(2)(2)
R , . . . , Y

(m)(m)
R]

Ensure: MR = [M
(1)(1)
R , . . . ,M

(1)(m)
R ,M

(2)(2)
R , . . . ,M

(2)(m)
R , . . . ,M

(m)(m)
R]

1: for all Y (i)(j)
R ∈ YR do

2: M
(i)(j)
R ← ∅ ; TR ← ∅

3: for k = 1, . . . , n do
4: eka ← e : e ∈ Ek ∧ e ∈M

(i)
E ; ekb ← e : e ∈ Ek ∧ e ∈M

(j)
E

5: TR ← TR ∪ {r : r ∈ Rk ∧ (source(r) = eka ∧ target(r) = ekb∨
6: source(r) = ekb ∧ target(r) = eka)}
7: end for
8: while Y

(i)(j)
R ̸= ∅ do

9: (ra, rb, simR(ra, rb))← maxsim(Y
(i)(j)
R)

10: Y
(i)(j)
R ← Y

(i)(j)
R \ {(ra, rb, simR(ra, rb))}

11: if ra ∈ TR ∧ rb ∈ TR then
12: M

(i)(j)
R ←M

(i)(j)
R ∪ {{ra, rb}} ; TR ← TR \ {ra, rb}

13: else if ra ∈ TR then
14: mr ← mrt : mrt ∈M

(i)(j)
R ∧ rb ∈ mrt ; Rt ← Rk : ra ∈ Rk

15: if mr ∩Rt = ∅ then
16: mr ← mr ∪ {ra} ; TR ← TR \ {ra}
17: end if
18: else if rb ∈ TR then
19: mr ← mrt : mrt ∈M

(i)(j)
R ∧ ra ∈ mrt ; Rt ← Rk : rb ∈ Rk

20: if mr ∩Rt = ∅ then
21: mr ← mr ∪ {rb} ; TR ← TR \ {rb}
22: end if
23: else
24: mra ← mrt : mrt ∈M

(i)(j)
R ∧ ra ∈ mrt

25: mrb ← mrt : mrt ∈M
(i)(j)
R ∧ rb ∈ mrt

26: found← false
27: for all Rk : k = 1, . . . , n do
28: if Rk ∩mra ̸= ∅ ∧Rk ∩mrb ̸= ∅ then
29: found← true
30: end if
31: end for
32: if ¬found then
33: mra ← mra ∪mrb ; M

(i)(j)
R ←M

(i)(j)
R \ {mrb}

34: end if
35: end if
36: end while
37: for all r ∈ TR do
38: M

(i)(j)
R ←M

(i)(j)
R ∪ {{r}}

39: end for
40: end for

Example. Continuing the example from previous subsections, here we need to produce
the list of sets of sets of matched associations. In order to do that, first we need to compare
the associations and create a list of ten (m = |ME | = 4 ⇒ m(m + 1)/2 = 10) sets of
similarity triplets, i.e.

1936 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

YR = [Y
(1)(1)
R , Y

(1)(2)
R , Y

(1)(3)
R , Y

(1)(4)
R ,

Y
(2)(2)
R , Y

(2)(3)
R , Y

(2)(4)
R , Y

(3)(3)
R , Y

(3)(4)
R , Y

(4)(4)
R] .

To populate the Y
(1)(2)
R set we need to compare the associations between the pairs of

classes (A1, B1), (A2, B2), and (A3, B3), i.e. associations Z1, Z2, Y 2, and Z3. Other
sets of similarity triplets will remain empty because there are no reflexive associations
and sets M (3)

E and M
(4)
E contain only a single class.

Let us assume the following output of the first phase (elements in the sets are shown
in a supposed descending order by the value of the similarity coefficient):

Y
(1)(1)
R =Y

(1)(3)
R = Y

(1)(4)
R = {∅},

Y
(1)(2)
R ={(Z1, Z2, simR(Z1, Z2)), (Z1, Z3, simR(Z1, Z3)),

(Z2, Z3, simR(Z2, Z3)), (Z1, Y 2, simR(Z1, Y 2))},

Y
(2)(2)
R =Y

(2)(3)
R = Y

(2)(4)
R = Y

(3)(3)
R = Y

(3)(4)
R = Y

(4)(4)
R = {∅} .

In the second phase of the algorithm, we create the output list of sets of sets of matched
associations MR, where each M

(i)(j)
R is created from the Y

(i)(j)
R set of similarity triplets.

The following lines describe the population of each set M (i)(j)
R ∈MR.

M
(1)(2)
R ⇒ {∅} ⇒ {{Z1, Z2}} ⇒ {{Z1, Z2, Z3}} ⇒ {{Z1, Z2, Z3}, {Y 2}},

M
(1)(3)
R ⇒ {∅} ⇒ {{X2}},

M
(1)(1)
R ,M

(1)(4)
R ,M

(2)(2)
R ,M

(2)(3)
R ,M

(2)(4)
R ,M

(3)(3)
R ,M

(3)(4)
R ,M

(4)(4)
R ⇒ {∅} .

The M
(1)(3)
R set is empty in the beginning. Since Y

(1)(3)
R is an empty set, only a set

containing (unmatched) association X2 is added to the M
(1)(3)
R set. The sets M

(1)(1)
R ,

M
(1)(4)
R , M (2)(2)

R , M (2)(3)
R , M (2)(4)

R , M (3)(3)
R , M (3)(4)

R , and M
(4)(4)
R remain empty because

there are no respective associations in the input CDMs.

5.4. Generalizations Matching

The generalizations matching step is similar to the associations matching step, with the
exception that there can be only one generalization between two classes. The
generalizations matching step is, also, split into two phases.

In the first phase (Algorithm 7), we create a list of sets of triplets
(ga, gb, simG(ga, gb)), where simG(ga, gb) is the result of the comparison (similarity
coefficient) of the generalizations ga and gb. If the list of sets of matched classes has m
elements, then the YG list of sets of triplets (ga, gb, simG(ga, gb)) has m(m − 1)/2
elements because it is necessary to create the sets of matched generalizations for all
combinations of sets of matched classes (M (i)

E and M
(j)
E for i = 1, . . . ,m − 1 and

i < j ≤ m). The number of elements of the output list for generalizations is less than the
number of elements of the output list for associations because we had to take into
account reflexive associations.

Automatic Conceptual Database Design... 1937

Algorithm 7 The first phase of the generalizations matching step

Require: ME = [M
(1)
E , . . . ,M

(m)
E]

Ensure: YG = [Y
(1)(2)
G , . . . , Y

(1)(m)
G , Y

(2)(3)
G , . . . , Y

(2)(m)
G , . . . , Y

(m−1)(m)
G]

1: for i = 1, . . . ,m− 1 do
2: for j : i+ 1, . . . ,m do
3: Y

(i)(j)
G ← ∅

4: for k = 1, . . . , n− 1 do
5: eka ← e : e ∈ Ek ∧ e ∈M

(i)
E ; ekb ← e : e ∈ Ek ∧ e ∈M

(j)
E

6: ga ← g : g ∈ Gk ∧ (specific(g) = eka ∧ general(g) = ekb∨
7: specific(g) = ekb ∧ general(g) = eka)
8: for p = k + 1, . . . , n do
9: epa ← e : e ∈ Ep ∧ e ∈M

(i)
E ; epb ← e : e ∈ Ep ∧ e ∈M

(j)
E

10: gb ← g : g ∈ Gp ∧ (specific(g) = epa ∧ general(g) = epb∨
11: specific(g) = epb ∧ general(g) = epa)
12: simab ← simG(ga, gb)
13: if simab ≥ thSG then
14: Y

(i)(j)
G ← Y

(i)(j)
G ∪ {(ga, gb, simab)}

15: end if
16: end for
17: end for
18: end for
19: end for

In the beginning, each set Y (i)(j)
G is initialized to an empty set, and then it is populated

as follows. First, we need to find a pair of classes (eka
, ekb

) from CDMk such that eka
∈

M
(i)
E and ekb

∈M
(j)
E , and then we need to find the generalization (ga) between that pair

of classes. Then, we need to find a pair of classes (epa
, epb

) from CDMp such that epa
∈

M
(i)
E and epb

∈M
(j)
E , and then we, also, need to find the generalization (gb) between that

pair of classes. Now, we can compare generalization ga with the generalization gb, and add
the (ga, gb, simG(ga, gb)) triplet to the Y (i)(j)

G set if the value of the similarity coefficient
is greater than or equal to the defined threshold (thSG

). These steps are repeated for every
combination of k and p, i.e. for each input set of generalizations. All these steps represent
the steps for the population of the output set Y (i)(j)

G .
As described above, we compare only generalizations between already matched

classes. Let there be two generalizations from different CDMs, ga∈Gk and gb∈Gp. Let
ga be a generalization between the classes eka

∈ Ek ∧ eka
∈ M

(i)
E and

ekb
∈ Ek ∧ ekb

∈ M
(j)
E , and let gb be a generalization between the classes

epa
∈Ep ∧ epa

∈M
(i)
E and epb

∈Ep ∧ epb
∈M

(j)
E . The value of the similarity coefficient

for such two generalizations is determined only based on the direction, i.e.

simG(ga, gb) =


1, specific(ga) ∈ M

(i)
E ∧ specific(gb) ∈ M

(i)
E

∨
specific(ga) ∈ M

(j)
E ∧ specific(gb) ∈ M

(j)
E

0, otherwise

. (13)

1938 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

In the second phase (Algorithm 8), it is necessary to produce a list of sets of matched
generalizations based on the results from the first phase. The output list MG has the same
number of elements as the input list YG, i.e. m(m− 1)/2.

Algorithm 8 The second phase of the generalizations matching step

Require: ME = [M
(1)
E , . . . ,M

(m)
E] YG = [Y

(1)(2)
G , . . . , Y

(1)(m)
G , Y

(2)(3)
G , . . . , Y

(m−1)(m)
G]

Ensure: MG = [M
(1)(2)
G , . . . ,M

(1)(m)
G ,M

(2)(3)
G , . . . ,M

(2)(m)
G , . . . ,M

(m−1)(m)
G]

1: for all Y (i)(j)
G ∈ YG do

2: M
(i)(j)
G ← ∅ ; TG ← ∅

3: for k = 1, . . . , n do
4: eka ← e : e ∈ Ek ∧ e ∈M

(i)
E ; ekb ← e : e ∈ Ek ∧ e ∈M

(j)
E

5: TG ← TG ∪ {g : g ∈ Gk ∧ (specific(g) = eka ∧ general(g) = ekb∨
6: specific(g) = ekb ∧ general(g) = eka)}
7: end for
8: while Y

(i)(j)
G ̸= ∅ do

9: (ga, gb, simG(ga, gb))← maxsim(Y
(i)(j)
G)

10: Y
(i)(j)
G ← Y

(i)(j)
G \ {(ga, gb, simG(ga, gb))}

11: if ga ∈ TG ∧ gb ∈ TG then
12: M

(i)(j)
G ←M

(i)(j)
G ∪ {{ga, gb}} ; TG ← TG \ {ga, gb}

13: else if ga ∈ TG then
14: mg ← mgt : mgt ∈M

(i)(j)
G ∧ gb ∈ mgt ; Gt ← Gk : ga ∈ Gk

15: if mg ∩Gt = ∅ then
16: mg ← mg ∪ {ga} ; TG ← TG \ {ga}
17: end if
18: else if gb ∈ TG then
19: mg ← mgt : mgt ∈M

(i)(j)
G ∧ ga ∈ mgt ; Gt ← Gk : gb ∈ Gk

20: if mg ∩Gt = ∅ then
21: mg ← mg ∪ {gb} ; TG ← TG \ {gb}
22: end if
23: else
24: mga ← mgt : mgt ∈M

(i)(j)
G ∧ ga ∈ mgt

25: mgb ← mgt : mgt ∈M
(i)(j)
G ∧ gb ∈ mgt

26: found← false
27: for all Gk : k = 1, . . . , n do
28: if Gk ∩mga ̸= ∅ ∧Gk ∩mgb ̸= ∅ then
29: found← true
30: end if
31: end for
32: if ¬found then
33: mga ← mga ∪mgb ; M

(i)(j)
G ←M

(i)(j)
G \ {mgb}

34: end if
35: end if
36: end while
37: for all g ∈ TG do
38: M

(i)(j)
G ←M

(i)(j)
G ∪ {{g}}

39: end for
40: end for

Automatic Conceptual Database Design... 1939

Each element M (i)(j)
G of the output list MG is created from the corresponding set

Y
(i)(j)
G of triplets (ga, gb, simG(ga, gb)) as follows. First, it is necessary to find the

(ga, gb, simG(ga, gb)) triplet in the Y
(i)(j)
G set with the highest value of similarity. The

found triplet is removed from the Y
(i)(j)
G set (in the next iteration of the while loop, the

next triplet must be considered). Then, it is necessary to check if any of the
generalizations, ga or gb, has already been matched with other generalizations. If neither
of the current generalizations is already matched with other generalizations
(ga ∈ TG ∧ gb ∈ TG), then given generalizations ga and gb form a new set of matched
generalizations that is added to the M

(i)(j)
G set. If one of the generalizations is already

matched with other generalizations, i.e. if there exists set mgt ∈ M
(i)(j)
G such that

ga ∈mgt or gb ∈mgt, then it is necessary to add other generalization to the same set (if
this does not break the rule that the set must not contain multiple generalizations from
the same input CDM). Otherwise, if both generalizations are already matched, but not
together (they are in different sets), then those sets can be joined (if this does not break
the rule that the set must not contain multiple generalizations from the same input
CDM). Finally, all unmatched generalizations are added to separate (single element) new
sets – unmatched generalizations from each input CDM between the corresponding
classes in sets M (i)

E and M
(j)
E are added to separate new sets of the output set M (i)(j)

G .
Due to the article length and the similarity of the generalizations matching step to

the associations matching step (there can be only one generalization between two classes,
while there can be more than one association between two classes) we do not provide an
example for the generalizations matching step.

6. Schema Merging

The merging process is the process of creating a new integrated CDM
(CDMO = CDM(PO, EO, RO, GO)) based on the mappings discovered in the
matching process.

6.1. Primitive types

The creation of primitive types is the pre-step in the merging process, and it is a rather
simple one. The PO set of primitive types of the integrated CDM is a union of primitive
types of the input CDMs, i.e.

PO = ∪n
i=1Pi . (14)

For example, the set of primitive types of the integrated CDM in the sample used in
the previous section is

PO = ∪3
i=1Pi = P1 ∪ P2 ∪ P3 = {Text} .

6.2. Classes

The merging process starts with the classes (Algorithm 9) as the root elements of the
CDM. The input in the classes merging step is the output of the classes matching step, i.e.

1940 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

the list of sets of matched classes ME = [M
(1)
E , . . . ,M

(m)
E]. Each set M (i)

E of matched
classes is a candidate to be mapped into the class in the integrated CDM. The M

(i)
E set is

mapped into the eo∈EO class if at least one of the following criteria is met:

– the number of elements in the M
(i)
E set is equal to the number of input CDMs

(|M (i)
E | = n), meaning this set contains a class from each input CDM, or

– the M
(i)
E set contains a class from an input CDM with the effectiveness for classes

greater than or equal to the defined threshold (e ∈ M
(i)
E ∧ e ∈ Ej ∧ FEj

≥ thFE
),

meaning the set contains a class from an input CDM with the acceptable effectiveness
for classes, or

– the M
(i)
E set contains a relevant class. A class is said to be relevant if its relevance

coefficient is greater than or equal to the defined threshold (thRE
).

The relevance coefficient of the e ∈ Ej class is determined based on its attributes,
associations, and generalizations, i.e.

relE(e) = |attrs(e)| ·RWA

+ (|{r : r ∈ Rj ∧ (source(r) = e ∨ target(r) = e)}|
+ |{g : g ∈ Gj ∧ (specific(g) = e ∨ general(g) = e)}|) ·RWR ,

(15)

where RWA and RWR represent empirically determined weight coefficients for
attributes and relationships (associations and generalizations), respectively. The value of
the relevance coefficient is not normalized.

Algorithm 9 The classes merging step

Require: ME = [M
(1)
E , . . . ,M

(m)
E]

Ensure: IE = [I
(1)
E , . . . , I

(m)
E]

Ensure: EO

1: EO ← ∅
2: for all M (i)

E ∈ME do
3: cr met← false
4: if |M (i)

E | = n then
5: cr met← true
6: else
7: for all e ∈M

(i)
E do

8: if e ∈ Ej ∧ FEj ≥ thFE ∨ relE(e) ≥ thRE then
9: cr met← true

10: end if
11: end for
12: end if
13: if cr met then
14: eo ← new class() ; e′ ← maxFE (M

(i)
E)

15: name(eo)← name(e′) ; EO ← EO ∪ {eo} ; I
(i)
E ← eo

16: else
17: I

(i)
E ← ∅

18: end if
19: end for

Automatic Conceptual Database Design... 1941

The name of the class (if created) is inherited from a class from CDM with the highest
effectiveness for classes. Besides the set of classes of integrated CDM (EO), the output of
the algorithm is a list of indicators of created classes, where I

(i)
E is the class created from

the M
(i)
E set or I(i)E = ∅ if the M

(i)
E set is not mapped into a class.

Example. The classes merging step will be illustrated using the result from the example
of the classes matching step, i.e., the following list of sets of matched classes

ME = [{A1, A2, A3}, {B1, B2, B3}, {C2}, {D3}] .

The output of the classes merging step, is the list of indicators of created classes

IE = [I
(1)
E , I

(2)
E , I

(3)
E , I

(4)
E] .

First, we consider the set M (1)
E = {A1, A2, A3}. The number of elements in this

set is equal to the number of input CDMs (|{A1, A2, A3}| = 3), and we map this set
into a new class (AI) in the integrated CDM, and the indicator I(1)E is set to this class
(I(1)E = AI). If we assume that CDM1 has the highest effectiveness for classes, then
a new class in the integrated CDM inherits the name from the class A1 (A1 ∈ E1), i.e.
name(AI) = name(A1).

Similarly, the next set M (2)
E is also mapped into a new class (BI) in the integrated

CDM and the I
(2)
E indicator is set to this class (I(2)E = BI). However, the number of

elements in the third set is less than the number of input CDMs (|{C2}| = 1 < 3). If
we assume that the effectiveness for classes of the second CDM is greater than or equal
to the threshold (thFE

), or if the C2 class is relevant (it does have an attribute and an
association), then this set is also mapped into a new class (CI) in the integrated CDM,
and the I

(3)
E indicator is set to this class (I(3)E = CI). Of course, the CI class inherits the

name from the C2 class, i.e. name(CI) = name(C2).
The number of elements in the fourth set is also less than the number of input CDMs

(|{D3}| = 1 < 3). If we assume that the effectiveness for classes of the third CDM
is less than the threshold (thFE

), and if the D3 class is not relevant (it does not have
any attributes nor associations), then this set is not mapped into a new class and the I

(4)
E

indicator is unset (I(4)E = ∅).
Considering all of the above, we have IE = [AI,BI,CI, ∅] and

EO = {AI,BI,CI}. Figure 4 shows the partial result of the integration task after the
classes merging step.

Fig. 4. Partial result of the integration task after the classes merging step

1942 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

6.3. Attributes

The input in the attributes merging step (Algorithm 10) is the result of the attributes
matching step (i.e. the list of sets of sets of matched attributes MA = [M

(1)
A , . . . ,M

(m)
A])

and the result of the classes merging step (i.e. the list of class indicators
IE = [I

(1)
E , . . . , I

(m)
E]). The input is also the list of sets of matched classes

ME = [M
(1)
E , . . . ,M

(m)
E].

In this step, it is necessary to create attributes for the classes that are already created in
the integrated CDM, i.e. if I(i)E is a class (I(i)E ̸=∅) then it is necessary to create attributes
for this class based on the set of sets of matched attributes M (i)

A .
Each set of matched attributes maj ∈ M

(i)
A is a candidate to be mapped into the

attribute of the class I(i)E ̸=∅. The maj set is mapped into the attribute ato∈attrs(I
(i)
E) if

at least one of the following criteria is met:
– the number of elements in the maj set is equal to the number of input CDMs (|maj | =
n), meaning this set contains an attribute from a class from each input CDM (this is
possible only if |M (i)

E | = n), or
– the maj set contains an attribute from a class from CDM with the effectiveness for

attributes greater than or equal to the defined threshold (at∈maj∧at∈attrs(e)∧e∈
Ek∧FAk

≥ thFA
), meaning the set contains an attribute of the class from input CDM

with the acceptable effectiveness for attributes.

Algorithm 10 The attributes merging step

Require: ME = [M
(1)
E , . . . ,M

(m)
E]

Require: IE = [I
(1)
E , . . . , I

(m)
E]

Require: MA = [M
(1)
A , . . . ,M

(m)
A]

1: for all I(i)E ∈ IE do
2: if I(i)E ̸= ∅ then
3: for all maj ∈M

(i)
A do

4: cr met← false
5: if |maj | = n then
6: cr met← true
7: else
8: for all at ∈ maj do
9: if at ∈ attrs(e) ∧ e ∈ Ek ∧ FAk ≥ thFA then

10: cr met← true
11: end if
12: end for
13: end if
14: if cr met then
15: ato ← new attribute() ; at′ ← maxFA(maj)
16: name(ato)← name(at′) ; type(ato)← type(at′)

17: attrs(I
(i)
E)← attrs(I

(i)
E) ∪ {ato}

18: end if
19: end for
20: end if
21: end for

Automatic Conceptual Database Design... 1943

The name and the type of the attribute (if created) are inherited from the attribute of the
class from the CDM with the highest effectiveness for attributes.

Example. In this example we need to create attributes for classes in the integrated CDM.
The attributes of the class I

(i)
E ̸= ∅ are created from the set of sets of matched attributes

M
(i)
A . Each set in the M (i)

A set is a candidate to be mapped into an attribute (if the criteria
is met).

First, we consider the class I
(1)
E = AI and the set of sets of matched attributes

M
(1)
A = {{a11, a21, a31}, {a12, a22}}. The first set in M

(1)
A contains three elements,

which is equal to the number of the input CDMs (|{a11, a21, a31}| = 3), thus this set is
mapped into the a1 attribute of the AI class. If we assume that CDM1 has the highest
effectiveness for attributes, then the a1 attribute of the AI class inherits the name and
type from the a11 attribute which is an attribute of the A1 class from CDM1, i.e.
name(a1) = name(a11) and type(a1) = type(a11).

The second set in M
(1)
A contains two elements (|{a12, a22}| = 2). We already

assumed that CDM1 has the highest effectiveness for attributes. If we further assume
that the effectiveness for attributes of CDM1 is greater than or equal to the threshold
(thFA

), then this set is also mapped into an attribute (a2) of the AI class. The a2
attribute of the AI class inherits the name and type from the a12 attribute which is an
attributes of the A1 class from CDM1, i.e. name(a2) = name(a12) and
type(a2) = type(a12).

Now, we come to the class I(2)E = BI and the set of sets of matched attributes M (2)
A =

{{b11, b21, b31}}. The only set of matched attributes in the M
(2)
A set is mapped into an

attribute (b1) of the BI class because |{b11, b21, b31}| = 3.

Finally, we come to the class I
(3)
E = CI and the set of sets of matched attributes

M
(3)
A = {{c21}}. The M (3)

A set contains only one set of matched attributes ({c21}). This
set has only one attribute (|{c21}| = 1). If we assume that the effectiveness for attributes
of CDM2 is also greater than or equal to the threshold (thFA

), then the {c21} set is also
mapped into an attribute (c1) of the CI class. Also, the c1 attribute inherits the name and
type from the c21 attribute, i.e. name(c1) = name(c21) and type(c1) = type(c21).

Considering all of the above, we have attrs(AI) = {a1, a2}, attrs(BI) = {b1}, and
attrs(CI) = {c1}. The partial result of the integration task (after the attributes merging
step) is shown in Fig. 5.

Fig. 5. Partial result of the integration task after the attributes merging step

1944 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

6.4. Associations

The input in the associations merging step (Algorithm 11) is the result of the associations
matching step (i.e. the list of sets of sets of matched associations MR) and the result of
the classes merging step (i.e. the list of class indicators IE). The input is also the list of
sets of matched classes ME .

In this step, it is necessary to create associations between the classes that are already
created in the integrated CDM, i.e. if I(i)E and I

(j)
E are classes (I(i)E ̸=∅∧I

(j)
E ̸=∅) then it is

necessary to create associations between those classes based on the set of sets of matched
associations M (i)(j)

R .

Algorithm 11 The associations merging step

Require: ME = [M
(1)
E , . . . ,M

(m)
E]

Require: IE = [I
(1)
E , . . . , I

(m)
E]

Require: MR = [M
(1)(1)
R , . . . ,M

(1)(m)
R ,M

(2)(2)
R , . . . ,M

(2)(m)
R , . . . ,M

(m)(m)
R]

Ensure: RO

1: for all M (i)(j)
R ∈MR do

2: if I(i)E ̸= ∅ ∧ I
(j)
E ̸= ∅ then

3: for all mrk ∈M
(i)(j)
R do

4: cr met← false
5: if |mrk| = n then
6: cr met← true
7: else
8: for all r ∈ mrk do
9: if r ∈ Rp ∧ FRp ≥ thFR then

10: cr met← true
11: end if
12: end for
13: end if
14: if cr met then
15: ro ← new association() ; r′ ← maxFR(mrk)
16: name(ro)← name(r′)
17: lower(source(ro))← lower(source(r′))
18: upper(source(ro))← upper(source(r′))
19: lower(target(ro))← lower(target(r′))
20: upper(target(ro))← upper(target(r′))

21: if type(source(r′)) ∈M
(i)
E ∧ type(target(r′)) ∈M

(j)
E then

22: type(source(ro))← I
(i)
E ; type(target(ro))← I

(j)
E

23: else if type(source(r′)) ∈M
(j)
E ∧ type(target(r′)) ∈M

(i)
E then

24: type(source(ro))← I
(j)
E ; type(target(ro))← I

(i)
E

25: end if
26: RO ← RO ∪ {ro}
27: end if
28: end for
29: end if
30: end for

Automatic Conceptual Database Design... 1945

Each set of matched associations mrk ∈M
(i)(j)
R is a candidate to be mapped into the

association between the classes I(i)E ̸= ∅ and I
(j)
E ̸= ∅. The set mrk ∈M

(i)(j)
R is mapped

into the association ro∈RO if at least one of the following criteria is met:
– the number of elements in the set mrk ∈ M

(i)(j)
R is equal to the number of input

CDMs (|mrk| = n), meaning this set contains an association from each input CDM
(this is possible only if |M (i)

E | = |M (j)
E | = n), or

– the set mrk∈M
(i)(j)
R contains an association from the CDM with the effectiveness for

associations greater than or equal to the defined threshold (r∈mrk ∧ r∈Rp ∧FRp
≥

thFR
), meaning the set contains an association from input CDM with the acceptable

effectiveness for associations.

The name and the association end multiplicities (if created) are inherited from the
association from CDM with the highest effectiveness for associations.

Example. Using the result of the associations matching step, in the associations merging
step we need to create associations in the integrated CDM.

Let us recall the result of the classes merging step

IE = [AI,BI,CI, ∅] .

Since I
(4)
E = ∅, then sets M

(1)(4)
R , M (2)(4)

R , M (3)(4)
R , and M

(4)(4)
R are automatically

eliminated. The sets M (1)(1)
R , M (2)(2)

R , M (2)(3)
R , and M

(3)(3)
R are considered, but those sets

are empty (meaning there are no candidate sets to be mapped into associations).
Non-empty sets are M

(1)(2)
R and M

(1)(3)
R . The M

(1)(2)
R set contains two sets of

matched associations between the corresponding pairs of classes from M
(1)
E and M

(2)
E .

The number of the elements in the first set is equal to the number of input CDMs
(|{Z1, Z2, Z3}| = 3), thus this set is mapped into an association (ZI) between the
classes AI and BI in the integrated CDM. Assuming that CDM1 has the highest
effectiveness for associations, the ZI association inherits the name and end multiplicities
from the Z1 association. Further, if we assume that the A1 class is the source end of Z1
and the B1 class is the target end of Z1, then we have

name(ZI) = name(Z1), source(ZI) = AI, target(ZI) = BI,

lower(source(ZI)) = 1, upper(source(ZI)) = 1,

lower(target(ZI)) = 0, upper(target(ZI)) = ∞ .

The second set of the M
(1)(2)
R set contains only one element (|{Y 2}| = 1). If we

assume that CDM2 has the effectiveness for associations greater than or equal to the
threshold (thFR

), then this set is also mapped into an association (Y I) between the
classes AI and BI in the integrated CDM. The Y I association inherits the name and end
multiplicities from the Y 2 association. If we assume that the B2 class is the source end
of Y 2 and the A2 class is the target end of Y 2 (opposite from the case with Z1), then we
have

name(Y I) = name(Y 2), source(Y I) = BI, target(Y I) = AI,

lower(source(Y I)) = 0, upper(source(Y I)) = ∞,

lower(target(Y I)) = 0, upper(target(Y I)) = 1 .

1946 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

Finally, we come to the set M (1)(3)
R = {{X2}}, which contains only one set of

matched associations ({X2}). This set has only one association (|{X2}| = 1). We
already assumed that the effectiveness for associations for CDM2 is greater than or
equal to the threshold (thFR

), meaning that the {X2} set is also mapped into an
association (XI) in the integrated CDM. If we assume that the A2 class is the source end
of X2 and the C2 class is the target end of X2, then we have

name(XI) = name(X2), source(XI) = AI, target(XI) = CI,

lower(source(XI)) = 1, upper(source(XI)) = 1,

lower(target(XI)) = 0, upper(target(XI)) = ∞ .

Considering all of the above, we have RO = {ZI, Y I,XI}. The result of the
integration task (after the associations merging step) is shown in Fig. 6.

Fig. 6. Result of the integration task after the associations merging step

6.5. Generalizations

In this step it is necessary to create generalizations between the classes that are already
created in the integrated CDM. The input in the generalizations merging step
(Algorithm 12) is the result of the generalizations matching step (i.e. the list of sets of
sets of matched generalizations MG), the result of the classes merging step (i.e. the list
of class indicators IE), as well as the list of sets of matched classes ME .

Each set of matched generalizations mgk ∈ M
(i)(j)
G is a candidate to be mapped into

the generalization between the classes I(i)E ̸= ∅ and I
(j)
E ̸= ∅. The mgk set is mapped into

the generalization go ∈ GO if at least one of the following criteria is met:
– the number of elements in the mgk set is equal to the number of input CDMs

(|mgk| = n), meaning this set contains a generalization from each input CDM (this
is possible only if |M (i)

E | = |M (j)
E | = n), or

– the mgk set contains a generalization from CDM with the effectiveness for
generalizations greater than or equal to the defined threshold
(g ∈ mgk ∧ g ∈ Gp ∧ FGp

≥ thFG
), meaning the set contains a generalization from

input CDM with the acceptable effectiveness for generalizations.

Automatic Conceptual Database Design... 1947

Algorithm 12 The generalizations merging step

Require: ME = [M
(1)
E , . . . ,M

(m)
E]

Require: IE = [I
(1)
E , . . . , I

(m)
E]

Ensure: MG = [M
(1)(2)
G , . . . ,M

(1)(m)
G ,M

(2)(3)
G , . . . ,M

(2)(m)
G , . . . ,M

(m−1)(m)
G]

Ensure: GO

1: for all M (i)(j)
G ∈MG do

2: if I(i)E ̸= ∅ ∧ I
(j)
E ̸= ∅ then

3: for all mgk ∈M
(i)(j)
G do

4: cr met← false
5: if |mgk| = n then
6: cr met← true
7: else
8: for all g ∈ mgk do
9: if g ∈ Gp ∧ FGp ≥ thFG then

10: cr met← true
11: end if
12: end for
13: end if
14: if cr met then
15: go ← new generalization() ; g′ ← maxFG(mgk)

16: if specific(g′) ∈M
(i)
E ∧ general(g′) ∈M

(j)
E then

17: specific(go)← I
(i)
E ; general(go)← I

(j)
E

18: else if specific(g′) ∈M
(j)
E ∧ general(g′) ∈M

(i)
E then

19: specific(go)← I
(j)
E ; general(go)← I

(i)
E

20: end if
21: GO ← GO ∪ {go}
22: end if
23: end for
24: end if
25: end for

Due to the article length and the similarity of the generalizations merging step to
the associations merging step (there can be only one generalization between two classes,
while there can be more than one association between two classes) we do not provide an
example for the generalization merging step.

6.6. Tidying up

In the final step of the schema integration process, we create surrogate attributes, i.e.
attributes named id, for classes that do not already have an attribute named id and do not
have generalizations. If a class already has an attribute named id and it has
generalizations, then such attribute is removed from the class. Also, an operation named
PK which represents the primary key specification is added to classes that do not have
generalizations. Each PK operation has a single parameter named id (which corresponds
to a surrogate attribute of the class).

1948 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

7. Implemented Tool

This section presents the implemented tool named DBomnia3. DBomnia is the first online
web-based tool providing the functionality of CDM derivation from heterogeneous source
artifacts. Currently, DBomnia enables automatic CDM derivation from two different types
of source artifacts: textual specifications and collections of BPMs. Figure 7 shows the
architecture of the DBomnia tool, while Fig. 8 shows a screenshot of the tool in action.

The process of the CDM synthesis consists of four steps: (1) generation of the CDM
from the source collection of BPMs, (2) generation of the CDM from the input textual
specification, (3) integration of the generated CDMs, and (4) generation of the diagram
layout for the integrated CDM.

In the first step, the source collection of BPMs is sent to AMADEOS. AMADEOS
generates the corresponding CDM and responds with a JSON object containing the
generated CDM, execution status, etc. In the second step, the input textual specification
is sent to TexToData, which generates the corresponding CDM. TexToData also
responds with a JSON object containing generated CDM, error messages (if any), etc.

In the third step, DBomnia integrates the CDMs generated in the first two steps, by
applying the approach described in the previous sections. Then, in the fourth step, it sends
the integrated CDM to the Layouter service, which generates the corresponding diagram
layout. Layouter is the pre-existing service that provides the functionality of generating a
diagram layout for the input UML class diagram (or in our case, CDM represented by the
UML class diagram). Layouter responds with a file containing the generated layout.

Fig. 7. DBomnia architecture

3 http://m-lab.etf.unibl.org:8080/dbomnia

Automatic Conceptual Database Design... 1949

Fig. 8. Screenshot of DBomnia in action

Finally, DBomnia prepares and returns the response – a JSON object containing the
integrated CDM, diagram layout, and status information.

The user interface of the client web application is separated into four tabs: Source
Artifacts, Conceptual Data Model, Relational Data Model, and DDL Script. Tab Source
Artifacts contains fields that allow users to input a textual specification and upload a
collection of source BPMs. Upon the user’s request (click on the Generate CDM button),
all source artifacts are sent to DBomnia. When the client web application receives the
JSON response, it visualizes4 the class diagram in the browser (in the Conceptual Data
Model tab). The visualized diagram is editable, so users can additionally improve it.

DBomnia also supports all the subsequent steps of forward database engineering,
from CDM to the target physical database, by employing CDM2RDM, RDM2DDL, and
DDL2DB services, as described in [53].

8. Evaluation

This section presents the evaluation of the approach and the tool on three case studies.
One case study-based evaluation is described in detail, while only the most significant
results are provided for the other two.

8.1. Environment Setup

This subsection provides concrete values of the estimated measures for input CDMs, as
well as empirically determined thresholds and weights used by the tool.

Table 1 shows estimated measures for input CDMs generated by AMADEOS and
estimated measures for input CDMs generated by TexToData. The measures for input

4 Implementation is based on the mxGraph library (https://jgraph.github.io/mxgraph/)

1950 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

Table 1. Values of estimated measures for input CDMs

Tool FE FA FR FG

AMADEOS 0.76 0.00 0.41 0.00
TexToData 0.70 0.72 0.30 1.00

CDMs generated by AMADEOS are experimentally determined [11], while measures for
input CDMs generated by TexToData are determined from case study-based evaluation.
AMADEOS is able to generate a highly complete CDM structure, but generates only
id attribute which represents the surrogate key in each entity type. TexToData is able to
generate CDMs of less complete and less correct structure but with a more complete set
of attributes in each entity type. Also, AMADEOS does not generate generalizations.

Table 2 shows threshold and weight values. To eliminate only minor typographical
errors, the Levenshtein distance threshold is set to 1. The weight of attributes in
similarity calculation for classes in the current environment (with AMADEOS and
TexToData) does not play any role, because AMADEOS does not generate attributes
(except for the surrogate key attribute id ignored in the integration task). Currently, for
the same reason, the value of the similarity threshold for attributes is irrelevant. To keep
the attributes generated by TexToData, the effectiveness threshold for attributes is lower
than the effectiveness measure for attributes for TexToData.

Although AMADEOS generates associations with lower precision than classes, the
CDM generated by AMADEOS is expected to be more precise and more complete than
the CDM generated by TexToData regarding associations. To increase the completeness
of the associations in the integrated CDM, the environment is set to keep unmatched
associations from both input CDMs. We consider two associations a match if their
cardinalities (upper values of the respective member ends) are equal or if their name
similarity is very high. We only compare the cardinalities because we expect that the
CDM generated by AMADEOS will be more precise than the CDM generated by
TexToData regarding the participation constraints.

On the other hand, in order to reduce the number of excessive classes, the
environment is set up to keep only relevant unmatched classes, i.e. the effectiveness
threshold for classes is greater than the effectiveness measure for classes for AMADEOS
and TexToData. Currently, an unmatched class is considered to be relevant if it has at
least one attribute or at least one association or if it participates in at least one
generalization (the relevance threshold for classes is set to one, while the weight of
attributes and weight of associations and generalizations is also set to one).

Since AMADEOS does not generate generalizations, we want to keep generalizations
generated by TexToData (the effectiveness threshold for generalizations is less than the
effectiveness measure for generalizations for TexToData).

Note that we provided concrete values for thresholds and weights. Since currently
there can be only two input CDMs (CDM generated by AMADEOS and CDM generated
by TexToData), other values can be set up to achieve the same result. For example, if
we want to keep only relevant unmatched classes from both CDMs, then the value of the
effectiveness threshold for classes can be any value in the segment (0.76, 1], i.e. any value
greater than the maximum of the effectiveness measure for classes for AMADEOS and
TexToData.

Automatic Conceptual Database Design... 1951

Table 2. Values for thresholds and weights

Symbol Description Value

LD Levenshtein distance threshold 1
WA Weight of attributes in similarity calculation for classes 0.00

Wcard Weight of cardinalities in similarity calculation for associations 0.75
Wpc Weight of participation constraints in similarity calculation for associations 0.00
thSE Similarity threshold for classes 0.25
thSA Similarity threshold for attributes 1.00
thSR Similarity threshold for associations 0.20
thSG Similarity threshold for generalizations 1.00
thFE Effectiveness threshold for classes 0.80
thFA Effectiveness threshold for attributes 0.50
thFR Effectiveness threshold for associations 0.10
thFG Effectiveness threshold for generalizations 0.10
thRE Relevance threshold for classes 1.00
RWA Weight of attributes in relevance calculation for classes 1.00
RWR Weight of associations and generalizations in relevance calculation for classes 1.00

8.2. Case Study: Online Library

We evaluated the approach through the assessment of the CDM derived from a set of
heterogeneous source artifacts against the CDMs that are derived from sources of one
single type. Firstly, we prepared a sample source set of BPMs and a textual description of
the Online Library, as well as the reference (target) CDM (Fig. 9). Secondly, we evaluated
generated CDMs (CDM generated by AMADEOS from source BPMs, CDM generated
by TexToData from textual specification, and CDM generated by DBomnia) against the
reference CDM. Finally, we compared the results obtained by DBomnia against those
obtained by AMADEOS and TexToData.

Fig. 9. Reference CDM of the Online Library

1952 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

AMADEOS. The sample source set of BPMs (Fig. 10) represents two main processes in
the Online Library – Book Borrowing and Book Returning. In the first process: a member
creates a borrowing request for a copy of some book edition; a librarian registers the
borrowing and issues a book. In the second process: the member returns the borrowed
book, and the librarian registers the returned book.

Figure 11 shows the CDM derived from the source set of BPMs. When compared
against the reference CDM (Fig. 9):

1. all classes, four id attributes, and six associations
(BookEdition-CreateBookRequest-BookRequest,
BookRequest-RegisterBorrowing-Book Borrowed,
Member-CreateBookRequest-BookRequest,
Librarian-RegisterBorrowing-BookRequest,
Librarian-RegisteBorrowing-Book Borrowed,
Book-RegisterBorrowing-Book Borrowed) could be evaluated as correctly generated,

2. two id attributes and four associations (Librarian-RegisterReturnedBook-Book,
Librarian-ReceiveMessage BookRequest-BookRequest,
Member-SendMessage Book-Book, Member-ReceiveBook-Book Borrowed) could be
evaluated as surplus, and

Fig. 10. Sample set of BPMs: Book Borrowing (top), Book Returning (bottom)

Automatic Conceptual Database Design... 1953

3. one class (LibraryUser), 18 attributes, both generalizations, and two associations
(BookEdition↔Book, and Librarian↔Book Borrowed that represents the returning
of the book) are missing in the generated CDM.
Table 3 shows the results of quantitative evaluation based on the previous discussion.

Fig. 11. CDM generated by AMADEOS based on the source set of BPMs

Table 3. Quantitative evaluation of the CDM generated by AMADEOS

Concept Nc Nm Nw R P F

Classes 6 1 0 0.857 1 0.923
Attributes 4 18 2 0.182 0.667 0.286
Associations 6 2 4 0.75 0.6 0.667
Generalizations 0 2 0 0 – –

TexToData. Figure 12 shows the textual description of the Online Library, while Fig. 13
shows the CDM derived from the given textual description. The automatically generated
CDM has ten classes, 13 attributes, two generalizations, and only four associations. When
compared against the reference CDM (Fig. 9):
1. seven classes (library user, librarian, member, borrowing request, book,

book edition, and borrowing) and 11 attributes, both generalizations, and three
associations (book-belong-book edition, book edition-belongs-borrowing request,
member-creates-borrowing request) could be evaluated as correctly generated,

2. one association (book-borrowed-member return) and three classes (issue, register,
member return) could be evaluated as surplus,

3. two attributes (date in the member class and date in the borrowing request class)
could be evaluated as incorrectly generated (incorrect type), and

4. five associations, and nine attributes are missing in the generated CDM.
Table 4 shows the results of quantitative evaluation based on the previous discussion.

1954 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

Library users are librarians or members. Library user has name, email, username, and
password. Librarian has residence. Member has date of birth. Book edition has title, year,
ISBN, authors names, publishers names, fields, and UDC groups. Book has tag. Books belong
to book edition. Member creates borrowing requests. Borrowing request has date. Borrowing
requests belongs to book edition. Librarian registers borrowings and issues books. Member
returns borrowed book. Librarian registers returned book.

Fig. 12. Sample textual description of the Online Library

Fig. 13. CDM generated by TexToData based on the sample textual specification

Table 4. Quantitative evaluation of the CDM generated by TexToData

Concept Nc Nm Nw R P F

Classes 7 0 3 1 0.7 0.824
Attributes 11 9 2 0.55 0.846 0.667
Associations 3 5 1 0.375 0.75 0.5
Generalizations 2 0 0 1 1 1

DBomnia. When we use the sample set of BPMs (Fig. 10) and sample textual
description (Fig. 12) with DBomnia, we obtain the CDM (Fig. 14) containing eight
classes, 19 attributes, 12 associations, and two generalizations. When compared against
the reference CDM (Fig. 9):

1. seven classes, 16 attributes, both generalizations, and seven associations could be
evaluated as correct,

2. one class (member return) and corresponding id attribute, and five associations
(Librarian-RegisterReturnedBook-Book, Member-SendMessage Book-Book,
Book-borrowed-member return,
Librarian-ReceiveMessage BookRequest-BookRequest,
Member-ReceiveBook-Book Borrowed) could be evaluated as surplus,

3. two attributes (date in the Member class and date in the BookRequest class) could be
evaluated as incorrectly generated (incorrect type), and

Automatic Conceptual Database Design... 1955

4. only one association (Librarian↔Book Borrowed) and only four attributes (ISBN
and fields in the BookEdition class, and borrowing date and returning date in the
Book Borrowed class) are missing in the generated CDM.

Table 5 shows the results of quantitative evaluation based on the previous discussion.

Fig. 14. CDM of the Online Library generated by DBomnia

Table 5. Quantitative evaluation of the CDM generated by DBomnia

Concept Nc Nm Nw R P F

Classes 7 0 1 1 0.875 0.933
Attributes 16 4 3 0.8 0.842 0.821
Associations 7 1 5 0.875 0.583 0.7
Generalizations 2 0 0 1 1 1

Results discussion. Table 6 shows the overview of the quantitative evaluation (i.e. the
effectiveness measure) for AMADEOS, TexToData, and DBomnia. The presented results
show that DBomnia still does not generate 100% complete nor 100% correct target model.
However, the effectiveness measure for each CDM concept generated by DBomnia is
greater than or equal to the higher value of the effectiveness measure for the corresponding
concept generated by AMADEOS and TexToData. Although the automatically generated
CDM has one surplus class, it is easy to spot and simply delete such (surplus) classes –
unlike the correctly generated classes, such classes (probably) will not contain attributes
or will not have associations with other classes. We believe that it is easier to delete a
surplus class than to add a new class when it’s missing in the generated CDM.

The results show that the automatic derivation of the CDM from a set of heterogeneous
source artifacts is more effective than each independent automatic derivation of the CDM
based on sources of one single type only. Hence, this case study-based evaluation of the
approach and implemented tool confirm the research goal.

1956 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

Table 6. Overview of the quantitative evaluation for the Online Library

Effectiveness measure AMADEOS TexToData DBomnia

FE 0.923 0.824 0.933
FA 0.286 0.667 0.821
FR 0.667 0.5 0.7
FG – 1 1

8.3. Case Studies: Admission Exam and Student Jobs

In order to conduct a more extensive evaluation, compared to the illustrative example from
the previous subsection, we run two more case study-based evaluations as follows. Firstly,
two authors of the paper had to choose an arbitrary domain and create a set of at least ten
BPMs and a textual specification (at least 100 words) for the chosen domain. Secondly,
they had to (i) exchange created artifacts, (ii) manually design a reference CDM based on
received source artifacts, and (iii) evaluate CDMs generated by AMADEOS, TexToData,
and DBomnia against the manually designed reference CDM. Finally, the third author had
to inspect created artifacts and reference CDMs, as well as the entire evaluation process.

The chosen domains were Admission Exam and Student Jobs. Source artifacts5

consist of 12 BPMs and 112-word textual specification for Admission Exam, and ten
BPMs and 117-word textual specification for Student Jobs. Reference CDM6 for
Admission Exam contains 16 classes, 41 attributes, 25 associations, and three
generalizations, while reference CDM for Student Jobs contains 15 classes, 37 attributes,
18 associations, and three generalizations.

Table 7 shows the results of quantitative evaluation7 for both domains and all three
tools. Each row of the table contains values for one concept type (classes – E, attributes –
A, associations – R, or generalizations – G) of the generated CDM.

Results discussion. Table 8 shows the overview (only F-scores) of the quantitative
evaluation, while Fig. 15 shows the comparison of the F-score values. The obtained results
confirm the results obtained for the illustrative example, i.e. the effectiveness measure for
each CDM concept generated by DBomnia is greater than or equal to the higher value of
the effectiveness measure for the corresponding concept generated by AMADEOS and
TexToData. The proposed approach and implemented tool (DBomnia) exploit the best
features of other tools (as already mentioned, AMADEOS is able to generate a highly
complete CDM structure, while TexToData is able to generate CDMs of less complete
and less correct structure but with a more complete set of attributes in each entity type) to
achieve more effective derivation of the CDMs. Therefore, the evaluation of the approach
and implemented tool on three case-studies confirm the research goal. Since the results
of the case study-based evaluation are positive, we are now directed toward extensive
evaluation of the approach and implemented tool.

5 Source artifacts for both domains are available at:
https://gitlab.com/m-lab-research/ComSIS-2024/-/tree/main/01-SourceArtifacts

6 Reference CDMs for both domains are available at:
https://gitlab.com/m-lab-research/ComSIS-2024/-/tree/main/02-ReferenceCDMs

7 CDMs generated by all three tools for both domains are available at:
https://gitlab.com/m-lab-research/ComSIS-2024/-/tree/main/03-GeneratedCDMs

Automatic Conceptual Database Design... 1957

Table 7. Quantitative evaluation for Admission Exam and Student Jobs

Tool
Admission Exam Student Jobs

Nc Nm Nw R P F Nc Nm Nw R P F
A

M
A

D
E

O
S E 16 0 3 1 0.842 0.914 15 0 0 1 1 1

A 13 28 6 0.317 0.684 0.433 12 25 3 0.324 0.8 0.462
R 24 1 13 0.96 0.649 0.774 15 1 14 0.938 0.517 0.667
G 0 3 0 0 – – 0 3 0 0 – –

Te
xT

oD
at

a E 14 2 2 0.875 0.875 0.875 11 4 2 0.733 0.846 0.786
A 25 16 0 0.61 1 0.758 16 21 1 0.432 0.941 0.593
R 7 18 1 0.28 0.875 0.424 7 11 5 0.389 0.583 0.467
G 3 0 0 1 1 1 3 0 0 1 1 1

D
B

om
ni

a E 16 0 3 1 0.842 0.914 15 0 0 1 1 1
A 38 3 3 0.927 0.927 0.927 28 9 1 0.757 0.966 0.848
R 25 0 14 1 0.641 0.781 16 0 15 1 0.516 0.681
G 3 0 0 1 1 1 3 0 0 1 1 1

Table 8. Summary of the evaluation results

Measure
Admission Exam Student Jobs

AMADEOS TexToData DBomnia AMADEOS TexToData DBomnia
FE 0.914 0.875 0.914 1 0.786 1
FA 0.433 0.758 0.927 0.462 0.593 0.848
FR 0.774 0.424 0.781 0.667 0.467 0.681
FG – 1 1 – 1 1

D-1 D-2
0

25

50

75

100 91 100
88 79

91 100

F-
sc

or
e

[%
]

D-1 D-2
0

25

50

75

100

43 46

76
59

93 85

F-
sc

or
e

[%
]

D-1 D-2
0

25

50

75

100 77
67

42 47

78
68

F-
sc

or
e

[%
]

D-1 D-2
0

25

50

75

100

0 0

100 100100 100

F-
sc

or
e

[%
]

AMADEOS TexToData DBomnia

(a) (b)

(c) (d)

Fig. 15. Comparison of (a) FE , (b) FA, (c) FR, and (d) FG measures by tool per domain
(D-1 – Admission Exam, D-2 – Student Jobs)

1958 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

9. Conclusion

In this article we proposed an approach to the automatic CDM derivation from
heterogeneous source artifacts. The approach is based on the integration of CDMs that
are derived from source artifacts of one single type by already existing tools, whereby
the main characteristic of these CDMs is uncertainty. Uncertainty of CDMs
automatically derived from specific source artifacts is expressed and managed through
the effectiveness measure of generation of specific concepts of the input CDMs.

The approach is implemented by the DBomnia tool – the first online web-based tool
enabling automatic CDM derivation from a heterogeneous set of source artifacts, whereby
the currently supported source artifacts are BPMs and textual specifications. DBomnia
employs other tools (AMADEOS and TexToData) to generate CDMs from specific source
artifacts (AMADEOS derives CDM from BPMs, while TexToData derives CDM from
textual specifications) and then integrates the generated CDMs into a single unified CDM.

The approach and implemented tool were evaluated in three case studies. As expected,
evaluation proves that the implemented approach enables effective automatic derivation
of the conceptual database model from a set of heterogeneous source artifacts. Automatic
derivation of the conceptual database model from a set of heterogeneous source artifacts
is more effective than each independent automatic CDM derivation from sources of one
single type only.

In line with the long-term research goals, our future work will focus on the approach
and tool improvements and will include: work on semantic matching and combination of
multiple languages in one execution of the automatic CDM derivation, further
improvements of the specific CDM generators, inclusion of other types of source
artifacts, and thorough validation and verification. Our intention is also to evaluate the
approach with more complex real collections of BPMs and textual specifications.

Although the great advantage of the implemented multilingual tool is a large number
of supported languages, the semantic analysis (e.g. analysis of the acronyms, synonyms,
etc.) constitutes a great challenge and it is not considered in this paper. Taking that into
consideration, as well as the effort of increasing the effectiveness of the overall CDM
derivation process, we will focus on exploring the possibility of leveraging the ML
techniques in our approach.

References

1. Adamson, G.W., Boreham, J.: The use of an association measure based on character structure
to identify semantically related pairs of words and document titles. Information Storage and
Retrieval 10(7), 253–260 (1974)

2. Anam, S., Kim, Y.S., Kang, B., Liu, Q.: Designing a knowledge-based schema
matching system for schema mapping. Australasian Data Mining Conference (1 2015),
https://figshare.utas.edu.au/articles/conference contribution/Designing a knowledge-
based schema matching system for schema mapping/23095379

3. Axler, S.: Linear Algebra Done Right. Springer Cham (2023)
4. Banjac, G., Brdjanin, D., Banjac, D.: Towards automatic conceptual database design based

on heterogeneous source artifacts. In: Abelló, A. et al. (ed.) New Trends in Database and
Information Systems. pp. 487–498. Springer Nature Switzerland, Cham (2023)

5. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for database
schema integration. ACM Comput. Surv. 18(4), 323–364 (1986)

Automatic Conceptual Database Design... 1959

6. Berlin, J., Motro, A.: Database schema matching using machine learning with feature selection.
In: Pidduck, A.B., Ozsu, M.T., Mylopoulos, J., Woo, C.C. (eds.) Advanced Information
Systems Engineering. pp. 452–466. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

7. Bernstein, P., Madhavan, J., Rahm, E.: Generic schema matching, ten years later. Proc. VLDB
Endow. 4(11), 695–701 (2011)

8. Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A vision for management of complex models.
SIGMOD Rec. 29(4), 55–63 (dec 2000), https://doi.org/10.1145/369275.369289

9. Brdjanin, D., Maric, S.: An Approach to Automated Conceptual Database Design Based on the
UML Activity Diagram. Computer Science and Information Systems 9(1), 249–283 (2012)

10. Brdjanin, D., Maric, S.: Model-driven Techniques for Data Model Synthesis. Electronics 17(2),
130–136 (2013)

11. Brdjanin, D., Vukotic, A., Banjac, D., Banjac, G., Maric, S.: Automatic derivation of the initial
conceptual database model from a set of business process models. Computer Science and
Information Systems 19(1), 455–493 (2022)

12. Brdjanin, D., Banjac, G., Babic, N., Golubovic, N.: Towards the speech-driven database design.
In: Proc. of TELFOR 2022. pp. 1–4. IEEE (2022)

13. Brdjanin, D., Grumic, M., Banjac, G., Miscevic, M., Dujlovic, I., Kelec, A., Obradovic, N.,
Banjac, D., Volas, D., Maric, S.: Towards an online multilingual tool for automated conceptual
database design. In: Braubach, L., et al. (eds.) Intelligent Distributed Computing XV. pp. 144–
153. Springer (2023)

14. Bulygin, L.: Combining lexical and semantic similarity measures with machine
learning approach for ontology and schema matching problem. In: Proceedings of
the XX International Conference “Data Analytics and Management in Data Intensive
Domains”(DAMDID/RCDL’2018). pp. 245–249 (2018)

15. Chen, P.: English sentence structure and entity-relationship diagrams. Information Sciences
29(2-3), 127–149 (1983)

16. Choobineh, J., Mannino, M., Nunamaker, J., Konsynsky, B.: An expert database design system
based on analysis of forms. IEEE Transaction on Software Engineering 14(2), 242–253 (1988)

17. Choobineh, J., Lo, A.W.: CABSYDD: Case-based system for database design. Journal of
Management Information Systems 21(3), 281–314 (2004)

18. Cohen, W.W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for matching names
and records. In: Proc. of KDD 2003, Workshop on Data Cleaning, Record Linkage, and Object
Consolidation (2003)

19. Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun.
ACM 7(3), 171–176 (1964)

20. Date, C.: An Introduction to Database Systems, 8th edn. Addison-Wesley (2003)
21. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data

sources: a machine-learning approach. SIGMOD Rec. 30(2), 509–520 (may 2001),
https://doi.org/10.1145/376284.375731

22. Duchateau, F., Coletta, R., Bellahsene, Z., Miller, R.J.: (not) yet another matcher. In:
Proceedings of the 18th ACM Conference on Information and Knowledge Management. p.
1537–1540. CIKM ’09, Association for Computing Machinery, New York, NY, USA (2009),
https://doi.org/10.1145/1645953.1646165

23. Friedman, C., Sideli, R.: Tolerating spelling errors during patient validation. Computers and
Biomedical Research 25(5), 486–509 (1992)

24. Gali, N., Mariescu-Istodor, R., Hostettler, D., Fränti, P.: Framework for syntactic string
similarity measures. Expert Systems with Applications 129, 169–185 (2019)

25. Gotoh, O.: An improved algorithm for matching biological sequences. Journal of Molecular
Biology 162(3), 705–708 (1982)

26. Hamming, R.W.: Error detecting and error correcting codes. The Bell System Technical Journal
29(2), 147–160 (1950)

1960 Goran Banjac, Drazen Brdjanin, and Danijela Banjac

27. Harmain, H., Gaizauskas, R.: CM-Builder: A Natural Language-Based CASE Tool for Object-
Oriented Analysis. Automated Software Eng. 10(2), 157–181 (2003)

28. Hartmann, S., Link, S.: English sentence structures and EER modeling. In: Proc. of the 4th
Asia-Pacific conf. on conceptual modelling – Vol. 67. pp. 27–35 (2007)

29. Jaro, M.A.: Advances in record-linkage methodology as applied to matching the 1985 census
of tampa, florida. Journal of the American Statistical Association 84(406), 414–420 (1989)

30. Jouault, F., Allilaire, F., Bezivin, J., Kurtev, I.: ATL: A model transformation tool. Science of
Computer Programming 72(1-2), 31–39 (2008)

31. Kriouile, A., Addamssiri, N., Gadi, T.: An MDA Method for Automatic Transformation of
Models from CIM to PIM. American J. of Software Eng. and Applications 4(1), 1–14 (2015)

32. Levenshtein, I.V.: Binary codes capable of correcting deletions, insertions and reversals. Soviet
Physics Doklady 10(8), 707–710 (1966)

33. Lukovic, I., Mogin, P., Pavicevic, J., Ristic, S.: An approach to developing complex database
schemas using form types. Software: Practice & Experience 37(15), 1621–1656 (2007)

34. Madhavan, J., Bernstein, P., Doan, A., Halevy, A.: Corpus-based schema matching. In: 21st
International Conference on Data Engineering (ICDE’05). pp. 57–68 (2005)

35. Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with cupid. In: Proc. of VLDB
2001. pp. 49–58. Morgan Kaufmann (2001)

36. Magnani, M., Rizopoulos, N., Mc.Brien, P., Montesi, D.: Schema integration based on
uncertain semantic mappings. In: Conceptual Modeling – ER 2005. pp. 31–46. Springer (2005)

37. Malakasiotis, P., Androutsopoulos, I.: Learning textual entailment using svms and string
similarity measures. In: Proc. of the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing. p. 42–47. Association for Computational Linguistics, USA (2007)

38. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)

39. Nikiforova, O., Gusarovs, K., Gorbiks, O., Pavlova, N.: BrainTool: A tool for generation of the
UML class diagrams. In: Proc. of ICSEA 2012. pp. 60–69. IARIA (2012)

40. Omar, N., Hanna, P., McKevitt, P.: Heuristics-based entity-relationship modelling through
natural language processing. In: Proc. of AICS 2004. pp. 302–313 (2004)

41. OMG: Unified Modeling Language (OMG UML), v2.5. OMG (2015)
42. Overmyer, S.P., Benoit, L., Owen, R.: Conceptual modeling through linguistic analysis using

LIDA. In: Proc. of ICSE 2001. pp. 401–410. IEEE (2001)
43. Pottinger, R.A., Bernstein, P.A.: Merging models based on given correspondences. In:

Proceedings 2003 VLDB Conference, pp. 862–873. Morgan Kaufmann, San Francisco (2003),
https://www.sciencedirect.com/science/article/pii/B9780127224428500811

44. Purao, S.: APSARA: A tool to automate system design via intelligent pattern retrieval and
synthesis. SIGMIS Database 29(4), 45–57 (1998)

45. Rezaei, M., Fränti, P.: Matching similarity for keyword-based clustering. In: Fränti, P. et al.
(ed.) Structural, Syntactic, and Statistical Pattern Recognition. pp. 193–202. Springer (2014)

46. Rodrigues, D., da Silva, A., Rodrigues, R., dos Santos, E.: Using active learning techniques
for improving database schema matching methods. In: 2015 International Joint Conference on
Neural Networks (IJCNN). pp. 1–8 (2015)

47. Rodriguez, A., Garcia-Rodriguez de Guzman, I., Fernandez-Medina, E., Piattini, M.: Semi-
formal transformation of secure business processes into analysis class and use case models: An
MDA approach. Information and Software Technology 52(9), 945–971 (2010)

48. Sahay, T., Mehta, A., Jadon, S.: Schema matching using machine learning. In: 2020 7th
International Conference on Signal Processing and Integrated Networks (SPIN). pp. 359–366
(2020)

49. Sheetrit, E., Brief, M., Mishaeli, M., Elisha, O.: Rematch: Retrieval enhanced schema matching
with llms (2024), https://arxiv.org/abs/2403.01567

Automatic Conceptual Database Design... 1961

50. Shraga, R., Gal, A.: Powarematch: A quality-aware deep learning approach to
improve human schema matching. J. Data and Information Quality 14(3) (may 2022),
https://doi.org/10.1145/3483423

51. Shraga, R., Gal, A., Roitman, H.: Adnev: cross-domain schema matching using deep similarity
matrix adjustment and evaluation. Proc. VLDB Endow. 13(9), 1401–1415 (may 2020),
https://doi.org/10.14778/3397230.3397237

52. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of
Molecular Biology 147(1), 195–197 (1981)

53. Spasic, Z., Vukotic, A., Brdjanin, D., Banjac, D., Banjac, G.: UML-based forward database
engineering. In: Proc. of INFOTEH 2023. pp. 1–6. IEEE (2023)

54. Sugumaran, V., Storey, V.C.: Ontologies for conceptual modeling: their creation, use, and
management. Data & Knowledge Engineering 42(3), 251–271 (2002)

55. Tan, H.B.K., Yang, Y., Blan, L.: Systematic Transformation of functional analysis model in
Object Oriented design and Implementation. IEEE Trans. on Soft. Eng. 32(2), 111–135 (2006)

56. Thonggoom, O.: Semi-automatic conceptual data modelling using entity and relationship
instance repositories. PhD Thesis, Drexel University (2011)

57. Unal, O., Afsarmanesh, H.: Using linguistic techniques for schema matching. In: Filipe, J. et
al. (ed.) Proc. of ICSOFT 2006. pp. 115–120. INSTICC Press (2006)

58. Winkler, W.E.: String comparator metrics and enhanced decision rules in the fellegi-sunter
model of record linkage. (1990), https://eric.ed.gov/?id=ED325505

59. Zhang, J., Shin, B., Choi, J.D., Ho, J.C.: Smat: An attention-based deep learning solution to
the automation of schema matching. Symposium on Advances in Databases and Information
Systems (2021)

60. Zhang, Y., Di, M., Luo, H., Xu, C., Tsai, R.T.H.: Smutf: Schema matching using generative
tags and hybrid features (2024), https://arxiv.org/abs/2402.01685

61. Zhang, Y., Floratou, A., Cahoon, J., Krishnan, S., Müller, A.C., Banda, D., Psallidas, F., Patel,
J.M.: Schema matching using pre-trained language models. In: 2023 IEEE 39th International
Conference on Data Engineering (ICDE). pp. 1558–1571 (2023)

Goran Banjac is a Senior Teaching Assistant and PhD student at the Faculty of
Electrical Engineering, University of Banja Luka (Bosnia and Herzegovina). He is a
member of the M-lab Research Group. His research interests include model-driven
software development, business process modeling, databases, and UML. He has
published several research papers and articles.

Drazen Brdjanin is an Associate Professor at the Faculty of Electrical Engineering,
University of Banja Luka (Bosnia and Herzegovina), where he heads the M-lab Research
Group. His research interests focus on information systems and software engineering. He
has participated in several national and international R&D projects and also authored a
number of research papers and articles in the field of model-driven development.

Danijela Banjac is a Senior Teaching Assistant and PhD student at the Faculty of
Electrical Engineering, University of Banja Luka (Bosnia and Herzegovina). She is a
member of the M-lab Research Group. Her research interests include model-driven
software development, business process modeling, object-oriented information systems,
and UML. She has published several research papers and articles.

Received: March 01, 2024; Accepted: August 06, 2024.

