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Abstract. Given the exponential growth of data in modern society, data analysis
tools have become increasingly pivotal in a wide range of fields, such as business,
advertising, economy, medicine, biology, meteorology, astronomy, agriculture, and
others. As the time component often plays an essential role in data analysis, the ap-
plication and research of different methods for examining temporal data is among
the current interests of both practitioners and researchers. This paper presents the
main capabilities of the Framework for Analysis and Prediction (FAP), a free and
open source Java library designed for processing and mining time series data that
has been successfully applied both in research and education since its initial presen-
tation.
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1. Introduction

Past two decades influenced significant changes in processing huge amounts of data. The
need to process such ever-growing amounts of data from different sources all over the
world, importance of developing and applying different approaches of data mining and
machine learning has gained more and more attention. They are unavoidable instruments
of applications in computer science, ICT, and education [3, 57].

An emerging sub-field of data mining is temporal data mining that is focused on
knowledge discovery from huge amounts of temporal data [51]. Time series are the most
common form of temporal data which are composed of real values usually sampled at reg-
ular time intervals [28]. The chronologically represented arrays of numbers are collected
in different domains and they are used to express the change of the observed phenomena
over time, like financial sector, economics, engineering, meteorology, medicine [58, 31]
as well as in other areas of natural and social sciences [9].

Statistical analysis of time series [37] is mainly focused on identifying patterns, trend
analysis, seasonality and forecasting [17]. On the other hand, data mining of time series
is focused on tasks like prediction, classification, clustering, indexing, anomaly detec-
tion, data representation, distance measures and others [20, 63]. Laxman and Sastry [45]
considered and presented significant differences between statistical analysis and tempo-
ral data mining: data-mining approaches effectively analyze much larger volumes of data.
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More important is that their field of interest exceeds the scope and limitations of statistical
time-series analysis.

The numerous possibility of applying time series for storage, analysis, and visualiza-
tion of big data collections influenced a significant growth of interest in researching in
significant aspects and tasks of time-series data mining. The methods presented in [63]
have always claimed a particular superiority over previously achieved results.

Contemporary research in domain of time series data mining inspired authors to pro-
duce free and open sourced support and services that could assist and facilitate researching
new and comparing existing techniques in this domain. Usefulness of such freely avail-
able high-quality services could help in more productive and quality research but also
educational processes.

All mentioned highly motivated us to significantly improve our previously developed
framework for time series processing and analysis [24]. The extended version of FAP
(Framework for Analysis and Prediction) implements significant number of essential al-
gorithms in the field of time-series data mining: time-series representations, distance/simi-
larity measures, preprocessing, classification, classifier evaluation techniques with a focus
on efficiency, multi-threading, and resumability of time-consuming tasks.

In this paper, we will give a comprehensive analysis of the newly developed function-
alities and capabilities of FAP that are essential for researchers and educators to facilitate
their research and applications of time series data mining. All the features provided by
FAP were implemented from scratch; it does not utilize any other underlying libraries.

The rest of the paper is organized as follows. The second Section is devoted to an
extensive review of related work. Central Section 3 deals with various concepts of time
series analysis and data mining and their realization within FAP. Concluding remarks are
given in last Section.

2. Related Work

The interest in time series has increased dramatically in the past decade. The main rea-
son is the exponential growth of data available for various machine learning and decision
support system. A significant part of this data is available in form of time series. Conse-
quently, a large number of frameworks and systems which can help in time-series analysis
was developed and improved recently. This section will give an overview of these systems,
and also will elaborate the context and motivation for developing FAP.

The investigation of time series is usually based on two important methodologies: sta-
tistical analysis and data mining. Time series statistical analysis is an approach used to
analyze data points collected or recorded at specific time intervals using well established
methods from statistics and econometrics. This type of analysis helps identify patterns,
trends, and other characteristics within the data over time. On the other hand, data min-
ing is a newer discipline focused on analyzing complex, massive datasets to extract useful
knowledge. Time-series data mining involves analyzing time-dependent data for tasks like
forecasting and anomaly detection. Both approaches (statistical analysis and data mining)
have numerous systems which can offer assistance in corresponding time-series analy-
sis. Additionally, several high-level programming languages offer powerful packages and
libraries which can considerably help in various time-series tasks.
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In the market, there is a considerable number of systems that enable time-series analy-
sis relying on statistical and econometric concepts. Probably the most widely used is SAS.
SAS3 (Statistical Analysis System) is a complete software suite widely used for statistical
analysis and data management [38]. It offers several tools for time series modeling and
forecasting. Key components for time series analysis include:

1. SAS/ETS (Econometric Time Series): A specialized module designed for time series
analysis and forecasting, supporting models such as ARIMA, exponential smoothing,
state space models, and multivariate time series analysis. It includes functions for
model estimation, diagnostics, forecasting, and simulation.

2. SAS/STAT: Provides a wide range of statistical procedures, including time series
decomposition, autocorrelation analysis, spectral analysis, and structural time series
models. It also incorporates ARIMA and GARCH model fitting, unit root tests, and
handling missing values.

3. SAS Forecast Studio: A graphical interface that simplifies building and evaluating
time series forecasting models. It enables visual exploration, model selection, param-
eter specification, and forecast accuracy assessment, integrating with SAS/ETS and
SAS/STAT for seamless model estimation and forecasting.

SPSS4 is also very widely used and influential statistical software which provides
tools for statistical analysis, data management, and documentation. It offers following
key features for time series analysis: data management (import, merge, clean, recode, and
handle missing values in time series data), descriptive statistics (calculate measures like
mean, median, standard deviation, and percentiles to summarize time series data), time
series visualization, autocorrelation analysis, and forecasting (methods like ARIMA and
exponential smoothing, with accuracy assessment options).

GRETL5 (GNU Regression, Econometrics and Time-series Library) is a platform-
independent, open source software package for econometric analysis [6]. It offers a very
intuitive interface, parallelization, and an integrated powerful scripting language. In time-
series analysis several concept are provided; ARIMA, GARCH-type models, VARs and
VECMs (including structural VARs), unit-root and cointegration tests, Kalman filter, etc.

Stata6 is a widely used statistical software developed by StataCorp for data manipu-
lation, visualization, statistics, and automated reporting. It is widely used by researchers
in various fields, such as: economics, epidemiology, biomedicine, and sociology. Stata
also offers comprehensive tools for time series analysis: time series data management,
descriptive statistics, graphical analysis, and time series modeling.

On the other side of the spectrum of available time-series software there is general
data mining software with support for time-series. Since the number of these systems is
huge, we will limit our analysis only on non-commercial, research oriented software.

Weka7 (Waikato Environment for Knowledge Analysis) [64] is an open-source soft-
ware suite designed for machine learning and data mining tasks. It provides a collection
of algorithms and tools for data preprocessing, classification, regression, clustering, asso-
ciation rules, and visualization. Weka is particularly popular in educational and research

3 http://www.sas.com
4 https://www.ibm.com/spss
5 http://gretl.sourceforge.net/
6 https://www.stata.com/
7 https://ml.cms.waikato.ac.nz/weka
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communities due to its ease of use and comprehensive documentation. It has good ca-
pabilities for time series analysis and forecasting through a dedicated environment that
can be accessed via its graphical user interface. This environment allows users to de-
velop, evaluate, and visualize forecasting models. Additionally, there are packages like
TS-Classification that facilitate time series classification tasks in Weka.

RapidMiner8 is a Java-based data mining and machine learning platform offering fea-
tures like data loading, transformation, preprocessing, visualization, predictive analytics,
statistical modeling, evaluation, and deployment. It provides a graphical user interface
to design and execute analytical workflows called "Processes," which consist of multiple
"Operators" each performing a specific task. The output of one operator serves as input
for the next. RapidMiner can also be accessed via an API or command line, and its func-
tionality can be extended using R and Python scripts for custom operations. It provides
strong capabilities for time series analysis through its integrated time series extension.

ELKI9 (Environment for DeveLoping KDD-Applications Supported by Index Struc-
tures) is an open-source data mining software written in Java. It is primarily designed
for research in algorithms, with a strong focus on unsupervised methods such as cluster
analysis and outlier detection. ELKI facilitates time series analysis through its ability to
evaluate various distance measures and algorithms specifically designed for time series
data. Several time-series concepts are implemented in ELKI: distance measures, various
time-series algorithms and visualization tools.

KNIME10 (KoNstanz Information MinEr) [8] is a free, open-source platform for data
analytics, reporting, and integration. It uses a modular, "Building Blocks of Analytics"
concept for machine learning and data mining, allowing users to blend data sources and
perform tasks like preprocessing, modeling, and visualization through a graphical inter-
face, minimizing the need for programming. KNIME provides comprehensive tools for
time series analysis through its various components and extensions.

The third large group of time-series software is the group of programming languages
with powerful libraries for time-series analysis. Here we will give an overview of modern
and actively used languages with this property.

Python is a general-purpose programming language [69] which can be used for time
series analysis due to its extensive ecosystem of libraries and tools. These libraries offer a
variety of tools and models that can help in analysis and forecasting time series. Libraries
with functionalities for time-series forecasting, anomaly detection, and feature extraction
include: Tsfresh, Darts, Kats, GreyKite and AutoTS.

R11 is a comprehensive language that is well-suited for a wide variety of statisti-
cal analyses. It also offers a variety of packages designed for handling time series data.
Key packages include: forecast (methods like exponential smoothing, ARIMA, and state
space models for time series forecasting), tseries (tools for unit root tests, seasonality
tests, time series decomposition, detrending, and differencing), and zoo (support for ir-
regularly spaced time series, with efficient data structures for manipulation, subsetting,
merging, handling missing values, and aggregating data over irregular intervals).

8 https://altair.com/altair-rapidminer
9 https://elki-project.github.io/

10 https://www.knime.org/
11 https://www.r-project.org
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MATLAB is a high-level programming and numeric computing platform developed
by MathWorks [25]. It is widely used by engineers and scientists for a variety of appli-
cations, including data analysis, algorithm development, and modeling. Key features for
time-series manipulation include: time series objects (Timeseries and timetable objects
for efficient manipulation, indexing, and visualization of time series data), signal process-
ing toolbox (functions for filtering, spectral analysis, Fourier and wavelet analysis, and
time-frequency analysis on time series data), econometrics toolbox (tools for economet-
ric time series analysis, including model estimation, forecasting, unit root tests, panel data
analysis, and multivariate time series models), and financial toolbox (focuses on financial
time series analysis, offering tools for analyzing market data, portfolio optimization, and
risk measurement).

Julia [59] is a high-level, high-performance programming language designed for tech-
nical computing, particularly in areas like data science, machine learning, and numerical
analysis. It also has strong capabilities for time series analysis. Two popular packages are:
(1) TimeSeries.jl - A comprehensive package for handling time series data with efficient
structures like TimeArray and TS. It provides tools for data manipulation, visualization,
resampling, merging, differencing, and rolling window calculations, models such as AR,
MA, and ARIMA; (2) Econometrics.jl - Focused on econometric modeling, it offers
functions for time series models like ARDL, VAR, GARCH, and structural time series.
The package includes tools for model estimation, hypothesis testing, diagnostic checking,
and forecasting in econometrics.

Clearly, three types of software packages for time-series analysis and mining can be
distinguished:

1. Statistical and econometric software systems that provide methods and tools for time-
series data.

2. General-purpose data mining and machine learning systems that have extensions for
time-series tasks.

3. General-purpose programming languages with libraries for time-series analysis.

Evidently, all of these packages, frameworks and systems have some disadvantages.
Some of them are not free or open sourced, many of them are not primarily made for time
series and the systems from the third group can’t be used by non-programmers.

The system FAP, presented in this paper, tries to overcome all of these disadvantages.
It is free and open-sourced. It is designed to work with time series and encompasses all
main concepts for time-series analysis (pre-processing tasks, distance measures, time-
series representations); and for time-series mining (indexing, classification, prediction).
Finally, it can be used by experts from various fields since it can be used without any pro-
gramming experience. In the past 15 years we have developed and constantly upgraded
FAP system making it up-to-date with modern findings in time-series mining field. Fur-
thermore, we successfully applied FAP in various domains both for research [42] and
educational [41] purposes.

3. Essential functionalities of FAP for high quality time-series data
mining

The core sub-packages of the FAP library (Fig. 1) define basic interfaces and classes
for implementing various time series analysis and data mining concepts such as data
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points, time series, datasets, representations (data), distance measure (distance), clas-
sifiers (classifier), classifier performance evaluators (evaluator), classifier trainers and
distance measure tuners (trainer), predictors (predictor), as well as for loading data
points from strings (input), and basic classes for checked and unchecked exceptions
thrown within the library (exception).

callback

classifierdistance

dm

evaluator

exceptioniopredictor

representation trainer

util

core

exception

distancedata classifier evaluator trainer

inputpredictor

Fig. 1. Sub-packages of the FAP library

Specific implementations of the various time series processing tasks are provided in
the appropriate first-level sub-packages. For example, the fap.core.distance package de-
fines the Distance interface along with the auxiliary abstract class AbstractDistance, and
classes that represent various distance measures by implementing that interface or extend-
ing the auxiliary class are placed in the fap.distance sub-package.

Since all base interfaces extend the Serializable interface and all classes offer pa-
rameterless constructors as well as public getter and setter methods for their properties,
the FAP library also supports the JavaBeans standard.

In the rest of this section, we will provide an overview of the capabilities of the FAP
library. The review will not cover the predictors (since they are in early stage of devel-
opment) nor the fap.core.input, fap.io, and fap.dm sub-packages (since they deal with
technical issues that are not necessary to understand the main functionalities of the frame-
work). Furthermore, for brevity, the utility classes of the fap.util sub-package, which
contain mathematical, statistical, and accessory methods intended to facilitate working
with threads, strings, files, datasets, and time series (including preprocessing algorithms
such as shifting, scaling, z-normalization, mean normalization, min-max normalization,
maximum absolute normalization, and decimal scaling), will also be omitted.

To provide a more comprehensive view, the UML diagrams show only a represen-
tative subset of the constructors and methods of the classes, and only the types of their
parameters.
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3.1. Time Series and Representations

Time series are implemented in the form of a list of two-dimensional data points (Fig.
2) where the y coordinate describes the observed phenomenon at the timestamp specified
by the x coordinate. A general assumption of all FAP classes that perform tasks related
to time series processing (for example, calculating the distance between them) is that the
data points are chronologically ordered (i.e., the x coordinate of the i-th element of the
time series is less than the x coordinate of the (i+ 1)-th element).

TimeSeries
- int index
- double label
+ TimeSeries()
+ TimeSeries(boolean)
+ void addRepr(Representation)
+ <T extends Representation> T getRepr(Class<T>)
+ Collection<Representation> getAllReprs()
+ int getIndex()
+

void setIndex(int)+
double getLabel()

+ void setLabel(double)

Dataset

+ Dataset()
+ Dataset(boolean)
+
+ List<Dataset> split(int, Random, boolean)

List<Dataset> divide(double, Random, boolean)

<<interface>>
Representation

+ double getValue(double)
+ Object[] getRepresentation()

DataPoint

+ double getX()

void setX(double)+
+ double getY()

+ void setY(double)

DataPoint()+
DataPoint(double, double)+

Serializable Comparable

List

Serializable

Fig. 2. Basic classes and interfaces

Each time series can be assigned a class label, an index, and a collection of repre-
sentations. The index represents the unique identifier of the time series within the dataset
to which it belongs (providing unique indices is the user’s responsibility). It is used by
distance measures to store calculated distances in memory (an optional feature that, when
performing certain tasks, allows avoiding multiple calculation of distances between the
same pairs of time series and thereby speeding up execution) and by kNN classifiers in
combination with distance and neighbor matrices. A more detailed insight into how the
index is used is given in the corresponding subsections.

To create an (indexed) time series, it is sufficient to specify the class label, index, and
chronological list of its values. The x coordinates will be automatically initialized with
values from 0 to n-1, where n is the number of elements in the list. For example, the
following line of code creates a new time series with label 1.0, index 0, and values 2.0,
3.0, and 4.0 at timestamps 0.0, 1.0, and 2.0:

TimeSeries ts = new TimeSeries (1.0, 0, 2.0, 3.0, 4.0);

By default, time series are stored in ArrayLists. If we want to use LinkedLists instead,
we just need to add true as the first parameter of the constructor:

TimeSeries ts = new TimeSeries(true , 1.0, 0, 2.0, 3.0, 4.0);

Datasets represent lists of time series, where, analogously to time series, ArrayLists
are used for storage by default. By specifying the boolean value true as the first parameter
of the constructor, the data structure for storing the time series will be LinkedList.

The Dataset class offers several methods for partitioning datasets into two (divide)
or two or more subsets of approximately the same size (split), with the ability to control
shuffling and stratification. Thus, by applying the divide(20.0) method, a list containing
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two stratified subsets of the given dataset is obtained: the first subset will contain 20% and
the second 80% of its time series. Similarly, a list of 10 stratified subsets of approximately
the same size is obtained utilizing the split(10) method. The obtained subsets will be
stored in the same type of list as the original dataset.

According to the definition given by Esling and Agon [20], a representation of a time
series A of length n is a model Ā of length m (where m≪n) that closely approximates
A. FAP’s interface requires classes implementing time series representations to be able to
return the value of the time series at a given timestamp according to their model, and also
the representation itself in the form of an array (Fig. 2).

The fap.representation sub-package offers implementation of several time-series
representations: based on discrete Haar wavelet transform [36, 23, 1, 62, 12], discrete Fourier
transform [4, 21, 54, 55, 66], spline [40], Piecewise Linear Approximation (PLA) [34],
Piecewise Aggregate Appoximation (PAA) [32, 67, 35, 47], Indexable Piecewise Linear
Approximation (IPLA) [15], Piecewise Aggregate Appoximation (PAA) [32, 67, 35, 47],
Adaptive Piecewise Constant Approximation (APCA) [33], and Symbolic Aggregate Ap-
proximation (SAX) [47, 46].

3.2. Distance Measures

Distance measures should implement the Distance interface, declaring a single method
whose task is to return the distance between two time series passed as its parameters (Fig.
3).

AbstractDistance

+ void clearStorage()
+ void setStoring(boolean)
+ boolean isStoring()
+ void store(TimeSeries, TimeSeries, double)
+ double recall(TimeSeries, TimeSeries)

<<interface>>
Distance

+ double distance(TimeSeries, TimeSeries)Serializable

Fig. 3. Distance measures

All the distance measures in the fap.distance sub-package inherit the abstract class
AbstractDistance offering the ability to store calculated distances between pairs of time
series for reuse, which can speed up the execution of some tasks. The basic condition for
using this mechanism is that the time series are assigned unique indices (see the previous
subsection), namely, distances are stored in a (thread-safe) hash map whose keys are the
indices of the time series. In addition, all of the distance measures implement the Copyable

auxiliary interface discussed in subsection 3.6.
Listing 1 shows the implementation of the Manhattan distance as an example of uti-

lizing this mechanism. Before calculating the distance between two time series, it should
be checked whether the distance has already been calculated and saved in memory. This
is achieved by relying on the recall method which returns NaN if the requested distance is
not yet stored in the hash map. Memorizing new distances is achieved by calling the store

method, and the utilization of the storage mechanism is controlled via the setStoring
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Listing 1. Implementation of the Manhattan distance relying on the mechanism for storing
calculated distances

double distance = recall(series1 , series2);
if (! Double.isNaN(distance))

return distance;

int len = IncomparableTimeSeriesException.checkLength(series1 , series2);

distance = 0;

for (int i = 0; i < len; i++) {

double y1 = series1.getY(i);
double y2 = series2.getY(i);

distance += Math.abs(y1 - y2);

}

store(series1 , series2 , distance);

return distance;

method. Additionally, any distance measure that uses this feature must clear the contents
of the underlying hash map by calling the clearStorage method if the value of any of its
parameters that affect the distance between time series changes.

Currently, the following distance measures based on linear matching of time series
data points are implemented [18, 11, 2]: Euclidean, Manhattan, Chebyshev, Minkowski,
Canberra, Kulczynski, Lorentzian, Soergel, Sørensen (Bray-Curtis), and Wave-Hedges.
Within them, 0/0 is treated as 0, and the zero denominator is replaced with the value
provided by the getZeroDenominator method of the MathUtils auxiliary class of the fap.

util sub-package, as recommended in [11].
The list of implemented elastic distance measures includes Dynamic Time Warp-

ing (DTW) [7], Longest Common Subsequence (LCS) [61], Edit distance with Real
Penalty (ERP) [13], Edit Distance on Real sequence (EDR) [14], and Time Warp Edit
Distance (TWED) [49]. Their elasticity can be adjusted by applying the Sakoe-Chiba
[56] or Itakura [30] global constraints.

3.3. Classifiers

In order for a class to be used to classify time series, it must implement the Classifier

interface (Fig. 4), which declares two methods. The initialize method serves for (op-
tional) initialization of the classifier and is not intended for its training. Classification is
realized through the classify method, which should return the predicted class label.

Distance-based classifiers should implement the DistanceBasedClassifier interface
that extends the base interface with getter/setter methods to access and update the distance
measure to rely on. The abstract convenience class AbstractDistanceBasedClassifier

stores the distance measure in the distance field with protected access level.
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<<interface>>
Classifier

+ void initialize(Dataset)
+ double classify(TimeSeries)

Serializable

<<interface>>
DistanceBasedClassifier

+ Distance getDistance()
+ void setDistance(Distance)

AbstractDistanceBasedClassifier
# Distance distance
+ Distance getDistance()
+ void setDistance(Distance)

Fig. 4. Classifiers and distance-based classifiers

Presently, the fap.classifier.NN sub-package offers the implementation of the near-
est neighbor (1NN) rule [16], the majority-voting kNN classifier [22, 50] and several of its
weighted variants relying on the inverse of the distances [19], the inverse of the squared
distances [50, 44, 60], Dudani’s weighting scheme [19], the dual distance-weighted func-
tion [26], the uniform and dual-uniform weighting techniques [27], Zavrel’s weighting
scheme [68], Macleod’s weighting function [48], the neighbours’ ranks [19], and the
Fibonacci weighting function [52]. In the case of weighted kNN variants based on the
inverse and inverse of the squared distances, to avoid division by zero, a small value
is added to the denominator. By default, it is initialized with the value returned by the
getZeroDenominator method of the utility class MathUtils of the fap.util sub-package.

By implementing the Multithreaded and Copyable auxiliary interfaces, all NN classi-
fiers enable multi-threaded execution of the classification process and making copies of
themselves (see subsection 3.6 for details).

For additional acceleration of classification, NN classifiers also support the use of
pre-generated distance and neighbor matrices which can be set and accessed through the
setDistances, setNeighbours, getDistances, and getNeighbours methods.

A distance matrix is a (diagonal) matrix that in the intersection of the i-th row and
the j-th column contains the distance between the time series with indices i and j of the
given dataset. As an example, part of the distance matrix generated by applying the DTW
distance measure to the SyntheticControl dataset from the UCR Time Series Classification
Archive [5] is given in Table 1. Sub-package fap.dm contains classes for (multi-threaded)
generation of distance matrices.

The intersection of the i-th row and the j-th column of the neighbor matrix contains
the index of the j-th nearest neighbor of the time series with index i in the given dataset.
Table 2 shows part of the neighbor matrix generated by applying the DTW distance mea-
sure to the SyntheticControl dataset.

3.4. Evaluators

Classifier evaluators should implement the Evaluator interface depicted in Fig. 5. The
classifier performance evaluation algorithm should be implemented within the evaluate

method, which has three parameters: the trainer (see the next subsection), the classifier,
and the whole dataset. The evaluator should split the dataset into test and training subsets,
train the classifier using the training set and the trainer, and evaluate the performance of
the trained classifier on the test set. As the result, the method should return the classifica-
tion error rate. This same value should be returned by the getErrorRate method, and the
result of the call to the getMisclassified method should be the number of misclassified
time series.
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Table 1. The first ten rows and columns of the distance matrix of the SyntheticControl dataset
generated by applying the DTW distance measure

1 2 3 4 5 6 7 8 9 10
1 0
2 24.42 0
3 25.33 22.43 0
4 22.90 26.85 25.74 0
5 31.99 23.16 30.41 30.67 0
6 35.06 22.19 33.38 31.65 23.53 0
7 34.63 25.50 31.03 28.95 25.81 24.12 0
8 26.52 32.72 30.17 24.70 34.85 35.59 31.54 0
9 32.69 26.65 25.22 33.74 41.46 41.56 31.07 30.77 0
10 21.22 26.66 31.62 23.26 32.28 32.32 28.81 26.14 27.32 0

Table 2. Ten nearest neighbors of the first ten time series of the SyntheticControl dataset obtained
by applying the DTW distance measures

1 2 3 4 5 6 7 8 9 10
1 322 305 320 10 12 14 26 49 321 4
2 342 322 338 17 348 313 324 49 12 31
3 310 323 38 347 333 2 340 315 349 316
4 12 310 305 22 28 343 21 1 10 322
5 309 345 12 311 47 48 50 330 319 2
6 44 2 36 5 30 7 346 339 311 50
7 41 324 330 348 44 12 48 311 309 47
8 18 12 28 16 27 305 328 350 4 341
9 303 334 38 329 307 337 315 350 306 37
10 305 317 1 49 20 28 17 4 320 350



1390 Zoltán Gellér, Vladimir Kurbalija, and Mirjana Ivanović

The abstract convenience class AbstractEvaluator stores the classification error in
the errorRate and the number of missclassified time series in the misclassified field
with protected access level.

<<interface>>
Evaluator

+ double getErrorRate()
+ int getMisclassified()
+ double evaluate(Trainer, Classifier, Dataset)

AbstractEvaluator
# double errorRate
# int misclassified
+ double getErrorRate()
+ int getMisclassified()

Serializable

Fig. 5. Classifier evaluators

The fap.evaluator sub-package provides the following classes that implement the
most common evaluation techniques [1, 60, 29]:

– HoldoutEvaluator - applies the Holdout method: a given percentage of the dataset
constitutes the training set, and the rest is used as the test set.

– CrossValidationEvaluator - performs the cross-validation algorithm: the dataset is
divided into k approximately equal subsets of which the union of k−1 subsets is used
for training and one for testing. The procedure is repeated until each of the k subsets
has been used as a test set (exactly) once. The classification error is calculated as the
average of the errors obtained over the k test subsets.

– LeaveOneOutEvaluator - executes the leave-one-out procedure: the classifier is trained
on a training set that contains all the time series of the original dataset except for one
that is reserved for testing. The procedure is repeated until each time series of the
initial dataset is excluded from the training process (and used for testing) exactly
once.

The parameters of the HoldoutEvaluator and CrossValidationEvaluator classes allow
the choice between stratified and non-stratified partitioning. In addition, by specifying an
array of random seed values, a repeated variant of these two methods can be applied,
where before each application, random shuffling of the initial dataset is performed based
on the corresponding seed value. The final error rate is obtained by averaging over all
repeated evaluations.

All three classes implement the Callbackable, Resumable, Multithreaded, and also
the Copyable auxiliary interfaces (see subsection 3.6). Evaluator multi-threading takes
precedence over trainer and classifier multi-threading, which means that in the case of
multi-threaded evaluation, the number of threads of the trainer (when the evaluator per-
forms the training multi-threaded) and the classifier will be set to 1 (if they implement the
Multithreaded interface).

In the case of the LeaveOneOutEvaluator class multi-threaded execution requires that
both the trainer and the classifier implement the Copyable interface (otherwise it will revert
to single-threaded execution). This is necessary because the evaluation of the classifier
in each iteration is reduced to the classification of a single time series, while all other
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time series of the dataset are used for training the classifier, i.e. multi-threaded evaluation
requires parallelization of training: each thread must have its own trainer and classifier.

The leave-one-out and cross-validation methods also offer the possibility of sequen-
tial evaluation of the classifier over individual splits of the dataset into training and test
subsets. In each iteration, the classifier is tested multi-threaded on the test set after train-
ing on the training set. This approach does not require the implementation of the Copyable

interface by either the trainer or the classifier.
In Figures 6 and 7, which illustrate the difference between full and partial paralleliza-

tion on the example of m-fold cross-validation, C denotes the classificator, C(i) the i-th
copy of C trained on the training set trainset(i) constructed in the i-th iteration, and
testset(i, j) the j-th time series of the test set corresponding to the i-th iteration. If
both the trainer and the classifier implement the Copyable interface (or if no trainer is
specified and the classifier implements it), the holdout and cross-validation evaluators
apply full parallelization by default.

 

train(C(1), trainset(1))
train(C(2), trainset(2))

train(C(m), trainset(m))
...

C(1) ← testset(1, 1)

C(1) ← testset(1, n1)

...

C(m) ← testset(m, nm)

C(m) ← testset(m, 1)

...
...

FixedThreadPool

Fig. 6. Full parallelization of m-fold cross-validation

 

C ← testset(i, 1)
C ← testset(i, 2)

C ← testset(i, ni)

...train(C, trainset(i))

1 ≤ i ≤ m
FixedThreadPool

Fig. 7. Partial parallelization of m-fold cross-validation

Listing 2 demonstrates the evaluation of the 1NN classifier paired with the DTW dis-
tance measure over the FiftyWords dataset using 3 times repeated 10-fold cross-validation.
The first parameter of the constructor of the evaluator determines the number of folds (10),
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Listing 2. Evaluating the 1NN classifier paired with the DTW distance measure on the
FiftyWords dataset with 3 times repeated 10-fold stratified cross-validation

Dataset dataset = DatasetUtils.loadDataset("FiftyWords");
Distance distance = new DTWDistance ();
Classifier classifier = new NNClassifier(distance);
Trainer trainer = null;
Evaluator evaluator =

new CrossValidationEvaluator (10, new long[] {1, 2, 3}, 0);

double error = evaluator.evaluate(trainer , classifier , dataset);
ThreadUtils.shutdown(evaluator);

the second parameter is an array of seed values (1, 2, 3) that should be used to initialize
the random number generator utilized for shuffling the dataset before each run, and the
last parameter defines the number of threads (0 means that it should use as many threads
as processors are available to the Java Virtual Machine). Due to optimization, the under-
lying executor service is not automatically shut down after the evaluation is completed.
Currently, shutdown should be initiated by the user.

The getResults() method of the HoldoutEvaluator and CrossValidationEvaluator

classes returns an array of FoldResult objects (Fig. 8) that describe the results of individ-
ual iterations. In the case of the Holdout evaluator, iterations represent runs, and in the
case of cross-validation, they correspond to folds. The FoldResult class defines only pub-
lic fields that store the training and test sets, the number of misclassified time series of the
test set along with the error rate, as well as the expected error and the list of the optimal
parameter values found by the trainer (provided that the trainer supports retrieving them
by implementing the ParameterTrainer interface presented in the next subsection).

+

FoldResult
+ Dataset testset
+
+

Dataset trainset

double error
double expectedError
List<Comparable<?>> bestParams

int misclassified

+
+

Fig. 8. A class for storing the results of individual iterations of the holdout and cross-validation
evaluators

3.5. Trainers

Training a classifier on a given training set is the task of the train method declared by
the Train interface shown in Fig. 9. Its result should be the expected classification error,
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which should also be returned by the getExpectedError method. In the case of distance-
based classifiers, through the affectsDistance method, the trainer should report whether
it changes the parameters of the distance measures (this information is used by the evalua-
tors described in the previous subsection to optimize the evaluation process when storing
calculated distances between pairs of time series is enabled). Its default return value is
false.

For convenience, the AbstractTrainer class stores the expected error and information
about whether the training affects the distance measure in fields with protected access
level.

Serializable

<<interface>>
Trainer

+ boolean affectsDistance()
+ double getExpectedError()
+ double train(Classifier, Dataset)

AbstractTrainer
# boolean affectsDistance
# double expectedError
+ boolean affectsDistance
+
+

void setAffectsDistance(boolean)
double getExpectedError

Fig. 9. Classifier trainers and distance measure tuners

The ParameterTrainer interface (Fig. 10) of the fap.trainer sub-package extends the
Trainer interface by declaring methods for trainers that tune the value of a single param-
eter of a classifier or a distance measure (the type T of the parameter must implement the
Comparable interface). Such trainers should provide getter and setter methods for the list
of possible parameter values, the evaluator that evaluates their impact on classifier per-
formance, and the sub-trainer that tunes some other parameter of the classifier or distance
measure. In this way, specifying sub-trainers opens up the possibility of chaining a series
of trainers.

After completing the training, the getBestValue method should return the optimal
value of the parameter (the one that generated the smallest classification error). The return
value of the getParameters method should be a list of optimal values of all the parameters
tuned by the chained trainers: the first element of the list is the optimal value of the
parameter tuned by the given trainer (and returned by the getBestValue method), the
second element is the optimal value of the parameter tuned by the sub-trainer, and so on.
Furthermore, when the setParameters method is called, the parameter trainer should set
the parameter value to the first value of the specified list, and pass the rest of the list via
the same method to the sub-trainer.

The AbstractParameterTrainer abstract class (Fig. 10) provides basic fields and meth-
ods for parameter trainers (it implements the ParameterTrainer interface and extends the
AbstractTrainer class), including both sequential and parallel finding the optimal value.
Since such a general implementation has no knowledge of which parameter it is tuning,
nor whether it is a classifier parameter or a distance measure parameter, it is necessary
to provide an auxiliary object that will assign the current value with the corresponding
parameter. Such an object should implement the Modifier interface (Fig. 11), which de-
fines two methods: set for assigning a given value to the parameter, and affectsDistance,
which should report whether the parameter belongs to a distance measure (true) or a clas-
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<<interface>>
ParameterTrainer

+ List<T> getValues()
+ void setValues(List<T>)
+ Evaluator getEvaluator()
+ void setEvaluator(Evaluator)
+ ParameterTrainer<?> getTrainer()
+ void setTrainer(ParameterTrainer<?>)
+ T getBestValue()
+ List<Comparable<?>> getParameters()
+ void setParameters(Classifier, List<Comparable<?>>)

T

Trainer

+

AbstractParameterTrainer
+ List<T> values
+
+

Evaluator evaluator

T bestValue
List<Comparable<?>> parameters
Modifier<T> modifier
Modifier<T> getModifier()
setModifier(Modifier<T> modifier)

ParameterTrainer<?> trainer

+
+
+
+

T

DoubleTrainer IntegerTrainer

Fig. 10. Types for tuning the values of individual parameters of classifier or distance measures

sifier (false). The DistanceModifier and ClassifierModifier sub-interfaces contain only
the corresponding (default) implementation of the affectsDistance method.

<<interface>>
Modifier

+ void set(Classifier, T)
+ boolean affectsDistance()

T <<interface>>
DistanceModifier

T

<<interface>>
ClassifierModifier

T

Fig. 11. Interfaces for parameter-modifier classes

An example of using trainers and modifiers to evaluate the weighted kNN classifier
based on the Dudani’s weighting function [19] and paired with the Sakoe-Chiba [56] con-
strained DTW [7] distance measure using nested cross-validation [65] is given in Listing
3. The optimal combination of the number of nearest neighbours and the width of the
warping window is determined by applying 9-fold cross-validation within each iteration
of the 10-fold cross-validation algorithm used to evaluate the classifier performance. The
number of nearest neighbors is chosen from the interval between 1 to 10, and the (rela-
tive) width of the warping window from the interval between 0% to 25% of the time series
length, both values are increased in unit steps.

Based on the result shown in Listing 4, it can be seen that the (average) classifica-
tion error (rounded to 3 decimal places) was 0.050, i.e. approximately 5% of the time
series of the MoteStrain dataset were misclassified (the dataset was preprocessed using
Paparizzo’s script [53]). In the first iteration of the evaluation process, the smallest error
(0.046) over the training subset was obtained by a combination of one (1) nearest neigh-
bor and a warping-window width that was 14% of the length of the time series. The actual
classification error was 0.023 (calculated over the test subset by applying the classifier
and distance measure trained over the training subset).
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Listing 3. Evaluation of the weighted kNN classifier using nested cross-validation (utiliz-
ing Dudani’s weighting function in combination with the Sakoe-Chiba constrained DTW
distance measure)

Dataset dataset = DatasetUtils.loadDataset("MoteStrain");
Distance distance = new SakoeChibaDTWDistance(true);
Classifier classifier = new DudaniKNNClassifier(distance);

Evaluator subEvaluator = new CrossValidationEvaluator (9);
DoubleTrainer subTrainer =

new DoubleTrainer(Modifiers.ELASTICITY , 0d, 25d);
subTrainer.setEvaluator(subEvaluator);

IntegerTrainer trainer = new IntegerTrainer(Modifiers.KNN , 1, 10);
trainer.setTrainer(subTrainer);

Evaluator evaluator = new CrossValidationEvaluator (10, 0);
double error = evaluator.evaluate(trainer , classifier , dataset);

ThreadUtils.shutdown(evaluator);

System.out.format("%.3f\n", error);

System.out.println("error , expected , parameters");
for (FoldResult fr : (( CrossValidationEvaluator) evaluator).getResults ())

System.out.format("%.3f, %.3f, " + fr.bestParams + "\n",
fr.error , fr.expectedError);

The fap.trainer.Modifiers class defines a modifier for each parameter of each classi-
fier of the sub-package fap.classifier.NN and each distance measure of the sub-package
fap.distance that relies on parameters. Listing 3 uses two of these modifiers: KNN to set
the number of nearest neighbors and ELASTICITY to set the relative width of the warping
window. Their source codes are given in Listing 5.

3.6. Auxiliary Interfaces

The fap.util and fap.callback sub-package auxiliary interfaces and classes briefly de-
scribed in this subsection are intended to support mechanisms for monitoring, terminating,
and resuming long-running processes, as well as their parallelization.

By implementing the Resumable interface (Fig. 12), classes that perform long-running
tasks indicate that their execution can be interrupted and resumed from near the break-
point. Via the isDone method, they should report whether the task has already been com-
pleted, and the isInProgress method should report whether it is still in progress (if the
result of both methods is false, it means that the execution has not yet started). The func-
tion of the reset method is to reset the internal state of the object for reuse (for example, if
the same trainer is to be used to train another classifier after finishing training the previous
one).

Classes supporting multi-threaded execution must implement the Multithreaded inter-
face (Fig. 12), which declares getter/setter methods to set and read the number of threads,



1396 Zoltán Gellér, Vladimir Kurbalija, and Mirjana Ivanović

Listing 4. The output of the code shown in Listing 3

0.050
error , expected , parameters
0.023, 0.046, [1, 14.0]
0.055, 0.042, [6, 23.0]
0.039, 0.043, [4, 17.0]
0.071, 0.041, [6, 17.0]
0.055, 0.045, [1, 25.0]
0.039, 0.045, [4, 21.0]
0.063, 0.049, [6, 6.0]
0.063, 0.033, [4, 16.0]
0.024, 0.045, [4, 16.0]
0.063, 0.039, [6, 21.0]

Listing 5. Implementation of the modifiers of the number of nearest neighbors of the kNN
classifier, and the width of the warping window of constrained elastic distance measures

public static final ClassifierModifier <Integer > KNN =
new ClassifierModifier <>() {

@Override
public void set(Classifier classifier , Integer value) {

(( KNNClassifier) classifier).setK(value);
}

};

public static final DistanceModifier <Double > ELASTICITY =
new DistanceModifier <>() {

@Override
public void set(Classifier classifier , Double value) {

Distance distance =
(( DistanceBasedClassifier) classifier).getDistance ();

(( ConstrainedDistance) distance).setR(value);
}

};



FAP: A Time Series Analysis and Mining Framework 1397

and for stopping them (threads might not be stopped automatically after completing a
task in order to optimize resource usage in case of reusing the same object for executing
multiple tasks).

Parallel execution of some tasks requires that each thread be provided with a copy
of the objects involved in the process of the task realization. For example, for each par-
allel partitioning of the dataset into testing and training subsets within repeated holdout
evaluation, it is necessary to provide a copy of the trainer and classifier, and if the trainer
changes the parameters of the distance measure used by the classifier, then also a copy
of the distance measure. The ability of a class to make copies of objects of its type is
indicated by implementing the Copyable interface (Fig. 12). Whether it is necessary to
make a deep copy of the object is indicated by the value of the boolean parameter of the
makeACopy method. For example, if a trainer changes the parameters of a distance mea-
sure, different copies of a classifier cannot share the same distance measure, and when
copying a classifier, a copy of the associated distance measure must also be made. The
parameterless form of this method is a shortcut for deep copying. The result of calling
these methods should be a copy of the corresponding object.

<<interface>>
Multithreaded

+ int getNumberOfThreads()
+ void setNumberOfThreads(int)
+ void shutdown()

<<interface>>
Resumable

+ void reset()
+ boolean isDone()
+ boolean isInProgress()

<<interface>>
Copyable

+ Object makeACopy()

+ Object makeACopy(boolean)

Fig. 12. Interfaces for resumable, multi-threaded and copyable tasks

Supporting monitoring the progress of task execution is indicated by implementing
the Callbackable interface (Fig. 13) and it should be realized by regularly calling the
callback method of the provided Callback object. The Callback object should report
the desired number of callbacks via the getDesiredCallbackNumber method, and through
setPossibleCallbackNumber, the Callbackable object can indicate the maximum number
of callbacks it can perform. For example, if a Callback object requests 100 callbacks, but
the task in question consists of only 60 steps, the number of possible callbacks should
be reported as 60. Initialization and reading of the current number of callbacks should
be enabled via the setCallbackCount and getCallbackCount methods. The purpose of the
getProgress methods is to map the number of callbacks from the range of the possible
number to the range of the desired number of callbacks.

The AbstractCallback abstract class provides basic data structures and a basic im-
plementation of the methods of the Callback interface. The fap.callback sub-package
besides it (and the Callback and Callbackable interfaces) also contains two concrete
implementations: the SystemOutCallback class prints a specified character on the stan-
dard output with each callback, and the ProgressBarCallback class displays the progress
through a given progress bar.
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<<interface>>
Callback

+
int getDesiredCallbackNumber()+

void setPossibleCallbackNumber(int)

+ int getPossibleCallbackNumber()

+

int getCallbackCount()

+

void setCallbackCount(int)

+ void callback(Object)

+ int getProgress()

+ int getProgress(int)

<<interface>>
Callbackable

+ void setCallback(Callback)

+ Callback getCallback()

AbstractCallback

# int desiredCBNumber =  30

# int possibleCBNumber =  30
# int cbCount =  0

+ AbstractCallback()

+ AbstractCallback(int)

Fig. 13. Interfaces for callbackable tasks

4. Conclusions

In this paper, we presented the basic interfaces and classes around which our FAP library
was built and demonstrated the ease of its utilization through examples of applying re-
peated and nested stratified cross-validation [65] to evaluate the performance of the 1NN
and the variant of the weighted kNN classifier based on Dudani’s scheme [19], paired
with the unconstrained and the Sakoe-Chiba [56] constrained Dynamic Time Warping
[7] (dis)similarity measure. In addition, we gave an insight into some more advanced
capabilities of the framework, such as storing calculated distances between time series
in memory to avoid multiple calculations, multi-threaded classification, evaluation and
training of classifiers, and tuning of distance measure parameters for more efficient use
of modern, multi-core processors, using pre-generated distance and neighbour matrices
to speed up NN classifiers, as well as mechanisms for monitoring, interrupting and con-
tinuing interrupted long-term processes (considering environments where the availability
of computers to run long-term experiments is not continuous - for example, university
computer centers and classrooms).

Motivated by the need to develop a new representation of time series based on cubic
splines [40, 43], the library was gradually expanded with new capabilities that enabled its
application in both research [42, 39, 24, 10] and education [41]. Currently, the FAP library
contains implementations of a number of distance measures based on linear matching of
time series data points, the basic elastic measures whose elasticity can be constrained by
applying either the Sakoe-Chiba band or the Itakura parallelogram [30], various variants
of the NN classifier, multiple representations of time series, the main techniques for evalu-
ating classifier performance (holdout, leave-one-out, cross-validation) with the possibility
of multiple repetitions and nested evaluation, as well as classes for training classifiers and
tuning parameters of distance measures.

In the future, we plan not only to expand the already existing sub-packages of the
FAP library with additional capabilities, but also to implement solutions related to other
areas of time series analysis and mining (such as, for example, clustering, anomaly de-
tection, and prediction). Furthermore, believing that it may also be useful to other re-
searchers and practitioners, the FAP library is open source and freely available via GitHub
(https://github.com/zgeller/FAP.git).
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